Automorphisms of low complexity subshifts 3

Samuel Petite

LAMFA UMR CNRS Université de Picardie Jules Verne, France

December 1, 2016

Automorphisms of low complexity subshifts 3

イロト イポト イヨト イヨト

Examples of minimal subshift (X, σ) , with $Aut(X, \sigma)$ isomorphic to

• \mathbb{Q} , with 1 identified with σ

(BLR)

æ

・ロト ・回ト ・ヨト ・ヨト

Recall for minimal subshift

Examples of minimal subshift (X, σ) , with $Aut(X, \sigma)$ isomorphic to

- \mathbb{Q} , with 1 identified with σ (BLR)
- $\langle \sigma
 angle \oplus G$ for an arbitrarily finite group G

(substitutive subshift)

・ロト ・回ト ・ヨト ・ヨト

æ

Recall for minimal subshift

Examples of minimal subshift (X, σ) , with $Aut(X, \sigma)$ isomorphic to

- \mathbb{Q} , with 1 identified with σ (BLR)
- $\langle \sigma \rangle \oplus G$ for an arbitrarily finite group G(substitutive subshift) • $\langle \sigma \rangle \oplus G$ for an arbitrarily f.g. abelian group G(Toeplitz subshift)

イロト イポト イヨト イヨト 二日

Examples of minimal subshift (X, σ) , with $Aut(X, \sigma)$ isomorphic to

• \mathbb{Q} , with 1 identified with σ (BLR)

• $\langle \sigma \rangle \oplus G$ for an arbitrarily finite group G(substitutive subshift) • $\langle \sigma \rangle \oplus G$ for an arbitrarily f.g. abelian group G(Toeplitz subshift)

Pb: Is it possible to obtain "more complicated" groups ?

イロト イポト イヨト イヨト 二日

(X, T) is minimal if any orbit is dense in X.

Proposition (Cortez-Durand-Medynets-P.)

 For any topological group G homeomorphic to a Cantor set, there exists a Cantor minimal system (X, T) with Aut(X, T) ≃ G.

- 4 回 ト 4 ヨ ト 4 ヨ ト

(X, T) is minimal if any orbit is dense in X.

Proposition (Cortez-Durand-Medynets-P.)

- For any topological group G homeomorphic to a Cantor set, there exists a Cantor minimal system (X, T) with Aut(X, T) ≃ G.
- Let Γ be a countable residually finite group. There exists a Cantor minimal system (X, T), with Aut(X, T) ≃ Γ.

E.g.: finite groups, \mathbb{Z}^n , free group, finitely generated linear groups, ...

(日) (周) (日) (日) (日)

(X, T) is minimal if any orbit is dense in X.

Proposition (Cortez-Durand-Medynets-P.)

- For any topological group G homeomorphic to a Cantor set, there exists a Cantor minimal system (X, T) with Aut(X, T) ≃ G.
- Let Γ be a countable residually finite group. There exists a Cantor minimal system (X, T), with Aut(X, T) ≃ Γ.

E.g.: finite groups, \mathbb{Z}^n , free group, finitely generated linear groups, ... Generally the examples are not expansive.

(日) (周) (日) (日) (日)

In all the examples of minimal subshift $Aut(X, \sigma)$ is locally virtually abelian, *i.e.* any f.g. subgroup has an abelian finite index subgroup.

・ 回 と く ヨ と く ヨ と

In all the examples of minimal subshift $Aut(X, \sigma)$ is locally virtually abelian, *i.e.* any f.g. subgroup has an abelian finite index subgroup.

A group G satisfies virtually the property P (abelian, nilpotent, ...) if it has a finite index subgroup H < G that satisfies property P.

(4月) イヨト イヨト

In all the examples of minimal subshift $Aut(X, \sigma)$ is locally virtually abelian, *i.e.* any f.g. subgroup has an abelian finite index subgroup.

A group G satisfies virtually the property P (abelian, nilpotent, ...) if it has a finite index subgroup H < G that satisfies property P.

Open pb: Is $Aut(X, \sigma)$ always locally virtually abelian when (X, σ) is a minimal subshift ?

(日) (周) (日) (日) (日)

Let G be a group generated by a finite set $S \subset G$.

$$s(n) := \#\{s_1 \cdots s_k : s_i \in S \cup S^{-1} \cup \{1_G\} \text{ and } k \le n\}$$

(1日) (日) (日)

æ

Let G be a group generated by a finite set $S \subset G$.

$$egin{aligned} &s(n) := \#\{s_1 \cdots s_k: \ s_i \in S \cup S^{-1} \cup \{1_G\} \ ext{and} \ k \leq n\} \ &s(n+m) \leq s(n)s(m). \end{aligned}$$

(1日) (日) (日)

æ

Let G be a group generated by a finite set $S \subset G$.

$$egin{aligned} & \mathfrak{s}(n) := \#\{\mathfrak{s}_1\cdots\mathfrak{s}_k:\ \mathfrak{s}_i\in S\cup S^{-1}\cup\{1_G\}\ ext{and}\ k\leq n\}\ & \mathfrak{s}(n+m)\leq \mathfrak{s}(n)\mathfrak{s}(m). \end{aligned}$$

• G has exponential growth if $\lim_{n \to \infty} \log(s(n))/n > 0$

Example:

• The free group has an exponential growth.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Let G be a group generated by a finite set $S \subset G$.

$$s(n) := \#\{s_1 \cdots s_k : s_i \in S \cup S^{-1} \cup \{1_G\} \text{ and } k \le n\}$$

 $s(n+m) \le s(n)s(m).$

- G has exponential growth if $\lim_{n \to \infty} \log(s(n))/n > 0$
- G has polynomial growth of degree at most d if $\liminf_n \frac{\log(s(n))}{\log n} \leq d$.

Example:

- The free group has an exponential growth.
- \mathbb{Z}^d has a polynomial growth rate of degree at most d.

Theorem (Cyr-Kra (14))

If (X, σ) is a transitive subshift such that

$$\liminf_n \frac{p_X(n)}{n^2} = 0,$$

then $Aut(X, \sigma)/\langle \sigma \rangle$ is a torsion group: i.e.,

 $\forall \phi \in Aut(X, \sigma), \exists n, p \in \mathbb{Z} \ s.t. \ \phi^p = \sigma^n.$

(4回) (1日) (日)

3

Theorem (Cyr-Kra (14))

If (X, σ) is a transitive subshift such that

$$\liminf_n \frac{p_X(n)}{n^2} = 0,$$

then $\forall \phi \in Aut(X, \sigma), \exists n, p \in \mathbb{Z} \text{ s.t. } \phi^p = \sigma^n.$

Theorem (Curtis-Hedlund-Lyndon)

An automorphism ϕ of (X, σ) is a sliding block code, i.e. there exists a block map $\hat{\phi} \colon \mathcal{L}_{2r+1}(X) \to A$ s.t.

$$\phi(\mathbf{x})_n = \hat{\phi}(\mathbf{x}_{n-r}\cdots\mathbf{x}_{n+r}) \text{ for any } n \in \mathbb{Z}.$$

(4月) イヨト イヨト

Subquadratic complexity: Idea of proof

Theorem (Cyr-Kra (14))

If (X, σ) is a transitive subshift such that

$$\liminf_n \frac{p_X(n)}{n^2} = 0,$$

then $\forall \phi \in Aut(X, \sigma), \exists n, p \in \mathbb{Z} \ s.t. \ \phi^p = \sigma^n$.

Theorem (Epifanios-Koskas-Mignosi (01), Quas-Zamboni (04), Cyr-Kra (13))

If $\eta : \mathbb{Z}^2 \to A$ is a coloring and there exist $k, n \in \mathbb{N}$ s.t. the number of coloring of $n \times k$ rectangles in η satisfies

 $P_{\eta}(n,k) \leq nk/\lambda,$

where $\lambda = 144$ (EKM), $\lambda = 16$ (QZ), $\lambda = 2$ (CK). Then η has a period.

Theorem (Cyr-Kra (15))

Let (X, σ) be a minimal subshift s.t. there exists $d \ge 1$

$$\limsup_{n} \frac{p_X(n)}{n^d} = 0.$$

Then every finitely generated, torsion free subgroup of $Aut(X, \sigma)$ has a polynomial growth rate at most d - 1.

In particular if $p_X(n) = o(n^d)$, $Aut(X, \sigma)$ does not contains \mathbb{Z}^d .

(4回) (1日) (日)

$$G_1 := [G, G] = \langle fgf^{-1}g^{-1}; f, g \in G \rangle, \qquad G_i := [G, G_{i-1}] \text{ for } i > 1$$

▲圖> ▲屋> ▲屋>

æ

 $G_1 := [G, G] = \langle fgf^{-1}g^{-1}; f, g \in G \rangle, \qquad G_i := [G, G_{i-1}] \text{ for } i > 1$ A group G is nilpotent of degree at most $d \ge 1$ if $G_d = \{1_G\}$. **E.g.**: an abelian group is a nilpotent group of degree 1.

イロト イポト イヨト イヨト

 $G_1 := [G, G] = \langle fgf^{-1}g^{-1}; f, g \in G \rangle, \qquad G_i := [G, G_{i-1}] \text{ for } i > 1$ A group G is nilpotent of degree at most $d \ge 1$ if $G_d = \{1_G\}$. **E.g.**: an abelian group is a nilpotent group of degree 1.

Gromov, van den Dries-Wilkie (80's): a group with a polynomial growth rate is virtually nilpotent.

イロト イポト イヨト イヨト 二日

 $G_1 := [G, G] = \langle fgf^{-1}g^{-1}; f, g \in G \rangle, \qquad G_i := [G, G_{i-1}] \text{ for } i > 1$ A group G is nilpotent of degree at most $d \ge 1$ if $G_d = \{1_G\}$. **E.g.**: an abelian group is a nilpotent group of degree 1.

Gromov, van den Dries-Wilkie (80's): a group with a polynomial growth rate is virtually nilpotent.

イロト イポト イヨト イヨト 二日

 $G_1 := [G, G] = \langle fgf^{-1}g^{-1}; f, g \in G \rangle, \qquad G_i := [G, G_{i-1}] \text{ for } i > 1$ A group G is nilpotent of degree at most $d \ge 1$ if $G_d = \{1_G\}$. **E.g.**: an abelian group is a nilpotent group of degree 1.

Gromov, van den Dries-Wilkie (80's): a group with a polynomial growth rate is virtually nilpotent.

Corollary (Cyr-Kra (15))

Let (X, σ) be a minimal subshift s.t. there exists $d \ge 1$

$$\limsup_n \frac{p_X(n)}{n^d} = 0.$$

Every finitely generated, torsion free subgroup of $Aut(X, \sigma)$ is virtually nilpotent of degree at most $|(-1 + \sqrt{8d-7})/2|$.

イロト イポト イヨト イヨト

 $G_1 := [G, G] = \langle fgf^{-1}g^{-1}; f, g \in G \rangle, \qquad G_i := [G, G_{i-1}] \text{ for } i > 1$ A group G is nilpotent of degree at most $d \ge 1$ if $G_d = \{1_G\}$. **E.g.**: an abelian group is a nilpotent group of degree at most 1.

Gromov, van den Dries-Wilkie (80's): a group with a polynomial growth rate is virtually nilpotent

Corollary (Cyr-Kra (15))

Let (X, σ) be a minimal subshift s.t.

$$\limsup_n \frac{p_X(n)}{n^3} = 0.$$

Every finitely generated, torsion free subgroup of $Aut(X, \sigma)$ is virtually abelian.

イロト イポト イヨト イヨト

Main ideas to control the growth rate of $Aut(X, \sigma)$

・ 回 ト ・ ヨ ト ・ ヨ ト

Э

Let ϕ be an automorphism of (X, σ) There exists a bloc map $\hat{\phi} \colon \mathcal{L}_{2r_{\hat{\phi}}+1}(X) \to A$ s.t.

$$\phi(x)_n = \hat{\phi}(x_{n-r_{\hat{\phi}}} \cdots x_{n+r_{\hat{\phi}}}) \text{ for any } n \in \mathbb{Z}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Let ϕ be an automorphism of (X, σ) There exists a bloc map $\hat{\phi} \colon \mathcal{L}_{2r_{\hat{\phi}}+1}(X) \to A$ s.t.

$$\phi(x)_n = \hat{\phi}(x_{n-r_{\hat{\phi}}} \cdots x_{n+r_{\hat{\phi}}}) \text{ for any } n \in \mathbb{Z}.$$

The range of $\phi \in Aut(X, \sigma)$ is

$$\mathbf{r}(\phi) := \inf\{r_{\hat{\phi}}; \ \hat{\phi} \text{ is a bloc map defining } \phi\} \ge 0.$$

E.g.: $\mathbf{r}(\sigma) \le 1$

・ 同下 ・ ヨト ・ ヨト

Let ϕ be an automorphism of (X, σ) There exists a bloc map $\hat{\phi} \colon \mathcal{L}_{2r_{\hat{\phi}}+1}(X) \to A$ s.t.

$$\phi(x)_n = \hat{\phi}(x_{n-r_{\hat{\phi}}} \cdots x_{n+r_{\hat{\phi}}}) \text{ for any } n \in \mathbb{Z}.$$

The range of $\phi \in Aut(X, \sigma)$ is

 $\mathbf{r}(\phi) := \inf\{r_{\hat{\phi}}; \ \hat{\phi} \text{ is a bloc map defining } \phi\} \ge 0.$

E.g.: $\mathbf{r}(\sigma) \leq 1$

$$\mathsf{r}(\phi \circ \psi) \leq \mathsf{r}(\phi) + \mathsf{r}(\psi) \qquad \forall \phi, \psi \in \operatorname{Aut}(X, \sigma).$$

・ 同下 ・ ヨト ・ ヨト

Let ϕ be an automorphism of (X, σ) There exists a bloc map $\hat{\phi} \colon \mathcal{L}_{2r_{\hat{\phi}}+1}(X) \to A$ s.t.

$$\phi(x)_n = \hat{\phi}(x_{n-r_{\hat{\phi}}} \cdots x_{n+r_{\hat{\phi}}}) \text{ for any } n \in \mathbb{Z}.$$

The range of $\phi \in Aut(X, \sigma)$ is

 $\mathbf{r}(\phi) := \inf\{r_{\hat{\phi}}; \ \hat{\phi} \text{ is a bloc map defining } \phi\} \ge 0.$

E.g.: $\mathbf{r}(\sigma) \leq 1$

$$\mathbf{r}(\phi \circ \psi) \leq \mathbf{r}(\phi) + \mathbf{r}(\psi) \qquad \forall \phi, \psi \in \operatorname{Aut}(X, \sigma).$$

$$\mathbf{r}(\phi_1 \circ \cdots \circ \phi_n) \leq \mathbf{r}(\phi_1) + \cdots + \mathbf{r}(\phi_n) \leq n \sup_i \mathbf{r}(\phi_i)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Let ϕ be an automorphism of (X, σ) There exists a bloc map $\hat{\phi} \colon \mathcal{L}_{2r_{\hat{\phi}}+1}(X) \to A$ s.t.

$$\phi(x)_n = \hat{\phi}(x_{n-r_{\hat{\phi}}} \cdots x_{n+r_{\hat{\phi}}}) \text{ for any } n \in \mathbb{Z}.$$

The range of $\phi \in Aut(X, \sigma)$ is

$$\mathbf{r}(\phi) := \inf\{r_{\hat{\phi}}; \ \hat{\phi} \text{ is a bloc map defining } \phi\} \ge 0.$$

E.g.: $\mathbf{r}(\sigma) \leq 1$ **Goal**: estimate the cardinal of

$$\operatorname{Aut}(X,\sigma)_R := \{\phi \in \operatorname{Aut}(X,\sigma); \mathbf{r}(\phi) \leq R\}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Let (X, σ) be a subshift s.t. $\limsup_{n} p_X(n)/n^d < +\infty$. Then there exists C > 1 and infinitely many words $w \in \mathcal{L}(X)$ s.t.

$$\#\{(a,b)\in\mathcal{L}(X)^2; awb\in\mathcal{L}(X), |a|=|b|=\lfloor\frac{|w|}{C}\rfloor\}=1.$$
(1)

イロト イポト イヨト イヨト

3

Let (X, σ) be a subshift s.t. $\limsup_{n} p_X(n)/n^d < +\infty$. Then there exists C > 1 and infinitely many words $w \in \mathcal{L}(X)$ s.t.

$$\#\{(a,b)\in\mathcal{L}(X)^2; awb\in\mathcal{L}(X), |a|=|b|=\lfloor\frac{|w|}{C}\rfloor\}=1.$$
(1)

Proof. By contradiction. Assume for all C > 1 and sufficiently large $u \in \mathcal{L}(X)$, $n = |u| \ge n_0$, there are words a_1 , b_1 , a_2 , b_2 with $|a_i| = |b_i| = \lfloor \frac{|w|}{C} \rfloor$ s.t. $a_1ub_1 \ne a_2ub_2 \in \mathcal{L}(X)$.

$$p_X\left(\frac{C+2}{C}n\right) = p_X(n+2n/C) \ge 2p_X(n)$$

Let (X, σ) be a subshift s.t. $\limsup_{n} p_X(n)/n^d < +\infty$. Then there exists C > 1 and infinitely many words $w \in \mathcal{L}(X)$ s.t.

$$\#\{(a,b)\in\mathcal{L}(X)^2; awb\in\mathcal{L}(X), |a|=|b|=\lfloor\frac{|w|}{C}\rfloor\}=1.$$
(1)

Proof. By contradiction. Assume for all C > 1 and sufficiently large $u \in \mathcal{L}(X)$, $n = |u| \ge n_0$, there are words a_1 , b_1 , a_2 , b_2 with $|a_i| = |b_i| = \lfloor \frac{|w|}{C} \rfloor$ s.t. $a_1ub_1 \ne a_2ub_2 \in \mathcal{L}(X)$.

$$p_X\left(\frac{C+2}{C}n\right) = p_X(n+2n/C) \ge 2p_X(n)$$

 $\forall n \ge \left(\frac{C+2}{C}\right)^{m_0} \ge n_0 \qquad \exists m \text{ s.t. } \left(\frac{C+2}{C}\right)^m \le n < \left(\frac{C+2}{C}\right)^{m+1}$

- 4 回 ト 4 ヨ ト 4 ヨ ト

Let (X, σ) be a subshift s.t. $\limsup_{n} p_X(n)/n^d < +\infty$. Then there exists C > 1 and infinitely many words $w \in \mathcal{L}(X)$ s.t.

$$\#\{(a,b)\in\mathcal{L}(X)^2; awb\in\mathcal{L}(X), |a|=|b|=\lfloor\frac{|w|}{C}\rfloor\}=1.$$
(1)

Proof. By contradiction. Assume for all C > 1 and sufficiently large $u \in \mathcal{L}(X)$, $n = |u| \ge n_0$, there are words a_1 , b_1 , a_2 , b_2 with $|a_i| = |b_i| = \lfloor \frac{|w|}{C} \rfloor$ s.t. $a_1ub_1 \ne a_2ub_2 \in \mathcal{L}(X)$.

$$p_X\left(\frac{C+2}{C}n\right) = p_X(n+2n/C) \ge 2p_X(n)$$

 $\forall n \ge \left(\frac{C+2}{C}\right)^{m_0} \ge n_0 \qquad \exists m \text{ s.t. } \left(\frac{C+2}{C}\right)^m \le n < \left(\frac{C+2}{C}\right)^{m+1} \\ p_X(n) \ge p_X(\left(\frac{C+2}{C}\right)^m) \ge 2^{m-m_0} p_X(n_0) \ge n^{\frac{\log 2}{\log((C+2)/C)}} 2^{m_0-1} p_X(n_0)$

Let (X, σ) be a subshift s.t. $\limsup_{n} p_X(n)/n^d < +\infty$. Then there exists C > 1 and infinitely many words $w \in \mathcal{L}(X)$ s.t.

$$\#\{(a,b)\in\mathcal{L}(X)^2; awb\in\mathcal{L}(X), |a|=|b|=\lfloor\frac{|w|}{C}\rfloor\}=1.$$
(1)

Proof. By contradiction. Assume for all C > 1 and sufficiently large $u \in \mathcal{L}(X)$, $n = |u| \ge n_0$, there are words a_1 , b_1 , a_2 , b_2 with $|a_i| = |b_i| = \lfloor \frac{|w|}{C} \rfloor$ s.t. $a_1ub_1 \ne a_2ub_2 \in \mathcal{L}(X)$.

$$p_X\left(\frac{C+2}{C}n\right) = p_X(n+2n/C) \ge 2p_X(n)$$

 $\forall n \ge \left(\frac{C+2}{C}\right)^{m_0} \ge n_0 \qquad \exists m \text{ s.t. } \left(\frac{C+2}{C}\right)^m \le n < \left(\frac{C+2}{C}\right)^{m+1} \\ p_X(n) \ge p_X(\left(\frac{C+2}{C}\right)^m) \ge 2^{m-m_0} p_X(n_0) \ge n^{\frac{\log 2}{\log((C+2)/C)}} 2^{m_0-1} p_X(n_0)$

Contradiction when C >> 1

Let (X, σ) be a subshift s.t. $\limsup_{n} p_X(n)/n^d < +\infty$. Then there exists C > 1 and infinitely many words $w \in \mathcal{L}(X)$ s.t.

$$\#\{(a,b)\in\mathcal{L}(X)^2; awb\in\mathcal{L}(X), |a|=|b|=\lfloor\frac{|w|}{C}\rfloor\}=1.$$
 (2)

・ロト ・回ト ・ヨト ・ヨト

3

Let (X, σ) be a subshift s.t. $\limsup_{n} p_X(n)/n^d < +\infty$. Then there exists C > 1 and infinitely many words $w \in \mathcal{L}(X)$ s.t.

$$\#\{(a,b)\in\mathcal{L}(X)^2; awb\in\mathcal{L}(X), |a|=|b|=\lfloor\frac{|w|}{C}\rfloor\}=1.$$
(2)

Lemma

Les (X, σ) be a minimal subshift and $w \in \mathcal{L}(X)$. The group $\langle \phi \in Aut(X, \sigma)_{\frac{|w|}{2}}; \phi([w]) \subset [w] \rangle$ is finite.

・ロト ・回ト ・ヨト ・ヨト

Let (X, σ) be a subshift s.t. $\limsup_{n} p_X(n)/n^d < +\infty$. Then there exists C > 1 and infinitely many words $w \in \mathcal{L}(X)$ s.t.

$$\#\{(a,b)\in\mathcal{L}(X)^2; awb\in\mathcal{L}(X), |a|=|b|=\lfloor\frac{|w|}{C}\rfloor\}=1.$$
 (2)

Lemma

Les (X, σ) be a minimal subshift and $w \in \mathcal{L}(X)$. The group $\langle \phi \in Aut(X, \sigma)_{\frac{|w|}{2}}; \phi([w]) \subset [w] \rangle$ is finite.

For (X, σ) a minimal subshift s.t. $\limsup_{n} p_X(n)/n^d = 0$, $G < \operatorname{Aut}(X, \sigma)$ f.g., torsion free, w satisfying (2),

$$\#G \cap \operatorname{Aut}(X,\sigma)_{\frac{|w|}{2C}} \preccurlyeq p_X(|w|).$$

(日) (周) (日) (日) (日)

Let (X, σ) be a subshift s.t. $\limsup_{n} p_X(n)/n^d < +\infty$. Then there exists C > 1 and infinitely many words $w \in \mathcal{L}(X)$ s.t.

$$\#\{(a,b)\in\mathcal{L}(X)^2; awb\in\mathcal{L}(X), |a|=|b|=\lfloor\frac{|w|}{C}\rfloor\}=1.$$
 (2)

Lemma

Les (X, σ) be a minimal subshift and $w \in \mathcal{L}(X)$. The group $\langle \phi \in Aut(X, \sigma)_{\frac{|w|}{2}}; \phi([w]) \subset [w] \rangle$ is finite.

For (X, σ) a minimal subshift s.t. $\limsup_{n} p_X(n)/n^d = 0$, $G < \operatorname{Aut}(X, \sigma)$ f.g., torsion free, w satisfying (2),

$$\#G \cap \operatorname{Aut}(X,\sigma)_{\frac{|w|}{2C}} \preccurlyeq p_X(|w|).$$

G has a polynomial growth.

(日) (周) (日) (日) (日)

Theorem (Cyr-Kra (15))

Let (X, σ) be a minimal subshift s.t. there exists $\beta < 1/2$

$$\limsup_n \frac{\log(p_X(n))}{n^\beta} = 0.$$

Then every finitely generated, torsion free subgroup of $Aut(X, \sigma)$ has subexponential growth (at most $exp \ n^{\beta/(1-\beta)}$).

イロン イヨン イヨン イヨン

Theorem (Cyr-Kra (15))

Let (X, σ) be a minimal subshift s.t. there exists $\beta < 1/2$

$$\limsup_n \frac{\log(p_X(n))}{n^\beta} = 0.$$

Then every finitely generated, torsion free subgroup of $Aut(X, \sigma)$ has subexponential growth (at most $exp \ n^{\beta/(1-\beta)}$).

Corollary

Under the same hypothesis:

 $Aut(X, \sigma)$ is amenable.

Let G be a countable group and a finite set $S \subset G$. For $g \in \langle S \rangle$, $\ell_S(g)$ denotes the length of the shortest presentation of g by elements of S:

$$\ell_{\mathcal{S}}(g) = \inf \left\{ k \in \mathbb{N}; \exists s_1, \dots, s_k \in \mathcal{S} \cup \mathcal{S}^{-1}; g = s_1 \cdots s_k \right\}$$

▲圖▶ ▲注▶ ▲注▶

Ξ

Let G be a countable group and a finite set $S \subset G$. For $g \in \langle S \rangle$, $\ell_S(g)$ denotes the length of the shortest presentation of g by elements of S:

$$\ell_{\mathcal{S}}(g) = \inf \left\{ k \in \mathbb{N}; \exists s_1, \dots, s_k \in \mathcal{S} \cup \mathcal{S}^{-1}; g = s_1 \cdots s_k \right\}$$

The element g is distorted if there exists a finite set $S \subset G$ such that

$$\ell_{\mathcal{S}}(g^n) = \mathrm{o}(n).$$

(日本) (日本) (日本)

Let G be a countable group and a finite set $S \subset G$. For $g \in \langle S \rangle$, $\ell_S(g)$ denotes the length of the shortest presentation of g by elements of S:

$$\ell_{\mathcal{S}}(g) = \inf \left\{ k \in \mathbb{N}; \exists s_1, \dots, s_k \in \mathcal{S} \cup \mathcal{S}^{-1}; g = s_1 \cdots s_k \right\}$$

The element g is distorted if there exists a finite set $S \subset G$ such that

$$\ell_{\mathcal{S}}(g^n) = \mathrm{o}(n).$$

E.g.: discrete Heisenberg group H, defined by

$$\mathbf{H} = \langle s, t, u \colon su = us, ts = st, [u, t] = utu^{-1}t^{-1} = s \rangle.$$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Let G be a countable group and a finite set $S \subset G$. For $g \in \langle S \rangle$, $\ell_S(g)$ denotes the length of the shortest presentation of g by elements of S:

$$\ell_{\mathcal{S}}(g) = \inf \left\{ k \in \mathbb{N}; \exists s_1, \dots, s_k \in \mathcal{S} \cup \mathcal{S}^{-1}; g = s_1 \cdots s_k \right\}$$

The element g is distorted if there exists a finite set $S \subset G$ such that

$$\ell_{\mathcal{S}}(g^n) = \mathrm{o}(n).$$

E.g.: discrete Heisenberg group H, defined by

$$\mathbf{H} = \langle s, t, u \colon su = us, ts = st, [u, t] = utu^{-1}t^{-1} = s \rangle.$$

For any $n \in \mathbb{Z}$,

$$s^{n^2} = [u^n, t^n] = u^n t^n u^{-n} t^{-n}$$

Automorphisms of low complexity subshifts 3

マロト イヨト イヨト

<u>Q</u>: What are the distorted elements in $Aut(X, \sigma)$?

(1日) (日) (日)

3

<u>Q</u>: What are the distorted elements in $Aut(X, \sigma)$?

Let $\phi \in \operatorname{Aut}(X, \sigma)$, a finite set $S \subset \operatorname{Aut}(X, \sigma)$

$$\mathbf{r}(\phi^n) \leq \ell_S(\phi^n) \max_{s \in S} \mathbf{r}(s).$$

・ 同下 ・ ヨト ・ ヨト

æ

<u>Q</u>: What are the distorted elements in $Aut(X, \sigma)$?

Let $\phi \in \operatorname{Aut}(X, \sigma)$, a finite set $S \subset \operatorname{Aut}(X, \sigma)$ $\mathbf{r}(\phi^n) \leq \ell_S(\phi^n) \max_{s \in S} \mathbf{r}(s).$

$$\phi$$
 distorted \Rightarrow **r**(ϕ^n) = o(n).

E.g.: the shift $\mathbf{r}(\sigma^n) = n$ for infinite subshift X. The shift map is not distorted in $\operatorname{Aut}(X, \sigma)$.

▲圖▶ ▲注▶ ▲注▶

 $\ell_{\mathcal{S}}(g^n) = \mathcal{O}(\log n),$

・ 同下 ・ ヨト ・ ヨト

э

$$\ell_{\mathcal{S}}(g^n) = \mathcal{O}(\log n),$$

E.g.:

• Baumslag-Solitar group $BS(1, n) = \langle a, b : bab^{-1} = a^n \rangle$.

・ 同 ト ・ ヨ ト ・ ヨ ト

$$\ell_{\mathcal{S}}(g^n) = \mathcal{O}(\log n),$$

E.g.:

• Baumslag-Solitar group
$$BS(1, n) = \langle a, b : bab^{-1} = a^n \rangle$$
.

$$m = \alpha_0 + \alpha_1 n + \dots + \alpha_k n^k, \qquad 0 \le \alpha_i < n$$

= $n(n(\dots(\alpha_{k-1} + n\alpha_k)\dots) + \alpha_1) + \alpha_0$

- 4 回 2 - 4 □ 2 - 4 □

If G is a countable group, the element $g \in G$ is logarithmically distorted if there exists a finite set $S \subset G$ such that

$$\ell_{\mathcal{S}}(g^n) = \mathcal{O}(\log n),$$

E.g.:

• Baumslag-Solitar group $BS(1, n) = \langle a, b : bab^{-1} = a^n \rangle$.

$$m = \alpha_0 + \alpha_1 n + \dots + \alpha_k n^k, \qquad 0 \le \alpha_i < n$$
$$= n(n(\dots(\alpha_{k-1} + n\alpha_k)\dots) + \alpha_1) + \alpha_0$$
$$a^{n(\dots)+\alpha_0} = ba^{(\dots)}b^{-1}a^{\alpha_0} = b^k a^{\alpha_k}b^{-1}a^{\alpha_{k-1}}b^{-1}\dots b^{-1}a^{\alpha_0}$$

$$\ell_{\mathcal{S}}(g^n) = \mathcal{O}(\log n),$$

E.g.:

- Baumslag-Solitar group $BS(1, n) = \langle a, b : bab^{-1} = a^n \rangle$.
- $SL(d,\mathbb{Z}), d \geq 3.$
- $SL(2, \mathbb{Z}[1/p])$, for any prime p.

Let (X, σ) be a subshift with zero entropy. Suppose $\phi \in Aut(X, \sigma)$ is s.t. $\mathbf{r}(\phi^n) = O(\log n)$. Then ϕ has finite order.

Let (X, σ) be a subshift with zero entropy. Suppose $\phi \in Aut(X, \sigma)$ is s.t. $\mathbf{r}(\phi^n) = O(\log n)$. Then ϕ has finite order.

Corollary

Let (X, σ) be a zero entropy subshift. Then $Aut(X, \sigma)$ does not contain a group with a logarithmically distorted element of infinite order (like BS(1, n) or $SL(d, \mathbb{Z})$ $d \ge 3$).

Let (X, σ) be a subshift with zero entropy. Suppose $\phi \in Aut(X, \sigma)$ is s.t. $\mathbf{r}(\phi^n) = O(\log n)$. Then ϕ has finite order.

Corollary

Let (X, σ) be a zero entropy subshift. Then $Aut(X, \sigma)$ does not contain a group with a logarithmically distorted element of infinite order (like BS(1, n) or $SL(d, \mathbb{Z})$ $d \ge 3$).

 ϕ is logarithmically distorted

$$\mathbf{r}(\phi^n) \leq \ell_S(\phi^n) \max_{s \in S} \mathbf{r}(s).$$

So $\mathbf{r}(\phi^n) = O(\log n)$

- 4 回 ト 4 ヨ ト 4 ヨ ト

Let (X, σ) be a subshift with zero entropy. Suppose $\phi \in Aut(X, \sigma)$ is s.t. $\mathbf{r}(\phi^n) = O(\log n)$. Then ϕ has finite order.

Corollary

Let (X, σ) be a zero entropy subshift. Then $Aut(X, \sigma)$ does not contain a group with a logarithmically distorted element of infinite order (like BS(1, n) or $SL(d, \mathbb{Z})$ $d \ge 3$).

 ϕ is logarithmically distorted

$$\mathbf{r}(\phi^n) \leq \ell_S(\phi^n) \max_{s \in S} \mathbf{r}(s).$$

So $\mathbf{r}(\phi^n) = O(\log n)$

- 4 回 ト 4 ヨ ト 4 ヨ ト

Let (X, σ) be a subshift with zero entropy. Suppose $\phi \in Aut(X, \sigma)$ is s.t. $\mathbf{r}(\phi^n) = O(\log n)$. Then ϕ has finite order.

Proof

$$\ell_{\mathcal{S}}(g^n) = \mathcal{O}(n^{1/d}).$$

(周) (日) (日)

æ

$$\ell_{\mathcal{S}}(g^n) = \mathcal{O}(n^{1/d}).$$

 $\phi \in Aut(X, \sigma)$ is polynomially range distorted of degree d if

 $\mathbf{r}(\phi^n) = \mathcal{O}(n^{1/d}).$

$$\ell_{\mathcal{S}}(g^n) = \mathcal{O}(n^{1/d}).$$

 $\phi \in Aut(X, \sigma)$ is polynomially range distorted of degree d if

 $\mathbf{r}(\phi^n) = \mathcal{O}(n^{1/d}).$

Theorem (Cyr, Franks, Kra & P.)

Let (X, σ) be a subshift such that $\liminf_{n} p_X(n)/n^{d+1} = 0$. Suppose $\phi \in \operatorname{Aut}(X, \sigma)$ is polynomially range distorted of degree d. Then ϕ has finite order.

$$\ell_{\mathcal{S}}(g^n) = \mathcal{O}(n^{1/d}).$$

 $\phi \in Aut(X, \sigma)$ is polynomially range distorted of degree d if

 $\mathbf{r}(\phi^n) = \mathcal{O}(n^{1/d}).$

Theorem (Cyr, Franks, Kra & P.)

Let (X, σ) be a subshift such that $\liminf_{n} p_X(n)/n^{d+1} = 0$. Suppose $\phi \in \operatorname{Aut}(X, \sigma)$ is polynomially range distorted of degree d. Then ϕ has finite order.

Hochman (11): example of an automorphism polynomially range distorted.

Is it (group) polynomially distorted ?

Let (X, σ) be a subshift such that $\liminf_{n} p_X(n)/n^{d+1} = 0$. Suppose $\phi \in \operatorname{Aut}(X, \sigma)$ is polynomially range distorted of degree d. Then ϕ has finite order.

For a nilpotent group G, the torsion subgroup T is the group generated by elements of finite order. $T \triangleleft G$ is finite when G is finitely generated.

Corollary

Let (X, σ) be a subshift with a f. g. nilpotent group $G < \operatorname{Aut}(X, \sigma)$. If G/T is a d-step nilpotent group, then

$$\liminf_n \frac{p_X(n)}{n^{d+1}} > 0.$$

Let (X, σ) be an minimal subshift such that for some $d \ge 1$ we have $P_X(n) = o(n^{(d+1)(d+2)/2+2})$. Then any finitely generated, torsion-free subgroup of $Aut(X, \sigma)$ is virtually nilpotent of step at most d.

Let (X, σ) be an minimal subshift such that for some $d \ge 1$ we have $P_X(n) = o(n^{(d+1)(d+2)/2+2})$. Then any finitely generated, torsion-free subgroup of $Aut(X, \sigma)$ is virtually nilpotent of step at most d.

Corollary

A minimal subshift such that $P_X(n) = o(n^5)$, any finitely generated, torsion-free subgroup of $Aut(X, \sigma)$ is virtually abelian.

- 4 回 ト 4 ヨ ト 4 ヨ ト

A minimal subshift such that $P_X(n) = o(n^5)$, any finitely generated, torsion-free subgroup of $Aut(X, \sigma)$ is virtually abelian.

Proof. Let $G < Aut(X, \sigma)$ f.g. torsion free.

・ 同下 ・ ヨト ・ ヨト

3

A minimal subshift such that $P_X(n) = o(n^5)$, any finitely generated, torsion-free subgroup of $Aut(X, \sigma)$ is virtually abelian.

Proof. Let $G < Aut(X, \sigma)$ f.g. torsion free. By Cyr-Kra's thm, G has polynomial growth rate at most 4.

A minimal subshift such that $P_X(n) = o(n^5)$, any finitely generated, torsion-free subgroup of $Aut(X, \sigma)$ is virtually abelian.

Proof. Let $G < Aut(X, \sigma)$ f.g. torsion free. By Cyr-Kra's thm, G has polynomial growth rate at most 4. Gromov's thm, G contains a nilpotent subgroup of finite index.

A minimal subshift such that $P_X(n) = o(n^5)$, any finitely generated, torsion-free subgroup of $Aut(X, \sigma)$ is virtually abelian.

Proof. Let $G < \operatorname{Aut}(X, \sigma)$ f.g. torsion free. By Cyr-Kra's thm, G has polynomial growth rate at most 4. Gromov's thm, G contains a nilpotent subgroup of finite index. Assume G contains the Heisenberg group H.

$$\mathbf{H} = \langle s, t, u; su = us, ts = st, utu^{-1}t^{-1} = s \rangle.$$

A minimal subshift such that $P_X(n) = o(n^5)$, any finitely generated, torsion-free subgroup of $Aut(X, \sigma)$ is virtually abelian.

Proof. Let $G < \operatorname{Aut}(X, \sigma)$ f.g. torsion free. By Cyr-Kra's thm, G has polynomial growth rate at most 4. Gromov's thm, G contains a nilpotent subgroup of finite index. Assume G contains the Heisenberg group H.

$$\mathbf{H} = \langle s, t, u; su = us, ts = st, utu^{-1}t^{-1} = s \rangle.$$

A minimal subshift such that $P_X(n) = o(n^5)$, any finitely generated, torsion-free subgroup of $Aut(X, \sigma)$ is virtually abelian.

Proof. Let $G < \operatorname{Aut}(X, \sigma)$ f.g. torsion free. By Cyr-Kra's thm, G has polynomial growth rate at most 4. Gromov's thm, G contains a nilpotent subgroup of finite index. Assume G contains the Heisenberg group H.

$$\mathbf{H} = \langle s, t, u; su = us, ts = st, utu^{-1}t^{-1} = s \rangle.$$

If $\mathrm{H} < \mathrm{Aut}(X, \sigma)$, then $\langle \sigma \rangle \oplus \mathrm{H} < \mathrm{Aut}(X, \sigma)$ because $Z(\mathrm{H}) = \langle s \rangle$

Growth rate of $\langle \sigma \rangle \oplus H$ is n^5 .

Question

For a minimal zero entropy system, is a distorsion automorphism always periodic ?

- 4 回 2 - 4 □ 2 - 4 □

æ

Question

For a minimal zero entropy system, is a distorsion automorphism always periodic ?

Question

For a minimal zero entropy system, is any finitely generated group in $Aut(X, \sigma)$ virtually abelian ?

Can we realize an example containing the Heisenberg group ?

(4回) (1日) (日)

Question

For a minimal zero entropy system, is a distorsion automorphism always periodic ?

Question

For a minimal zero entropy system, is any finitely generated group in $Aut(X, \sigma)$ virtually abelian ?

Can we realize an example containing the Heisenberg group ?

Question

For zero entropy multidimensional shift, can the automorphism group contain the Heisenberg or a group with a distorted element of infinite order ?

- V. CYR, B. KRA, The automorphism group of a shift of subquadratic growth, Proc. Amer. Math. Soc.,
- V. CYR & B. KRA. The automorphism group of a minimal shift of stretched exponential growth. J. Mod. Dyn.
- V. CYR, J. FRANKS, B. KRA, S. PETITE. Distortion and the automorphism group of a shift. preprint
- M. HOCHMAN. *Non-expansive directions for* \mathbb{Z}^2 *actions*. Ergodic Theory Dynam. Systems.
- A. MANN *How groups grow.* Lecture Note Series.