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Recall for minimal subshift

Examples of minimal subshift (X, o), with Aut(X, o) isomorphic
to

e Q, with 1 identified with o (BLR)

Automorphisms of low complexity subshifts 3



Recall for minimal subshift

Examples of minimal subshift (X, o), with Aut(X, o) isomorphic
to

e Q, with 1 identified with o (BLR)

@ (o) ® G for an arbitrarily finite group G
(substitutive subshift)
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Recall for minimal subshift

Examples of minimal subshift (X, o), with Aut(X, o) isomorphic
to

e Q, with 1 identified with o (BLR)

@ (o) ® G for an arbitrarily finite group G
(substitutive subshift)
@ (o) @ G for an arbitrarily f.g. abelian group G
(Toeplitz subshift)
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Recall for minimal subshift

Examples of minimal subshift (X, o), with Aut(X, o) isomorphic
to

e Q, with 1 identified with o (BLR)

@ (o) ® G for an arbitrarily finite group G
(substitutive subshift)
@ (o) @ G for an arbitrarily f.g. abelian group G
(Toeplitz subshift)

Pb: Is it possible to obtain “more complicated” groups ?
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Cantor minimal system

(X, T) is minimal if any orbit is dense in X.

Proposition (Cortez-Durand-Medynets-P.)

@ For any topological group G homeomorphic to a Cantor set,
there exists a Cantor minimal system (X, T) with
Aut(X, T) ~ G.
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Cantor minimal system

(X, T) is minimal if any orbit is dense in X.

Proposition (Cortez-Durand-Medynets-P.)

@ For any topological group G homeomorphic to a Cantor set,
there exists a Cantor minimal system (X, T) with
Aut(X, T) ~ G.

@ Let T be a countable residually finite group. There exists a
Cantor minimal system (X, T), with Aut(X, T) ~T.

<

E.g.: finite groups, Z", free group, finitely generated linear groups,
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Cantor minimal system

(X, T) is minimal if any orbit is dense in X.

Proposition (Cortez-Durand-Medynets-P.)

@ For any topological group G homeomorphic to a Cantor set,
there exists a Cantor minimal system (X, T) with
Aut(X, T) ~ G.

@ Let T be a countable residually finite group. There exists a
Cantor minimal system (X, T), with Aut(X, T) ~T.

<

E.g.: finite groups, Z", free group, finitely generated linear groups,

Generally the examples are not expansive.
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Recall for minimal subshift

In all the examples of minimal subshift Aut(X, o) is locally
virtually abelian, i.e. any f.g. subgroup has an abelian finite index
subgroup.

Automorphisms of low complexity subshifts 3



Recall for minimal subshift

In all the examples of minimal subshift Aut(X, o) is locally
virtually abelian, i.e. any f.g. subgroup has an abelian finite index
subgroup.

A group G satisfies virtually the property P (abelian, nilpotent, ...)
if it has a finite index subgroup H < G that satisfies property P.

Automorphisms of low complexity subshifts 3



Recall for minimal subshift

In all the examples of minimal subshift Aut(X, o) is locally
virtually abelian, i.e. any f.g. subgroup has an abelian finite index
subgroup.

A group G satisfies virtually the property P (abelian, nilpotent, ...)
if it has a finite index subgroup H < G that satisfies property P.

Open pb: Is Aut(X, o) always locally virtually abelian when
(X, o) is a minimal subshift ?
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Basic notion for group: Growth rate of a group.

Let G be a group generated by a finite set S C G.

s(n):=#{s;---sx: 55€SUSTU{lg} and k < n}
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Basic notion for group: Growth rate of a group.

Let G be a group generated by a finite set S C G.

s(n):=#{s;---sx: 55€SUSTU{lg} and k < n}
s(n+ m) < s(n)s(m).
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Basic notion for group: Growth rate of a group.

Let G be a group generated by a finite set S C G.

s(n):=#{s;---sx: 55€SUSTU{lg} and k < n}
s(n+ m) < s(n)s(m).

@ G has exponential growth if lim,log(s(n))/n >0

Example:

@ The free group has an exponential growth.
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Basic notion for group: Growth rate of a group.

Let G be a group generated by a finite set S C G.

s(n):=#{s;---sx: 55€SUSTU{lg} and k < n}
s(n+ m) < s(n)s(m).

@ G has exponential growth if lim,log(s(n))/n >0

@ G has polynomial growth of degree at most d if
liminf, 28ln) < g

logn

Example:
@ The free group has an exponential growth.

e 79 has a polynomial growth rate of degree at most d.
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Subquadratic complexity

Theorem (Cyr-Kra (14))
If (X,0) is a transitive subshift such that

fim inf PX(7)

=0
n n2 ’

then Aut(X,0)/(o) is a torsion group: i.e.,

Vo € Aut(X,0),3n,p € Z s.t. P =o".
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Subquadratic complexity: Idea of proof

Theorem (Cyr-Kra (14))
If (X, o) is a transitive subshift such that

fiminf XU _ g
n n

then V¢ € Aut(X,0),3n,p € Z s.t. P = o".

Theorem (Curtis-Hedlund-Lyndon)

An automorphism ¢ of (X, o) is a sliding block code,
i.e. there exists a block map ¢: Lo,4+1(X) — A s.t.

¢(X)n = ﬁg(xnfr o 'Xn+r) Jor any n € Z.
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Subquadratic complexity: ldea of proof

Theorem (Cyr-Kra (14))
If (X, o) is a transitive subshift such that

lim inf px(n)

=0
n n2 ’

then Vo € Aut(X,0),3n,p € Z s.t. P = o".

Theorem (Epifanios-Koskas-Mignosi (01), Quas-Zamboni (04),

Cyr-Kra (13))

Ifn: Z2 — A is a coloring and there exist k,n € N s.t. the number
of coloring of n X k rectangles in n satisfies

P,(n, k) < nk/A,

where A\ = 144 (EKM), A =16 (QZ), A = 2 (CK).
Then n has a period.

v

Automorphisms of low complexity subshifts 3




Subpolynomial complexity

Theorem (Cyr-Kra (15))
Let (X, o) be a minimal subshift s.t. there exists d > 1

px(n)

=0,

lim sup
n

Then every finitely generated, torsion free subgroup of Aut(X, o)
has a polynomial growth rate at most d — 1.

In particular if px(n) = o(n?), Aut(X, o) does not contains Z¢.
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Subpolynomial complexity

G =[G, Gl =(fgf g7t if,.geG), G =[G, Gia]fori>1
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Subpolynomial complexity

Gy :=[G,G] = {fgf g7, f, g € G), Gi =[G, Gj_1] for i > 1
A group G is nilpotent of degree at most d > 1 if Gy = {1s}.
E.g.: an abelian group is a nilpotent group of degree 1.
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Subpolynomial complexity

Gy :=[G,G] = {fgf g7, f, g € G), Gi =[G, Gj_1] for i > 1
A group G is nilpotent of degree at most d > 1 if Gy = {1s}.
E.g.: an abelian group is a nilpotent group of degree 1.

Gromov, van den Dries-Wilkie (80's): a group with a polynomial
growth rate is virtually nilpotent.
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A group G is nilpotent of degree at most d > 1 if Gy = {1s}.
E.g.: an abelian group is a nilpotent group of degree 1.

Gromov, van den Dries-Wilkie (80's): a group with a polynomial
growth rate is virtually nilpotent.
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Subpolynomial complexity

Gy :=[G,G] = {fgf g7, f, g € G), Gi =[G, Gj_1] for i > 1
A group G is nilpotent of degree at most d > 1 if Gy = {1s}.
E.g.: an abelian group is a nilpotent group of degree 1.

Gromov, van den Dries-Wilkie (80's): a group with a polynomial
growth rate is virtually nilpotent.

Corollary (Cyr-Kra (15))
Let (X, o) be a minimal subshift s.t. there exists d > 1

px(n)

=0,

lim sup
n

Every finitely generated, torsion free subgroup of Aut(X, o) is
virtually nilpotent of degree at most L(—l + v8d — 7) /2J .
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Subpolynomial complexity

Gy :=[G,G] = (fgf g1, f,g € G), G =[G, Gj_1] for i > 1
A group G is nilpotent of degree at most d > 1 if Gy = {1¢}.
E.g.: an abelian group is a nilpotent group of degree at most 1.

Gromov, van den Dries-Wilkie (80's): a group with a polynomial
growth rate is virtually nilpotent

Corollary (Cyr-Kra (15))
Let (X, o) be a minimal subshift s.t.

px(n)

5 =0.

lim sup
n

Every finitely generated, torsion free subgroup of Aut(X, o) is
virtually abelian.
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Main ideas to control the growth rate of Aut(X, o)
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Main ideas to control the growth rate of Aut(X, o)

Theorem (Curtis-Hedlund-Lyndon)

Let ¢ be an automorphism of (X, o)
There exists a bloc map ¢: £2,$+1(X) — A st

¢(x)n = Qg(xn—rd; o ‘Xn—i-r(z;) Jor any n € Z.
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Main ideas to control the growth rate of Aut(X, o)

Theorem (Curtis-Hedlund-Lyndon)

Let ¢ be an automorphism of (X, o)
There exists a bloc map ¢: £2,$+1(X) — A st

¢(x)n = Qg(xn—rd; o ‘Xn—i-r(z;) Jor any n € Z.

The range of ¢ € Aut(X,0) is

r(¢) :=inf{r;; ¢ is a bloc map defining ¢} > 0.

Eg.:r(o)<1
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Main ideas to control the growth rate of Aut(X, o)

Theorem (Curtis-Hedlund-Lyndon)

Let ¢ be an automorphism of (X, o)
There exists a bloc map ¢: £2,$+1(X) — A st

¢(x)n = Qg(xn—rd; o ‘Xn—i-r(z;) Jor any n € Z.

The range of ¢ € Aut(X,0) is

r(¢) :=inf{r;; ¢ is a bloc map defining ¢} > 0.

Eg.:r(o)<1

r(¢ o) <r(o) +r(v) Vo, € Aut(X, o).
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Main ideas to control the growth rate of Aut(X, o)

Theorem (Curtis-Hedlund-Lyndon)

Let ¢ be an automorphism of (X, o)
There exists a bloc map ¢: Ezrﬁl(X) — A st

d(x)n = <£(x,,_rq3 . -x,,+r$) for any n € Z.

The range of ¢ € Aut(X, o) is
r(¢) == inf{rs; c;AS is a bloc map defining ¢} > 0.
Eg.:r(o)<1

r(¢ o) <r(¢) +r(v) Ve, € Aut(X, o).
r(pro---0dp) <r(p1) +---+r(dn) < "SL!Pr(fﬁf)
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Main ideas to control the growth rate of Aut(X, o)

Theorem (Curtis-Hedlund-Lyndon)

Let ¢ be an automorphism of (X, o)
There exists a bloc map ¢: £2r‘£+1(X) — A st

¢(X)n = Q,S(anrq; o ‘Xn+r$) Jor any n € Z.

The range of ¢ € Aut(X,0) is
r(¢) = inf{r(;); ¢ is a bloc map defining ¢} > 0.

Eg.:r(o)<1
Goal: estimate the cardinal of

Aut(X,0)r = {¢ € Aut(X,0);r(¢) < R}
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Let (X, o) be a subshift s.t. limsup, px(n)/n® < +o0o. Then there
exists C > 1 and infinitely many words w € L(X) s.t.

#{(a,b) € L(X)% awb € L(X),|a| = [b| = "= ]} =1. (1)
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Let (X, o) be a subshift s.t. limsup, px(n)/n® < +o0o. Then there
exists C > 1 and infinitely many words w € L(X) s.t.

#{(2,5) € LXP awb € £0X) 1ol = bl = )y =1 (1)

Proof. By contradiction. Assume for all C > 1 and sufficiently
large u € L(X), n=|u| > ng , there are words aj, by, ap, by with
lai| = |bi] = || st ayuby # apubs € L(X).

Px <Cg2n> = px(n+2n/C) > 2px(n)
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Let (X,0) be a subshift s.t. limsup, px(n)/n? < 4+oc. Then there
exists C > 1 and infinitely many words w € L(X) s.t.

#{(a, b) € L(X)? awb € L(X),|a| = |b| = L'Vg'J} =L (1)

Proof. By contradiction. Assume for all C > 1 and sufficiently
large u € L(X), n=|u| > ng , there are words aj, by, ap, by with
lai| = |bi] = || st ayuby # apubs € L(X).

Px <Cg2n> = px(n+2n/C) > 2px(n)

Wnz (SR 2 Fmst (SR << (SR
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Let (X,0) be a subshift s.t. limsup, px(n)/n? < 4+oc. Then there
exists C > 1 and infinitely many words w € L(X) s.t.

#{(a, b) € L(X)? awb € L(X),|a| = |b| = L'Vg'J} =L (1)

Proof. By contradiction. Assume for all C > 1 and sufficiently
large u € L(X), n=|u| > ng , there are words aj, by, ap, by with
lai| = |bi] = || st ayuby # apubs € L(X).

Px <Cg2n> = px(n+2n/C) > 2px(n)

Wnz (SR 2 Fmst (SR << (SR

C+2 g2
px() = px((—2)™) = 2™ ™px(n) = T 2™ py (o)
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Let (X,0) be a subshift s.t. limsup, px(n)/n? < 4+oc. Then there
exists C > 1 and infinitely many words w € L(X) s.t.

#{(a, b) € L(X)? awb € L(X),|a| = |b| = L'Vg'J} =L (1)

Proof. By contradiction. Assume for all C > 1 and sufficiently
large u € L(X), n=|u| > ng , there are words aj, by, ap, by with
lai| = |bi] = || st ayuby # apubs € L(X).

Px <Cg2n> = px(n+2n/C) > 2px(n)

(R Imsn (SR << (G2
C+2 __log2
px(n) > PX((%),") > 20 py (np) > nEE(C27C) 20~ py (o)

Contradiction when C >>1
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Let (X, o) be a subshift s.t. limsup, px(n)/n? < +o0o. Then there
exists C > 1 and infinitely many words w € L(X) s.t.

#{(a, b) € L(X)* awb € L(X), |a| = [b] = L@J} =1 (9

Automorphisms of low complexity subshifts 3



Let (X, o) be a subshift s.t. limsup, px(n)/n? < +o0o. Then there
exists C > 1 and infinitely many words w € L(X) s.t.

#{(a, b) € L(X)* awb € L(X), |a| = [b] = L@J} =1 (9

Les (X, o) be a minimal subshift and w € L(X). The group
(¢ € Aut(X,0)w; d([w]) C [w]) is finite.
2
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Let (X, o) be a subshift s.t. limsup, px(n)/n? < +o0o. Then there
exists C > 1 and infinitely many words w € L(X) s.t.

#{(a,b) € L(X)}awb € L(X),|a| = |b|=|—=]}=1. (2

Les (X, o) be a minimal subshift and w € L(X). The group
(¢ € Aut(X,0)w; d([w]) C [w]) is finite.
2

For (X, o) a minimal subshift s.t. limsup, px(n)/n =0,
G < Aut(X, o) f.g., torsion free, w satisfying (2),

46N Au(X, o) < px(|wl).

2C
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Let (X, o) be a subshift s.t. limsup, px(n)/n? < +o0o. Then there
exists C > 1 and infinitely many words w € L(X) s.t.

#{(a,b) € L(X)}awb € L(X),|a| = |b|=|—=]}=1. (2

Les (X, o) be a minimal subshift and w € L(X). The group
(¢ € Aut(X,0)w; d([w]) C [w]) is finite.
2

For (X, o) a minimal subshift s.t. limsup, px(n)/n =0,
G < Aut(X, o) f.g., torsion free, w satisfying (2),

46N Au(X, o) < px(|wl).

2C

G has a polynomial growth.
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Subexponential complexity

Theorem (Cyr-Kra (15))
Let (X, o) be a minimal subshift s.t. there exists 3 < 1/2

log(px(n))

.z =0

lim sup
n

Then every finitely generated, torsion free subgroup of Aut(X, o)
has subexponential growth (at most exp n®/(1=F)).
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Subexponential complexity

Theorem (Cyr-Kra (15))
Let (X, o) be a minimal subshift s.t. there exists 3 < 1/2

log(px(n))

.z =0

lim sup
n

Then every finitely generated, torsion free subgroup of Aut(X, o)
has subexponential growth (at most exp n®/(1=F)).

Under the same hypothesis:
Aut(X, o) is amenable.
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Obstruction to embedding: distortion

Let G be a countable group and a finite set S C G.
For g € (S), s(g) denotes the length of the shortest presentation
of g by elements of S:

Es(g):inf{keN;Elsl,...,skESUS_I;g:51~--sk}
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Obstruction to embedding: distortion

Let G be a countable group and a finite set S C G.
For g € (S), s(g) denotes the length of the shortest presentation
of g by elements of S:

Es(g):inf{keN;Elsl,...,skESUS_I;g:51~--sk}

The element g is distorted if there exists a finite set S C G such
that

ts(g") = o(n).
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Obstruction to embedding: distortion

Let G be a countable group and a finite set S C G.
For g € (S), s(g) denotes the length of the shortest presentation
of g by elements of S:

Es(g):inf{keN;Elsl,...,skESUS_I;g:51~--sk}

The element g is distorted if there exists a finite set S C G such
that

ts(g") = o(n).

E.g.: discrete Heisenberg group H, defined by

H= (s, t,u: su=us,ts=st [ut]=utu"1t7! =s).
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Obstruction to embedding: distortion

Let G be a countable group and a finite set S C G.
For g € (S), s(g) denotes the length of the shortest presentation
of g by elements of S:

Es(g):inf{keN;Elsl,...,skESUS_I;g:51~--sk}

The element g is distorted if there exists a finite set S C G such
that

ts(g") = o(n).

E.g.: discrete Heisenberg group H, defined by

H= (s, t,u: su=us,ts=st [ut]=utu"1t7! =s).

For any n € Z,

Sn2 — [un’ tn] — untnu—nt—n

Automorphisms of low complexity subshifts 3



Obstruction to embedding: distortion

Q: What are the distorted elements in Aut(X,o) ?
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Obstruction to embedding: distortion

Q: What are the distorted elements in Aut(X,o) ?
Let ¢ € Aut(X,0), a finite set S C Aut(X,0)

r(¢") < ls(¢") maxr(s).

seS
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Obstruction to embedding: distortion

Q: What are the distorted elements in Aut(X,o) ?

Let ¢ € Aut(X,0), a finite set S C Aut(X,0)

r(¢") < ls(¢") maxr(s).

seS
¢ distorted = r(¢") = o(n).

E.g.: the shift r(¢") = n for infinite subshift X.
The shift map is not distorted in Aut(X, o).
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Obstruction to embedding: distortion

If G is a countable group, the element g € G is logarithmically
distorted if there exists a finite set S C G such that

ls(g") = O(log n),
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Obstruction to embedding: distortion

If G is a countable group, the element g € G is logarithmically
distorted if there exists a finite set S C G such that

ls(g") = O(log n),

E.g.:
o Baumslag-Solitar group BS(1,n) = (a, b: bab™! = a").
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Obstruction to embedding: distortion

If G is a countable group, the element g € G is logarithmically
distorted if there exists a finite set S C G such that

ls(g") = O(log n),

E.g.:
e Baumslag-Solitar group BS(1,n) = (a, b : bab™1 = a").

m= ag+ain+ -+ axnk, 0<aj<n
= n(n(-(ak_1+nag) )+ a1) + ag
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Obstruction to embedding: distortion

If G is a countable group, the element g € G is logarithmically
distorted if there exists a finite set S C G such that

ls(g") = O(log n),

E.g.:
o Baumslag-Solitar group BS(1,n) = (a, b: bab™! = a").

m= ozo—i-aln—i----—i—aknk, 0<a;<n
= n(n(--- (k=1 +noy)---)+o1) + o

a"()Feo — pal)p=la00 — phgarp=lam-1p=l... p=1a%,
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Obstruction to embedding: distortion

If G is a countable group, the element g € G is logarithmically
distorted if there exists a finite set S C G such that

ls(g") = O(log n),

E.g.:
o Baumslag-Solitar group BS(1,n) = (a, b: bab™! = a").
o SL(d,Z), d > 3.
e SL(2,Z[1/p]), for any prime p.
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Obstruction to embedding: distortion

Theorem (Cyr, Franks, Kra & P.)

Let (X, o) be a subshift with zero entropy. Suppose ¢ € Aut(X, o)
is s.t. ¥(¢") = O(log n). Then ¢ has finite order.
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Obstruction to embedding: distortion

Theorem (Cyr, Franks, Kra & P.)

Let (X, 0) be a subshift with zero entropy. Suppose ¢ € Aut(X, o)
is s.t. ¥(¢") = O(log n). Then ¢ has finite order.

Let (X, o) be a zero entropy subshift. Then Aut(X, o) does not
contain a group with a logarithmically distorted element of infinite
order (like BS(1, n) or SL(d,Z) d > 3).
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Obstruction to embedding: distortion

Theorem (Cyr, Franks, Kra & P.)

Let (X, 0) be a subshift with zero entropy. Suppose ¢ € Aut(X, o)
is s.t. ¥(¢") = O(log n). Then ¢ has finite order.

Let (X, o) be a zero entropy subshift. Then Aut(X, o) does not
contain a group with a logarithmically distorted element of infinite
order (like BS(1, n) or SL(d,Z) d > 3).

¢ is logarithmically distorted

r(¢") < ls(¢™) maxr(s).

seS

So r(¢") = O(log n)
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Obstruction to embedding: distortion

Theorem (Cyr, Franks, Kra & P.)

Let (X, 0) be a subshift with zero entropy. Suppose ¢ € Aut(X, o)
is s.t. ¥(¢") = O(log n). Then ¢ has finite order.

Let (X, o) be a zero entropy subshift. Then Aut(X, o) does not
contain a group with a logarithmically distorted element of infinite
order (like BS(1, n) or SL(d,Z) d > 3).

¢ is logarithmically distorted

r(¢") < ls(¢™) maxr(s).

seS

So r(¢") = O(log n)
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Obstruction to embedding

Theorem (Cyr, Franks, Kra & P.)

Let (X, o) be a subshift with zero entropy. Suppose ¢ € Aut(X, o)
is s.t. ¥(¢") = O(log n). Then ¢ has finite order.

Proof
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If G is a countable group, the element g € G is polynomially
distorted of degree d if there exists a finite set S C G such that

ls(g") = O(n*/).
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If G is a countable group, the element g € G is polynomially
distorted of degree d if there exists a finite set S C G such that

ls(g") = O(n*/).

¢ € Aut(X, o) is polynomially range distorted of degree d if

f(¢") = O(n*/9).
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If G is a countable group, the element g € G is polynomially
distorted of degree d if there exists a finite set S C G such that

ls(g") = O(n*/).

¢ € Aut(X, o) is polynomially range distorted of degree d if

f(¢") = O(n*/9).

Theorem (Cyr, Franks, Kra & P.)

Let (X,0) be a subshift such that liminf, px(n)/n?*tt = 0.
Suppose ¢ € Aut(X, o) is polynomially range distorted of degree
d. Then ¢ has finite order.

Automorphisms of low complexity subshifts 3



If G is a countable group, the element g € G is polynomially
distorted of degree d if there exists a finite set S C G such that

ls(g") = O(n*/).

¢ € Aut(X, o) is polynomially range distorted of degree d if

f(¢") = O(n*/9).

Theorem (Cyr, Franks, Kra & P.)

Let (X,0) be a subshift such that liminf, px(n)/n?*tt = 0.
Suppose ¢ € Aut(X, o) is polynomially range distorted of degree
d. Then ¢ has finite order.

Hochman (11): example of an automorphism polynomially range
distorted.
Is it (group) polynomially distorted ?
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Theorem (Cyr, Franks, Kra & P.)

Let (X,0) be a subshift such that liminf, px(n)/n9tt = 0.
Suppose ¢ € Aut(X, o) is polynomially range distorted of degree
d. Then ¢ has finite order.

For a nilpotent group G, the torsion subgroup T is the group
generated by elements of finite order.
T < G is finite when G is finitely generated.

Let (X, o) be a subshift with a f. g. nilpotent group
G < Aut(X,0). If G/T is a d-step nilpotent group, then

px(n)

nd+1 > 0.

I|m inf
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Obstruction to embedding

Theorem (Cyr, Franks, Kra & P)

Let (X, o) be an minimal subshift such that for some d > 1 we
have Px(n) = o(ndt1(d+2)/2+2) " Then any finitely generated,
torsion-free subgroup of Aut(X, o) is virtually nilpotent of step at
most d.
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Obstruction to embedding

Theorem (Cyr, Franks, Kra & P)

Let (X, o) be an minimal subshift such that for some d > 1 we
have Px(n) = o(ndt1(d+2)/2+2) " Then any finitely generated,
torsion-free subgroup of Aut(X, o) is virtually nilpotent of step at
most d.

A minimal subshift such that Px(n) = o(n°), any finitely
generated, torsion-free subgroup of Aut(X, o) is virtually abelian.
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A minimal subshift such that Px(n) = o(n%), any finitely
generated, torsion-free subgroup of Aut(X, o) is virtually abelian.

Proof. Let G < Aut(X, o) f.g. torsion free.
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A minimal subshift such that Px(n) = o(n%), any finitely
generated, torsion-free subgroup of Aut(X, o) is virtually abelian.

Proof. Let G < Aut(X, o) f.g. torsion free.
By Cyr-Kra's thm, G has polynomial growth rate at most 4.
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A minimal subshift such that Px(n) = o(n%), any finitely
generated, torsion-free subgroup of Aut(X, o) is virtually abelian.

Proof. Let G < Aut(X, o) f.g. torsion free.
By Cyr-Kra's thm, G has polynomial growth rate at most 4.
Gromov's thm, G contains a nilpotent subgroup of finite index.
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A minimal subshift such that Px(n) = o(n%), any finitely
generated, torsion-free subgroup of Aut(X, o) is virtually abelian.

Proof. Let G < Aut(X, o) f.g. torsion free.

By Cyr-Kra's thm, G has polynomial growth rate at most 4.
Gromov's thm, G contains a nilpotent subgroup of finite index.
Assume G contains the Heisenberg group H.

1

H = (s, t,u;su=us, ts = st,utu"'t™1 =s).

Automorphisms of low complexity subshifts 3



A minimal subshift such that Px(n) = o(n%), any finitely
generated, torsion-free subgroup of Aut(X, o) is virtually abelian.

Proof. Let G < Aut(X, o) f.g. torsion free.

By Cyr-Kra's thm, G has polynomial growth rate at most 4.
Gromov's thm, G contains a nilpotent subgroup of finite index.
Assume G contains the Heisenberg group H.

1,-1

H = (s, t,u;su=us,ts = st,utu” "t = =s).

If H < Aut(X,o0), then (o) ®H < Aut(X, o)
because Z(H) = (s)
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A minimal subshift such that Px(n) = o(n%), any finitely
generated, torsion-free subgroup of Aut(X, o) is virtually abelian.

Proof. Let G < Aut(X, o) f.g. torsion free.

By Cyr-Kra's thm, G has polynomial growth rate at most 4.
Gromov's thm, G contains a nilpotent subgroup of finite index.
Assume G contains the Heisenberg group H.

1,-1

H = (s, t,u;su=us,ts = st,utu” "t = =s).

If H < Aut(X,o0), then (o) ®H < Aut(X, o)
because Z(H) = (s)
Growth rate of (o) @ H is n°.

Automorphisms of low complexity subshifts 3



Open questions

For a minimal zero entropy system, is a distorsion automorphism
always periodic ?
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Open questions

For a minimal zero entropy system, is a distorsion automorphism
always periodic ?

For a minimal zero entropy system, is any finitely generated group
in Aut(X, o) virtually abelian ?

Can we realize an example containing the Heisenberg group 7
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Open questions

For a minimal zero entropy system, is a distorsion automorphism
always periodic ?

For a minimal zero entropy system, is any finitely generated group
in Aut(X, o) virtually abelian ?

Can we realize an example containing the Heisenberg group 7

For zero entropy multidimensional shift, can the automorphism
group contain the Heisenberg or a group with a distorted element
of infinite order ?
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