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Basic topological notions: Topological dynamical system

Throughout X will be a compact metric space.
Homeo(X): the group of self homeomorphisms of X.

A (topological) dynamical system is a pair (X, T) where X is a
compact metric space and T € Homeo(X).

(X, T) is (topologically) isomorphic or conjugate to (Y, S) if there
exists a homeomorphism ¢: X — Y such that

poT =So0¢.

(Y,S) is a (topological) factor of (X, T), or (X, T) is an extension
of (Y, S), if there exists a continuous surjective ¢: X — Y such
that

poT =So0¢.
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Basic topological notions: Automorphism

Definition

Let (X, T) be a topological dynamical system. An automorphism
¢: X — X is an homeomorphism s.t.

poT =Toog.

Aut(X, T) = {¢ automorphism of (X, T)}.
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Let (X, T) be a topological dynamical system. An automorphism
¢: X — X is an homeomorphism s.t.

poT =Toog.

Aut(X, T) = {¢ automorphism of (X, T)}.
(T) C Aut(X, T)

Q: What can we say on Aut(X, T) as a group?
commutative? nilpotent? Amenable? Finitely generated?
What are the subgroups? the quotients?...
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Definition

Let (X, T) be a topological dynamical system. An automorphism
¢: X — X is an homeomorphism s.t.

poT =Toog.

Aut(X, T) = {¢ automorphism of (X, T)}.
(T) C Aut(X, T)

1o

What can we say on Aut(X, T) as a group?
commutative? nilpotent? Amenable? Finitely generated?
What are the subgroups? the quotients?...
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Basic topological notions: Automorphism

Definition

Let (X, T) be a topological dynamical system. An automorphism
¢: X — X is an homeomorphism s.t.

poT =Toog.

Aut(X, T) = {¢ automorphism of (X, T)}.
(T) C Aut(X, T)

1o

What can we say on Aut(X, T) as a group?
commutative? nilpotent? Amenable? Finitely generated?
What are the subgroups? the quotients?...

1o

What do dynamical properties of (X, T) say about properties
of Aut(X, T) and vice versa ?

Q: How does Aut(X, T) acts on X? On T-invariant measures?
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Basic topological notions: Subshift

An alphabet A is a finite set whose elements are letters.
A word u is an element of the free monoid A* generated by A.

The length of the word u = up - - u,—1, where u; € A, is |u| = n.
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Basic topological notions: Subshift

An alphabet A is a finite set whose elements are letters.
A word u is an element of the free monoid A* generated by A.
The length of the word u = up - - u,—1, where u; € A, is |u| = n.

The elements of AZ are bi infinite sequences

CeeX_1XoX1 Vi€ Z,x; €A.

A% endowed with the product topology, is a Cantor set.

The open sets are unions of cylinders:

[u.v] := {(xn)n € AL : X_[u] -+ Xy|—1 = UV} u,veA
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Basic topological notions: Subshift

The shift map
o: AL 5 AT

(Xn)nGZ = (Xn+1 ) neZ
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Basic topological notions: Subshift

The shift map
o: AL 5 AT
(Xn)nGZ = (Xn+1)n€Z

For a closed set X C A%, shift invariant (o(X) = X), a subshift is
the dynamical system (X, o|x).

Similarly

X ={(xn)n € AL X - Xiym & F Ym, i}, where F C A*.
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Basic topological notions: Subshift

The shift map
o: AL 5 AT
(Xn)nGZ = (Xn+1)n€Z

For a closed set X C A%, shift invariant (o(X) = X), a subshift is
the dynamical system (X, o|x).

Similarly

X ={(xa)n € AZ; x; - Xiym & F Ym, i}, where F C A*.
The language

L(X):={ue€ A" :u=x-xy-1 for some (xp), € X}.

La(X) = L(X) N A"
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Basic topological notions: Subshift

For a closed set X C A%, shift invariant (o(X) = X), a subshift is
the dynamical system (X, o|x). Similarly

X ={(xn)n € AL x; - Xijam & F Ym, i}, where F C A*.

Example:
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For a closed set X C A%, shift invariant (o(X) = X), a subshift is
the dynamical system (X, o|x). Similarly

X ={(xn)n € AL x; - Xijam & F Ym, i}, where F C A*.

Example:

o When F =), X = AZ | (A%,0) is full shift.
e When F is finite, (X, o) is a subshift of finite type (SFT).
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For a closed set X C A%, shift invariant (o(X) = X), a subshift is
the dynamical system (X, o|x). Similarly

X ={(xn)n € AL x; - Xijam & F Ym, i}, where F C A*.

Example:
o When F =), X = AZ | (A%,0) is full shift.
e When F is finite, (X, o) is a subshift of finite type (SFT).

o For a sequence x € A, ({o"(x) : n € Z},0) is the a subshift
generated by x.
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Basic topological notions: Subshift

For a closed set X C A%, shift invariant (o(X) = X), a subshift is
the dynamical system (X, o|x). Similarly

X ={(xn)n € AL x; - Xijam & F Ym, i}, where F C A*.

Example:
o When F =), X = AZ | (A%,0) is full shift.
e When F is finite, (X, o) is a subshift of finite type (SFT).

o For a sequence x € A, ({o"(x) : n € Z},0) is the a subshift
generated by x.

The system (X, 0) is expansive: Je > 0, x # y € X,

supd(a"(x),0"(y)) > e.
neZ
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Basic notions about groups

Let G be a group:
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Let G be a group:
@ a commutator for f,g € G : [f,g] = fgf gL

@ A subgroup H < G is normal if gHg™! = H for all g € G,
denoted H < G. A subgroup H is normal iff there exists a
homomorphism ¢: G — Gg so that H = kerp.

@ A subgroup H < G has finite index if #G/H < 4.
@ The center of G : Z(G) :={g € G:gh= hg Vhe G}.

e If G acts on X, stabg(x) :={g€g:g -x=x}.

Automorphisms of low complexity subshifts



Basic notions about groups

Let G be a group:
@ a commutator for f,g € G : [f,g] = fgf gL

@ A subgroup H < G is normal if gHg™! = H for all g € G,
denoted H < G. A subgroup H is normal iff there exists a
homomorphism ¢: G — Gg so that H = kerp.

@ A subgroup H < G has finite index if #G/H < 4.
@ The center of G : Z(G) :={g € G:gh= hg Vhe G}.

e If G acts on X, stabg(x) :={g€g:g -x=x}.

Exercice stabg(g - x) = g[stabg(x)]g ™.
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Algebraic motivations

The (topological) full group of a subshift (X, o) is

[[o]] := {¥ € Homeo(X);3n: X — Z cont. 1(x) = o"®(x) ¥x € X}.
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Algebraic motivations

The (topological) full group of a subshift (X, o) is
[[o]] := {¥ € Homeo(X);3n: X — Z cont. 1(x) = o"®(x) ¥x € X}.
The commutator subgroup of [[¢]] is

[[o]] == (fgf ‘g™ f, g € [[o]])-
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Algebraic motivations

The (topological) full group of a subshift (X, o) is
[[o]] := {¥ € Homeo(X);3n: X — Z cont. 1(x) = o"®(x) ¥x € X}.
The commutator subgroup of [[¢]] is

[[o]] == (fgf ‘g™ f, g € [[o]])-

Matui (06), Juschenko-Monod (12):
If (X, o) is a minimal subshift (without proper subshift)
[[]] is finitely generated, simple and amenable.
(first example known !).

See L. Bartholdi's lecture
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Algebraic motivations

The (topological) full group of a subshift (X, o) is
[[o]] := {« € Homeo(X); 3n: X — Z cont. ¢(x) = o"™)(x) Vx € X}.
Outer automorphism

Out([[o]]) := {: [[o]] = [[o]] isomorphism} (g, , hgh—1:neffo])) -
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Algebraic motivations

The (topological) full group of a subshift (X, o) is
[[o]] := {« € Homeo(X); 3n: X — Z cont. ¢(x) = o"™)(x) Vx € X}.
Outer automorphism

Out([[o]]) := {: [[o]] = [[o]] isomorphism} (g, , hgh—1:neffo])) -

Giordano-Putnam-Skau (1999): If (X, o) is minimal (without
proper subshift)
Out([[o]]) ~ {¢ € Homeo(X) : ¢ 00 = 0= 0 $}/(0).

{¢ € Homeo(X) : ¢ 0 0 = 0% 0 ¢} ) aut(x,0) C Z/2Z.
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Basic topological notions

Theorem (Curtis-Hedlund-Lyndon)

An automorphism ¢ of (X, o) is a sliding block code,
i.e. there exists a block map ¢: Lo,11(X) — A s.t.

d(x)n = QAS(X,,_, -+ Xpyr) for any n € Z.
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Basic topological notions

Theorem (Curtis-Hedlund-Lyndon)

An automorphism ¢ of (X, o) is a sliding block code,
i.e. there exists a block map ¢: Lo,11(X) — A s.t.

¢(X)n = (/b\(xn—r - ’Xn+r) for any n € Z.

The range of bisr.
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Basic topological notions

Theorem (Curtis-Hedlund-Lyndon)

An automorphism ¢ of (X, o) is a sliding block code,
i.e. there exists a block map ¢: Lo,11(X) — A s.t.

d(x)n = QAS(X,,_, -+ Xpyr) for any n € Z.

000 001 010 011 100 101 110 111

eg A={0,1},¢: L L L L L L 1 I
0 1 0 1 0 1 0 1
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Basic topological notions

Theorem (Curtis-Hedlund-Lyndon)

An automorphism ¢ of (X, o) is a sliding block code,
i.e. there exists a block map ¢: Lo,4+1(X) — A s.t.

¢(X)n = $(anr e -X,,+r) for any n € Z.

000 001 010 011 100 101 110 111

eg A={0,1},¢6: L L L L L L 1
0 1 0 1 0 1 0 1

x = ...010011.1010101000111...
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Basic topological notions

Theorem (Curtis-Hedlund-Lyndon)

An automorphism ¢ of (X, o) is a sliding block code,
i.e. there exists a block map ¢: Lo,4+1(X) — A s.t.

¢(X)n = $(anr e -X,,+r) for any n € Z.

000 001 010 011 100 101 110 111

eg A={0,1},¢6: L L L L L L 1
0 1 0 1 0 1 0 1

x= ...01001 1.10 10101000111...
1

Automorphisms of low complexity subshifts



Basic topological notions

Theorem (Curtis-Hedlund-Lyndon)

An automorphism ¢ of (X, o) is a sliding block code,
i.e. there exists a block map ¢: Lo,4+1(X) — A s.t.

¢(X)n = $(anr e -X,,+r) for any n € Z.

000 001 010 011 100 101 110 111

eg A={0,1},¢6: L L L L L L 1
0 1 0 1 0 1 0 1

x = ...010011 .101 0101000111...
b
o(x) = .0 1

Automorphisms of low complexity subshifts



Basic topological notions

Theorem (Curtis-Hedlund-Lyndon)

An automorphism ¢ of (X, o) is a sliding block code,
i.e. there exists a block map ¢: Lo,4+1(X) — A s.t.

¢(X)n = $(anr e -X,,+r) for any n € Z.

000 001 010 011 100 101 110 111

eg A={0,1},¢6: L L L L L L 1
0 1 0 1 0 1 0 1

x = ...010011.1 010 101000111...
b
o(x) = .....01 0
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Basic topological notions

Theorem (Curtis-Hedlund-Lyndon)

An automorphism ¢ of (X, o) is a sliding block code,
i.e. there exists a block map ¢: Lo,4+1(X) — A s.t.

¢(X)n = $(anr e -X,,+r) for any n € Z.

000 001 010 011 100 101 110 111

eg A={0,1},¢6: L L L L L L 1
0 1 0 1 0 1 0 1

x= ...010011.10 101 01000111...
!
p(x)= ----.010 1
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Basic topological notions

Theorem (Curtis-Hedlund-Lyndon)

An automorphism ¢ of (X, o) is a sliding block code,
i.e. there exists a block map ¢: Lo,4+1(X) — A s.t.

¢(X)n = $(anr e -X,,+r) for any n € Z.

000 001 010 011 100 101 110 111

eg A={0,1},¢6: L L L L L L 1
0 1 0 1 0 1 0 1

x= ...010011.101 010 1000111...
!
d(x)= ----.0101 0
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Basic topological notions

Theorem (Curtis-Hedlund-Lyndon)

An automorphism ¢ of (X, o) is a sliding block code,
i.e. there exists a block map ¢: Lo,4+1(X) — A s.t.

¢(X)n = $(anr e -X,,+r) for any n € Z.

000 001 010 011 100 101 110 111

eg A={0,1},¢6: L L L L L L 1
0 1 0 1 0 1 0 1

x = ...010011.1010 101 000111...
!
p(x)= ----.01010 1
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Basic topological notions

Theorem (Curtis-Hedlund-Lyndon)

An automorphism ¢ of (X, o) is a sliding block code,
i.e. there exists a block map ¢: Lo,4+1(X) — A s.t.

¢(X)n = $(anr e -X,,+r) for any n € Z.

000 001 010 011 100 101 110 111

eg A={0,1},¢6: L L L L L L 1
0 1 0 1 0 1 0 1

x= ...010011.10101 010 00111...
!
¢(x)=  ----.010101 O
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Basic topological notions

Theorem (Curtis-Hedlund-Lyndon)

An automorphism ¢ of (X, o) is a sliding block code,
i.e. there exists a block map ¢: Lo,4+1(X) — A s.t.

¢(X)n = $(anr e -X,,+r) for any n € Z.

000 001 010 011 100 101 110 111

eg A={0,1},¢6: L L L L L L 1
0 1 0 1 0 1 0 1

x= ...010011.101010 100 00111...
!
é(x)=  ----.0101010 0
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Basic topological notions

Theorem (Curtis-Hedlund-Lyndon)

An automorphism ¢ of (X, o) is a sliding block code,
i.e. there exists a block map ¢: Lo,4+1(X) — A s.t.

¢(X)n = $(anr e -X,,+r) for any n € Z.

000 001 010 011 100 101 110 111

eg A={0,1},¢6: L L L L L L 1
0 1 0 1 0 1 0 1

x = ...010011.1010101 000 0111...
!
¢(x)=  ----.01010100 0

Automorphisms of low complexity subshifts



Basic topological notions

Theorem (Curtis-Hedlund-Lyndon)

An automorphism ¢ of (X, o) is a sliding block code,
i.e. there exists a block map ¢: Lo,4+1(X) — A s.t.

¢(X)n = $(anr e -X,,+r) for any n € Z.

000 001 010 011 100 101 110 111

eg A={0,1},¢6: L L L L L L 1
0 1 0 1 0 1 0 1

x = ...010011.10101010000111...

¢(x)= ...0100111.0101010000111...
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Basic topological notions

Theorem (Curtis-Hedlund-Lyndon)

An automorphism ¢ of (X, o) is a sliding block code,
i.e. there exists a block map ¢: Lo,4+1(X) — A s.t.

¢(X)n = $(anr e -X,,+r) for any n € Z.

000 001 010 011 100 101 110 111

eg A={0,1},¢6: L L L L L L 1
0 1 0 1 0 1 0 1

X = ...010011.10101010000111 ...

¢(x) = ...0100111.0101010000111... = o(x)
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Basic topological notions
Theorem (Curtis-Hedlund-Lyndon)

Let ¢ be an automorphism of (X, o)
There exists a local map ¢: Lo,41(X) — A s.t.

¢(X)n = ﬁg(xnfr o 'Xn+r) for any n € Z.

”
Corollary

Aut(X, o) is countable.
Aut(X, o) is a discrete subgroup of Homeo(X) for the uniform
convergence topology.
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Complexity restrictions

The complexity px: N — N,

px(n) = #L,(X) = # words of length nin X.

Q: How the growth of the complexity restricts Aut(X,o)?
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How the growth of the complexity restricts Aut(X,o)?

linear O(n) sub-quadratic

0(n2) sub-
polynomial
d
o(n®) exponential
hn
sub- O(e™)
exponential
o(e™)

COMPLEXITY pyx(n) GROWTH RATE
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@ Automorphism of SFT
@ Automorphism of classical minimal systems

a) Linear complexity case
b) Toeplitz subshifts case

© Automorphism for sub-exponential complexity subshifts and
non embeddable groups.

Automorphisms of low complexity subshifts



Automorphism of SFT

Hedlund (69), Boyle, Lind & Rudolph (88): Let (X, o) be an
uncountable SFT. Then Aut(X, o) contains
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Automorphism of SFT

Hedlund (69), Boyle, Lind & Rudolph (88): Let (X, o) be an
uncountable SFT. Then Aut(X, o) contains

@ the direct sum of every countable collection of finite group.
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Automorphism of SFT

Hedlund (69), Boyle, Lind & Rudolph (88): Let (X, o) be an
uncountable SFT. Then Aut(X, o) contains

@ the direct sum of every countable collection of finite group.

@ the free group on a countable number of generators.

Automorphisms of low complexity subshifts



Automorphism of SFT

Hedlund (69), Boyle, Lind & Rudolph (88): Let (X, o) be an
uncountable SFT. Then Aut(X, o) contains

@ the direct sum of every countable collection of finite group.
@ the free group on a countable number of generators.
o Aut({1,...,n}%, o) forall n (Kim & Rousch, 90).
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Automorphism of SFT

Hedlund (69), Boyle, Lind & Rudolph (88): Let (X, o) be an
uncountable SFT. Then Aut(X, o) contains

@ the direct sum of every countable collection of finite group.
@ the free group on a countable number of generators.
o Aut({1,...,n}%, o) forall n (Kim & Rousch, 90).

Open problem: Aut({1,2}%, o) ~ Aut({1,2,3}%,0) ?
e If (X, o) is irreducible, Z(Aut(X,0)) = (o) (Ryan, 72).
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Automorphism of SFT

Hedlund (69), Boyle, Lind & Rudolph (88): Let (X, o) be an
uncountable SFT. Then Aut(X, o) contains

@ the direct sum of every countable collection of finite group.
@ the free group on a countable number of generators.
o Aut({1,...,n}%, o) forall n (Kim & Rousch, 90).

Open problem: Aut({1,2}%, o) ~ Aut({1,2,3}%,0) ?
e If (X, o) is irreducible, Z(Aut(X,0)) = (o) (Ryan, 72).

In this case:
Aut(X, o) is not finitely generated, not amenable.
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Embedding free products

Aut(X, o) contains the free product Z/27Z x Z/2Z * L/ 2. )
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Embedding free products

Aut(X, o) contains the free product Z/27Z x Z/2Z * L/ 2. )

For simplicity X = {%,0,1,2,3}*
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Embedding free products

Aut(X, o) contains the free product Z/27Z x Z/2Z * L/ 2. )

For simplicity X = {%,0,1,2,3}*
For j € {1,2,3}, define ¢; € Aut(X, o) be the automorphisms s.t.

sj <+ s0 for s {0, }.
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Embedding free products

Aut(X, o) contains the free product Z /27 x 7./27 * 7./ 2. ]

For simplicity X = {x,0,1,2, 3}
For j € {1,2,3}, define ¢; € Aut(X, o) be the automorphisms s.t.

sj <+ s0 for s ¢ {0,,}.
Study the action of (¢1, ¢2, ¢3) on the the point ---000 % 000 - - - .

See it generates a group isomorphic to Z /27 x 7./27 x 7./ 27.

E.g.
¢1: ---000 %0000+ ---000 = 1000---
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Embedding free products

Aut(X, o) contains the free product Z /27 x 7./27 * 7./ 2. ]

For simplicity X = {x,0,1,2, 3}
For j € {1,2,3}, define ¢; € Aut(X, o) be the automorphisms s.t.

sj <+ s0 for s ¢ {0,,}.
Study the action of (¢1, ¢2, ¢3) on the the point ---000 % 000 - - - .

See it generates a group isomorphic to Z /27 x 7./27 x 7./ 27.

E.g.
¢2¢p1: ---000 %0000 -+ ---000 %1200 - -
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Embedding free products

Aut(X, o) contains the free product Z /27 x 7./27 * 7./ 2. ]

For simplicity X = {x,0,1,2, 3}
For j € {1,2,3}, define ¢; € Aut(X, o) be the automorphisms s.t.

sj <+ s0 for s ¢ {0,,}.
Study the action of (¢1, ¢2, ¢3) on the the point ---000 % 000 - - - .

See it generates a group isomorphic to Z /27 x 7./27 x 7./ 27.

E.g.
¢3¢201: ---000%0000--- — ---000* 1230 -
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Embedding free products

Aut(X, o) contains the free product Z/27Z x Z/2Z * 7/ 2. |

For simplicity X = {%,0,1,2,3}#
For j € {1,2,3}, define ¢; € Aut(X, o) be the automorphisms s.t.

sj <> s0 for s € {0,/}.

Study the action of (¢1, ¢2, ¢3) on the the point ---000 % 000 - - - .
See it generates a group isomorphic to Z /27 x 7./ 27 * 7] 2.

E.g.
D203¢2¢1: ---000%0000--- — ---000* 10320 - -
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Embedding free products

Aut(X, o) contains the free product Z/27Z x Z/2Z * L/ 2. )

For simplicity X = {%,0,1,2,3}*
For j € {1,2,3}, define ¢; € Aut(X, o) be the automorphisms s.t.

sj <+ s0 for s {0, }.

Study the action of (¢1, ¢2, ¢3) on the the point ---000* 000 - -.
See it generates a group isomorphic to Z /27 x 7./ 27 * 7] 2.

Basic algebra shows it contains the free group on 2 generators,
hence the free group with countably many generators.
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Automorphism of SFT

A group G is residually finite if for any 1 # g € G there is a
homomorphism ¢: G — Gy onto a finite group Gg such that

©(8) # 16,
Ex: finite group, Z9, free group, finitely generated linear group, ...
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Automorphism of SFT

A group G is residually finite if for any 1 # g € G there is a
homomorphism ¢: G — Gy onto a finite group Gg such that
©(g) # 1y

Ex: finite group, Z9, free group, finitely generated linear group, ...

Theorem (BLR)
For an SFT, the group Aut(X, o) is residually finite.
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Automorphism of SFT

A group G is residually finite if for any 1 # g € G there is a
homomorphism ¢: G — Gy onto a finite group Gg such that
©(g) # 1y

Ex: finite group, Z9, free group, finitely generated linear group, ...

Theorem (BLR)
For an SFT, the group Aut(X, o) is residually finite.

Proof. Let Per, :={x € X :0"(x) =x}, n>1
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Automorphism of SFT

A group G is residually finite if for any 1 # g € G there is a
homomorphism ¢: G — Gy onto a finite group Gg such that

©(8) # 16,
Ex: finite group, Z9, free group, finitely generated linear group, ...

Theorem (BLR)
For an SFT, the group Aut(X, o) is residually finite.

Proof. Let Per, :={x € X :0"(x) =x}, n>1
It is a non empty finite set.
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Automorphism of SFT

A group G is residually finite if for any 1 # g € G there is a
homomorphism ¢: G — Gy onto a finite group Gg such that

©(8) # 16,
Ex: finite group, Z9, free group, finitely generated linear group, ...

Theorem (BLR)
For an SFT, the group Aut(X, o) is residually finite.

Proof. Let Per, :={x € X :0"(x) =x}, n>1
It is a non empty finite set.
Each ¢ € Aut(X, o) induces a permutation on Per,.
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Automorphism of SFT

A group G is residually finite if for any 1 # g € G there is a
homomorphism ¢: G — Gy onto a finite group Gg such that

©(8) # 16,
Ex: finite group, Z9, free group, finitely generated linear group, ...

Theorem (BLR)
For an SFT, the group Aut(X, o) is residually finite.

Proof. Let Per, :={x € X :0"(x) =x}, n>1
It is a non empty finite set.
Each ¢ € Aut(X, o) induces a permutation on Per,.

©n: ¢ € Aut(X,0) = @|per, € S(Perp).
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Automorphism of SFT

A group G is residually finite if for any 1 # g € G there is a
homomorphism ¢: G — Gy onto a finite group Gg such that

©(8) # 16,
Ex: finite group, Z9, free group, finitely generated linear group, ...

Theorem (BLR)
For an SFT, the group Aut(X, o) is residually finite.

Proof. Let Per, :={x € X :0"(x) =x}, n>1
It is a non empty finite set.
Each ¢ € Aut(X, o) induces a permutation on Per,.

©n: ¢ € Aut(X,0) = @|per, € S(Perp).
Since |J,, Pery, is dense in X,

on(¢) =1d, ¥n= ¢ = 1d.
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Automorphism of SFT

Theorem (BLR)
For an SFT, the group Aut(X, o) is residually finite.

Corollary

For an SFT, Aut(X, o) does not contains a divisible subgroup: For
any ¢ € Aut(X, o)\ {Id}, there exists n € N s.t. the equation

Y =¢

has no solution 1) € Aut(X, o).

Ex: Aut(X, o) does not contains Q.
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Automorphism of SFT

Theorem (BLR)
For an SFT, the group Aut(X, o) is residually finite.

Corollary

For an SFT, Aut(X, o) does not contains a divisible subgroup: For
any ¢ € Aut(X, o)\ {Id}, there exists n € N s.t. the equation

Y =¢

has no solution 1) € Aut(X, o).

Ex: Aut(X, o) does not contains Q.
Open problem: is Z[1/p] contained in Aut(X, o) for any prime

p?
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Automorphism of SFT

Theorem (BLR)

For an SFT, the group Aut(X, o) contains no finitely generated
group with unsolvable word problem.
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Automorphism of SFT

Theorem (BLR)

For an SFT, the group Aut(X, o) contains no finitely generated
group with unsolvable word problem.

Proof. Given ¢1,...,¢; € Aut(X, o), find a finite procedure to
decide if

Y=¢foogt=1d, i,....i €{l,...,0}.

By Curtys-Hedlund-Lyndon Theorem, it is enough to check if the
block map of ¢ with range r,, = O(r) satisfies
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Automorphism of Z9- SFT

Theorem (Hochman (10))

Let (X,0) be a Z9-SFT with h(X, o) > 0 then Aut(X, o) contains
the direct sum of every countable collection of finite group.
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Automorphism of Z9- SFT

Theorem (Hochman (10))

Let (X,0) be a Z9-SFT with h(X, o) > 0 then Aut(X, o) contains
the direct sum of every countable collection of finite group.

Theorem (Hochman (10))

Let (X,0) be a Z9-SFT with h(X, o) > 0 such that the minimal
orbits are dense (e.g. periodic orbits) then Aut(X, o) conains a
copy of Aut({1,...,n}% o) for any n.
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