Automorphisms of low complexity subshifts

Samuel Petite

LAMFA UMR CNRS Université de Picardie Jules Verne, France

November 28, 2016

Throughout X will be a compact metric space.

Throughout X will be a compact metric space.

 $\operatorname{Homeo}(X)$: the group of self homeomorphisms of X.

Throughout X will be a compact metric space.

 $\operatorname{Homeo}(X)$: the group of self homeomorphisms of X.

A (topological) dynamical system is a pair (X, T) where X is a compact metric space and $T \in \text{Homeo}(X)$.

Throughout X will be a compact metric space.

 $\operatorname{Homeo}(X)$: the group of self homeomorphisms of X.

A (topological) dynamical system is a pair (X, T) where X is a compact metric space and $T \in \text{Homeo}(X)$.

(X,T) is (topologically) isomorphic or conjugate to (Y,S) if there exists a homeomorphism $\phi\colon X\to Y$ such that

$$\phi \circ T = S \circ \phi$$
.

Throughout X will be a compact metric space.

 $\operatorname{Homeo}(X)$: the group of self homeomorphisms of X.

A (topological) dynamical system is a pair (X, T) where X is a compact metric space and $T \in \text{Homeo}(X)$.

(X,T) is (topologically) isomorphic or conjugate to (Y,S) if there exists a homeomorphism $\phi\colon X\to Y$ such that

$$\phi \circ T = S \circ \phi$$
.

(Y,S) is a (topological) factor of (X,T), or (X,T) is an extension of (Y,S), if there exists a continuous surjective $\phi\colon X\to Y$ such that

$$\phi \circ T = S \circ \phi$$
.

Definition

Let (X, T) be a topological dynamical system. An automorphism $\phi \colon X \to X$ is an homeomorphism s.t.

$$\phi \circ T = T \circ \phi$$
.

$$Aut(X, T) = {\phi \text{ automorphism of } (X, T)}.$$

Definition

Let (X, T) be a topological dynamical system. An automorphism $\phi \colon X \to X$ is an homeomorphism s.t.

$$\phi \circ T = T \circ \phi$$
.

$$\operatorname{Aut}(X, T) = \{ \phi \text{ automorphism of } (X, T) \}.$$
$$\langle T \rangle \subset \operatorname{Aut}(X, T)$$

Definition

Let (X, T) be a topological dynamical system. An automorphism $\phi \colon X \to X$ is an homeomorphism s.t.

$$\phi \circ T = T \circ \phi$$
.

$$\operatorname{Aut}(X, T) = \{ \phi \text{ automorphism of } (X, T) \}.$$

$$\langle T \rangle \subset \operatorname{Aut}(X, T)$$

 \underline{Q} : What can we say on $\operatorname{Aut}(X, T)$ as a group? commutative? nilpotent? Amenable? Finitely generated? What are the subgroups? the quotients?...

Definition

Let (X, T) be a topological dynamical system. An automorphism $\phi \colon X \to X$ is an homeomorphism s.t.

$$\phi \circ T = T \circ \phi$$
.

$$\operatorname{Aut}(X, T) = \{ \phi \text{ automorphism of } (X, T) \}.$$

$$\langle T \rangle \subset \operatorname{Aut}(X, T)$$

- \underline{Q} : What can we say on $\operatorname{Aut}(X, T)$ as a group? commutative? nilpotent? Amenable? Finitely generated? What are the subgroups? the quotients?...
- $\underline{\mathbf{Q}}$: What do dynamical properties of (X, T) say about properties of $\operatorname{Aut}(X, T)$ and vice versa ?

Definition

Let (X, T) be a topological dynamical system. An automorphism $\phi \colon X \to X$ is an homeomorphism s.t.

$$\phi \circ T = T \circ \phi$$
.

$$\operatorname{Aut}(X, T) = \{ \phi \text{ automorphism of } (X, T) \}.$$
$$\langle T \rangle \subset \operatorname{Aut}(X, T)$$

- \underline{Q} : What can we say on $\operatorname{Aut}(X, T)$ as a group? commutative? nilpotent? Amenable? Finitely generated? What are the subgroups? the quotients?...
- $\underline{\mathbb{Q}}$: What do dynamical properties of (X, T) say about properties of $\mathrm{Aut}(X, T)$ and vice versa ?
- $\underline{\mathbb{Q}}$: How does $\mathrm{Aut}(X,T)$ acts on X? On T-invariant measures?

An alphabet A is a finite set whose elements are letters.

A word u is an element of the free monoid A^* generated by A.

The length of the word $u = u_0 \cdots u_{n-1}$, where $u_i \in A$, is |u| = n.

An alphabet A is a finite set whose elements are letters.

A word u is an element of the free monoid A^* generated by A.

The length of the word $u = u_0 \cdots u_{n-1}$, where $u_i \in A$, is |u| = n.

The elements of $A^{\mathbb{Z}}$ are bi infinite sequences

$$\cdots x_{-1}x_0x_1\cdots$$
, $\forall i\in\mathbb{Z}, x_i\in A$.

An alphabet A is a finite set whose elements are letters.

A word u is an element of the free monoid A^* generated by A.

The length of the word $u = u_0 \cdots u_{n-1}$, where $u_i \in A$, is |u| = n.

The elements of $A^{\mathbb{Z}}$ are bi infinite sequences

$$\cdots x_{-1}x_0x_1\cdots$$
, $\forall i\in\mathbb{Z}, x_i\in A$.

 $A^{\mathbb{Z}}$ endowed with the product topology, is a Cantor set.

An alphabet A is a finite set whose elements are letters.

A word u is an element of the free monoid A^* generated by A.

The length of the word $u = u_0 \cdots u_{n-1}$, where $u_i \in A$, is |u| = n.

The elements of $A^{\mathbb{Z}}$ are bi infinite sequences

$$\cdots x_{-1}x_0x_1\cdots$$
, $\forall i\in\mathbb{Z}, x_i\in A$.

 $A^{\mathbb{Z}}$ endowed with the product topology, is a Cantor set.

The open sets are unions of cylinders:

$$[u.v] := \{(x_n)_n \in A^{\mathbb{Z}} : x_{-|u|} \dots x_{|v|-1} = uv\}; \qquad u, v \in A^*$$

The shift map

$$\sigma \colon A^{\mathbb{Z}} \to A^{\mathbb{Z}}$$
$$(x_n)_{n \in \mathbb{Z}} \mapsto (x_{n+1})_{n \in \mathbb{Z}}$$

The shift map

$$\sigma \colon A^{\mathbb{Z}} \to A^{\mathbb{Z}}$$
$$(x_n)_{n \in \mathbb{Z}} \mapsto (x_{n+1})_{n \in \mathbb{Z}}$$

For a closed set $X \subset A^{\mathbb{Z}}$, shift invariant $(\sigma(X) = X)$, a subshift is the dynamical system $(X, \sigma|_X)$.

Similarly

$$X = \{(x_n)_n \in A^{\mathbb{Z}}; x_i \cdots x_{i+m} \notin \mathcal{F} \ \forall m, i\}, \text{ where } \mathcal{F} \subset A^*.$$

The shift map

$$\sigma \colon A^{\mathbb{Z}} \to A^{\mathbb{Z}}$$
$$(x_n)_{n \in \mathbb{Z}} \mapsto (x_{n+1})_{n \in \mathbb{Z}}$$

For a closed set $X \subset A^{\mathbb{Z}}$, shift invariant $(\sigma(X) = X)$, a subshift is the dynamical system $(X, \sigma|_X)$.

Similarly

$$X = \{(x_n)_n \in A^{\mathbb{Z}}; x_i \cdots x_{i+m} \notin \mathcal{F} \ \forall m, i\}, \text{ where } \mathcal{F} \subset A^*.$$

The language

$$\mathcal{L}(X) := \{ u \in A^* : u = x_0 \cdots x_{|u|-1} \text{ for some } (x_n)_n \in X \}.$$

$$\mathcal{L}_n(X) := \mathcal{L}(X) \cap A^n.$$

For a closed set $X \subset A^{\mathbb{Z}}$, shift invariant $(\sigma(X) = X)$, a subshift is the dynamical system $(X, \sigma|_X)$. Similarly

$$X = \{(x_n)_n \in A^{\mathbb{Z}}; x_i \cdots x_{i+m} \notin \mathcal{F} \ \forall m, i\}, \text{ where } \mathcal{F} \subset A^*.$$

Example:

For a closed set $X \subset A^{\mathbb{Z}}$, shift invariant $(\sigma(X) = X)$, a subshift is the dynamical system $(X, \sigma|_X)$. Similarly

$$X = \{(x_n)_n \in A^{\mathbb{Z}}; x_i \cdots x_{i+m} \notin \mathcal{F} \ \forall m, i\}, \text{ where } \mathcal{F} \subset A^*.$$

Example:

• When $\mathcal{F} = \emptyset$, $X = A^{\mathbb{Z}}$, $(A^{\mathbb{Z}}, \sigma)$ is full shift.

For a closed set $X \subset A^{\mathbb{Z}}$, shift invariant $(\sigma(X) = X)$, a subshift is the dynamical system $(X, \sigma|_X)$. Similarly

$$X = \{(x_n)_n \in A^{\mathbb{Z}}; x_i \cdots x_{i+m} \notin \mathcal{F} \ \forall m, i\}, \text{ where } \mathcal{F} \subset A^*.$$

Example:

- When $\mathcal{F} = \emptyset$, $X = A^{\mathbb{Z}}$, $(A^{\mathbb{Z}}, \sigma)$ is full shift.
- When \mathcal{F} is finite, (X, σ) is a subshift of finite type (SFT).

For a closed set $X \subset A^{\mathbb{Z}}$, shift invariant $(\sigma(X) = X)$, a subshift is the dynamical system $(X, \sigma|_X)$. Similarly

$$X = \{(x_n)_n \in A^{\mathbb{Z}}; x_i \cdots x_{i+m} \notin \mathcal{F} \ \forall m, i\}, \text{ where } \mathcal{F} \subset A^*.$$

Example:

- When $\mathcal{F} = \emptyset$, $X = A^{\mathbb{Z}}$, $(A^{\mathbb{Z}}, \sigma)$ is full shift.
- When \mathcal{F} is finite, (X, σ) is a subshift of finite type (SFT).
- For a sequence $x \in A^{\mathbb{Z}}$, $(\overline{\{\sigma^n(x) : n \in \mathbb{Z}\}}, \sigma)$ is the a subshift generated by x.

For a closed set $X \subset A^{\mathbb{Z}}$, shift invariant $(\sigma(X) = X)$, a subshift is the dynamical system $(X, \sigma|_X)$. Similarly

$$X = \{(x_n)_n \in A^{\mathbb{Z}}; x_i \cdots x_{i+m} \notin \mathcal{F} \ \forall m, i\}, \text{ where } \mathcal{F} \subset A^*.$$

Example:

- When $\mathcal{F} = \emptyset$, $X = A^{\mathbb{Z}}$, $(A^{\mathbb{Z}}, \sigma)$ is full shift.
- When \mathcal{F} is finite, (X, σ) is a subshift of finite type (SFT).
- For a sequence $x \in A^{\mathbb{Z}}$, $(\overline{\{\sigma^n(x) : n \in \mathbb{Z}\}}, \sigma)$ is the a subshift generated by x.

The system (X, σ) is expansive: $\exists \epsilon > 0, x \neq y \in X$,

$$\sup_{n\in\mathbb{Z}}d(\sigma^n(x),\sigma^n(y))>\epsilon.$$

Let G be a group:

• a commutator for $f, g \in G : [f, g] = fgf^{-1}g^{-1}$.

- a commutator for $f, g \in G : [f, g] = fgf^{-1}g^{-1}$.
- A subgroup H < G is normal if gHg⁻¹ = H for all g ∈ G, denoted H ⊲ G. A subgroup H is normal iff there exists a homomorphism φ: G → G₀ so that H = kerφ.

- a commutator for $f,g \in G : [f,g] = fgf^{-1}g^{-1}$.
- A subgroup H < G is normal if $gHg^{-1} = H$ for all $g \in G$, denoted $H \triangleleft G$. A subgroup H is normal iff there exists a homomorphism $\varphi \colon G \to G_0$ so that $H = ker\varphi$.
- A subgroup H < G has finite index if $\#G/H < +\infty$.

- a commutator for $f, g \in G : [f, g] = fgf^{-1}g^{-1}$.
- A subgroup H < G is normal if $gHg^{-1} = H$ for all $g \in G$, denoted $H \triangleleft G$. A subgroup H is normal iff there exists a homomorphism $\varphi \colon G \to G_0$ so that $H = ker\varphi$.
- A subgroup H < G has finite index if $\#G/H < +\infty$.
- The center of $G: Z(G) := \{g \in G : gh = hg \ \forall h \in G\}.$

- a commutator for $f, g \in G : [f, g] = fgf^{-1}g^{-1}$.
- A subgroup H < G is normal if gHg⁻¹ = H for all g ∈ G, denoted H ⊲ G. A subgroup H is normal iff there exists a homomorphism φ: G → G₀ so that H = kerφ.
- A subgroup H < G has finite index if $\#G/H < +\infty$.
- The center of $G: Z(G) := \{g \in G : gh = hg \ \forall h \in G\}.$
- If G acts on X, $stab_G(x) := \{g \in g : g \cdot x = x\}.$

- a commutator for $f, g \in G : [f, g] = fgf^{-1}g^{-1}$.
- A subgroup H < G is normal if $gHg^{-1} = H$ for all $g \in G$, denoted $H \triangleleft G$. A subgroup H is normal iff there exists a homomorphism $\varphi \colon G \to G_0$ so that $H = ker\varphi$.
- A subgroup H < G has finite index if $\#G/H < +\infty$.
- The center of $G: Z(G) := \{g \in G : gh = hg \ \forall h \in G\}.$
- If G acts on X, $stab_G(x) := \{g \in g : g \cdot x = x\}.$
- Exercice $stab_G(g \cdot x) = g[stab_G(x)]g^{-1}$.

The (topological) full group of a subshift (X, σ) is

$$[[\sigma]] := \{ \psi \in \operatorname{Homeo}(X); \exists n \colon X \to \mathbb{Z} \text{ cont. } \psi(x) = \sigma^{n(x)}(x) \, \forall x \in X \}.$$

The (topological) full group of a subshift (X, σ) is

$$[[\sigma]] := \{ \psi \in \operatorname{Homeo}(X); \exists n \colon X \to \mathbb{Z} \text{ cont. } \psi(x) = \sigma^{n(x)}(x) \, \forall x \in X \}.$$

The commutator subgroup of $[[\sigma]]$ is

$$[[\sigma]]' := \langle fgf^{-1}g^{-1}; f, g \in [[\sigma]] \rangle.$$

The (topological) full group of a subshift (X, σ) is

$$[[\sigma]] := \{ \psi \in \operatorname{Homeo}(X); \exists n \colon X \to \mathbb{Z} \text{ cont. } \psi(x) = \sigma^{n(x)}(x) \, \forall x \in X \}.$$

The commutator subgroup of $[\sigma]$ is

$$[[\sigma]]' := \langle fgf^{-1}g^{-1}; f, g \in [[\sigma]] \rangle.$$

Matui (06), Juschenko-Monod (12):

If (X, σ) is a minimal subshift (without proper subshift)

 $[[\sigma]]'$ is finitely generated, simple and amenable.

(first example known !).

See L. Bartholdi's lecture

The (topological) full group of a subshift (X, σ) is

$$[[\sigma]] := \{ \psi \in \operatorname{Homeo}(X); \exists n \colon X \to \mathbb{Z} \text{ cont. } \psi(x) = \sigma^{n(x)}(x) \, \forall x \in X \}.$$

Outer automorphism

 $\mathrm{Out}([[\sigma]]) := \{ \varphi \colon [[\sigma]] \to [[\sigma]] \text{ isomorphism} \}_{/\langle g \mapsto hgh^{-1} : h \in [[\sigma]] \rangle}.$

The (topological) full group of a subshift (X, σ) is

$$[[\sigma]] := \{ \psi \in \operatorname{Homeo}(X); \exists n \colon X \to \mathbb{Z} \text{ cont. } \psi(x) = \sigma^{n(x)}(x) \, \forall x \in X \}.$$

Outer automorphism

$$Out([[\sigma]]) := \{\varphi \colon [[\sigma]] \to [[\sigma]] \text{ isomorphism}\}_{/\langle g \mapsto hgh^{-1} : h \in [[\sigma]] \rangle}.$$

Giordano-Putnam-Skau (1999): If (X, σ) is minimal (without proper subshift)

$$\operatorname{Out}([[\sigma]]) \simeq \{\phi \in \operatorname{Homeo}(X) : \phi \circ \sigma = \sigma^{\pm} \circ \phi\} / \langle \sigma \rangle.$$
$$\{\phi \in \operatorname{Homeo}(X) : \phi \circ \sigma = \sigma^{\pm} \circ \phi\} / \operatorname{Aut}(X,\sigma) \subset \mathbb{Z}/2\mathbb{Z}.$$

Basic topological notions

Theorem (Curtis-Hedlund-Lyndon)

An automorphism ϕ of (X, σ) is a sliding block code, i.e. there exists a block map $\hat{\phi} \colon \mathcal{L}_{2r+1}(X) \to A$ s.t.

$$\phi(x)_n = \hat{\phi}(x_{n-r} \cdots x_{n+r}) \text{ for any } n \in \mathbb{Z}.$$

Theorem (Curtis-Hedlund-Lyndon)

An automorphism ϕ of (X, σ) is a sliding block code, i.e. there exists a block map $\hat{\phi} \colon \mathcal{L}_{2r+1}(X) \to A$ s.t.

$$\phi(x)_n = \hat{\phi}(x_{n-r} \cdots x_{n+r}) \text{ for any } n \in \mathbb{Z}.$$

The range of $\hat{\phi}$ is r.

$\mathsf{Theorem}\;(\mathsf{Curtis} ext{-}\mathsf{Hedlund} ext{-}\mathsf{Lyndon})$

$$\phi(x)_n = \hat{\phi}(x_{n-r} \cdots x_{n+r}) \text{ for any } n \in \mathbb{Z}.$$

$\mathsf{Theorem}\;(\mathsf{Curtis} ext{-}\mathsf{Hedlund-Lyndon})$

$$\phi(x)_n = \hat{\phi}(x_{n-r} \cdots x_{n+r}) \text{ for any } n \in \mathbb{Z}.$$

$$\phi(x) =$$

$\mathsf{Theorem}\; (\mathsf{Curtis} ext{-}\mathsf{Hedlund-Lyndon})$

$$\phi(x)_n = \hat{\phi}(x_{n-r} \cdots x_{n+r}) \text{ for any } n \in \mathbb{Z}.$$

$\mathsf{Theorem}\;(\mathsf{Curtis} ext{-}\mathsf{Hedlund-Lyndon})$

$$\phi(x)_n = \hat{\phi}(x_{n-r} \cdots x_{n+r}) \text{ for any } n \in \mathbb{Z}.$$

$\mathsf{Theorem}\;(\mathsf{Curtis} ext{-}\mathsf{Hedlund-Lyndon})$

$$\phi(x)_n = \hat{\phi}(x_{n-r} \cdots x_{n+r}) \text{ for any } n \in \mathbb{Z}.$$

$\mathsf{Theorem}\;(\mathsf{Curtis} ext{-}\mathsf{Hedlund-Lyndon})$

$$\phi(x)_n = \hat{\phi}(x_{n-r} \cdots x_{n+r}) \text{ for any } n \in \mathbb{Z}.$$

$\mathsf{Theorem}\;(\mathsf{Curtis} ext{-}\mathsf{Hedlund-Lyndon})$

$$\phi(x)_n = \hat{\phi}(x_{n-r} \cdots x_{n+r}) \text{ for any } n \in \mathbb{Z}.$$

$\mathsf{Theorem}\;(\mathsf{Curtis} ext{-}\mathsf{Hedlund-Lyndon})$

$$\phi(x)_n = \hat{\phi}(x_{n-r} \cdots x_{n+r}) \text{ for any } n \in \mathbb{Z}.$$

e.g.
$$A = \{0,1\}, \ \hat{\phi}: \ \ \downarrow \ \ \ \downarrow \ \ \ \downarrow \ \ \$$

$\mathsf{Theorem}\;(\mathsf{Curtis} ext{-}\mathsf{Hedlund-Lyndon})$

$$\phi(x)_n = \hat{\phi}(x_{n-r} \cdots x_{n+r}) \text{ for any } n \in \mathbb{Z}.$$

e.g.
$$A = \{0, 1\}, \hat{\phi}: \begin{picture}(20,0)(0,0) \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){$$

$\mathsf{Theorem}\;(\mathsf{Curtis} ext{-}\mathsf{Hedlund-Lyndon})$

$$\phi(x)_n = \hat{\phi}(x_{n-r} \cdots x_{n+r}) \text{ for any } n \in \mathbb{Z}.$$

$\mathsf{Theorem}\;(\mathsf{Curtis} ext{-}\mathsf{Hedlund-Lyndon})$

$$\phi(x)_n = \hat{\phi}(x_{n-r} \cdots x_{n+r}) \text{ for any } n \in \mathbb{Z}.$$

Theorem (Curtis-Hedlund-Lyndon)

$$\phi(x)_n = \hat{\phi}(x_{n-r} \cdots x_{n+r}) \text{ for any } n \in \mathbb{Z}.$$

$$\phi(x) = \dots 0100111.0101010000111\dots$$

$\mathsf{Theorem}\;(\mathsf{Curtis} ext{-}\mathsf{Hedlund-Lyndon})$

$$\phi(x)_n = \hat{\phi}(x_{n-r} \cdots x_{n+r}) \text{ for any } n \in \mathbb{Z}.$$

e.g.
$$A = \{0,1\}, \ \hat{\phi} \colon \begin{picture}(20,0) \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100$$

$$\phi(x) = \dots 0100111.0101010000111\dots = \sigma(x)$$

$\mathsf{Theorem}\;(\mathsf{Curtis} ext{-}\mathsf{Hedlund} ext{-}\mathsf{Lyndon})$

Let ϕ be an automorphism of (X, σ)

There exists a local map $\hat{\phi} \colon \mathcal{L}_{2r+1}(X) \to A$ s.t.

$$\phi(x)_n = \hat{\phi}(x_{n-r} \cdots x_{n+r}) \text{ for any } n \in \mathbb{Z}.$$

Corollary

 $Aut(X, \sigma)$ is countable.

 $Aut(X, \sigma)$ is a discrete subgroup of Homeo(X) for the uniform convergence topology.

Complexity restrictions

The complexity $p_X \colon \mathbb{N} \to \mathbb{N}$,

$$p_X(n) = \#\mathcal{L}_n(X) = \#$$
 words of length n in X .

Q: How the growth of the complexity restricts $Aut(X, \sigma)$?

How the growth of the complexity restricts $Aut(X, \sigma)$?

Plan

- Automorphism of SFT
- 4 Automorphism of classical minimal systems
 - a) Linear complexity case
 - b) Toeplitz subshifts case
- Automorphism for sub-exponential complexity subshifts and non embeddable groups.

Hedlund (69), Boyle, Lind & Rudolph (88): Let (X, σ) be an uncountable SFT. Then $\operatorname{Aut}(X, \sigma)$ contains

Hedlund (69), Boyle, Lind & Rudolph (88): Let (X, σ) be an uncountable SFT. Then $\operatorname{Aut}(X, \sigma)$ contains

• the direct sum of every countable collection of finite group.

Hedlund (69), Boyle, Lind & Rudolph (88): Let (X, σ) be an uncountable SFT. Then $\operatorname{Aut}(X, \sigma)$ contains

- the direct sum of every countable collection of finite group.
- the free group on a countable number of generators.

Hedlund (69), Boyle, Lind & Rudolph (88): Let (X, σ) be an uncountable SFT. Then $\operatorname{Aut}(X, \sigma)$ contains

- the direct sum of every countable collection of finite group.
- the free group on a countable number of generators.
- $\operatorname{Aut}(\{1,\ldots,n\}^{\mathbb{Z}},\sigma)$ for all n (Kim & Rousch, 90).

Hedlund (69), Boyle, Lind & Rudolph (88): Let (X, σ) be an uncountable SFT. Then $\operatorname{Aut}(X, \sigma)$ contains

- the direct sum of every countable collection of finite group.
- the free group on a countable number of generators.
- $\operatorname{Aut}(\{1,\ldots,n\}^{\mathbb{Z}},\sigma)$ for all n (Kim & Rousch, 90).

Open problem: $\operatorname{Aut}(\{1,2\}^{\mathbb{Z}},\sigma) \simeq \operatorname{Aut}(\{1,2,3\}^{\mathbb{Z}},\sigma)$?

• If (X, σ) is irreducible, $Z(\operatorname{Aut}(X, \sigma)) = \langle \sigma \rangle$ (Ryan, 72).

Hedlund (69), Boyle, Lind & Rudolph (88): Let (X, σ) be an uncountable SFT. Then $\operatorname{Aut}(X, \sigma)$ contains

- the direct sum of every countable collection of finite group.
- the free group on a countable number of generators.
- $\operatorname{Aut}(\{1,\ldots,n\}^{\mathbb{Z}},\sigma)$ for all n (Kim & Rousch, 90).

Open problem:
$$\operatorname{Aut}(\{1,2\}^{\mathbb{Z}},\sigma) \simeq \operatorname{Aut}(\{1,2,3\}^{\mathbb{Z}},\sigma)$$
?

• If (X, σ) is irreducible, $Z(\operatorname{Aut}(X, \sigma)) = \langle \sigma \rangle$ (Ryan, 72).

In this case:

 $\operatorname{Aut}(X,\sigma)$ is not finitely generated, not amenable.

 $\operatorname{Aut}(X,\sigma)$ contains the free product $\mathbb{Z}/2\mathbb{Z}*\mathbb{Z}/2\mathbb{Z}*\mathbb{Z}/2\mathbb{Z}$.

 $\operatorname{Aut}(X,\sigma)$ contains the free product $\mathbb{Z}/2\mathbb{Z}*\mathbb{Z}/2\mathbb{Z}*\mathbb{Z}/2\mathbb{Z}$.

For simplicity $X = \{*, 0, 1, 2, 3\}^{\mathbb{Z}}$

 $\operatorname{Aut}(X,\sigma)$ contains the free product $\mathbb{Z}/2\mathbb{Z}*\mathbb{Z}/2\mathbb{Z}*\mathbb{Z}/2\mathbb{Z}$.

For simplicity $X = \{*, 0, 1, 2, 3\}^{\mathbb{Z}}$

For $j \in \{1, 2, 3\}$, define $\phi_j \in \operatorname{Aut}(X, \sigma)$ be the automorphisms s.t.

$$sj \leftrightarrow s0 \text{ for } s \notin \{0, j\}.$$

 $\operatorname{Aut}(X,\sigma)$ contains the free product $\mathbb{Z}/2\mathbb{Z}*\mathbb{Z}/2\mathbb{Z}*\mathbb{Z}/2\mathbb{Z}$.

For simplicity $X = \{*, 0, 1, 2, 3\}^{\mathbb{Z}}$

For $j \in \{1, 2, 3\}$, define $\phi_j \in \operatorname{Aut}(X, \sigma)$ be the automorphisms s.t.

$$sj \leftrightarrow s0 \text{ for } s \notin \{0, j\}.$$

Study the action of $\langle \phi_1, \phi_2, \phi_3 \rangle$ on the point $\cdots 000*000 \cdots$. See it generates a group isomorphic to $\mathbb{Z}/2\mathbb{Z}*\mathbb{Z}/2\mathbb{Z}*\mathbb{Z}/2\mathbb{Z}$.

$$\phi_1$$
: $\cdots 000 * 0000 \cdots \mapsto \cdots 000 * \mathbf{1}000 \cdots$

 $\operatorname{Aut}(X,\sigma)$ contains the free product $\mathbb{Z}/2\mathbb{Z}*\mathbb{Z}/2\mathbb{Z}*\mathbb{Z}/2\mathbb{Z}$.

For simplicity $X = \{*, 0, 1, 2, 3\}^{\mathbb{Z}}$

For $j \in \{1, 2, 3\}$, define $\phi_j \in \operatorname{Aut}(X, \sigma)$ be the automorphisms s.t.

$$sj \leftrightarrow s0 \text{ for } s \notin \{0, j\}.$$

Study the action of $\langle \phi_1, \phi_2, \phi_3 \rangle$ on the point $\cdots 000*000 \cdots$. See it generates a group isomorphic to $\mathbb{Z}/2\mathbb{Z}*\mathbb{Z}/2\mathbb{Z}*\mathbb{Z}/2\mathbb{Z}$.

$$\phi_2\phi_1: \cdots 000 * 0000 \cdots \mapsto \cdots 000 * 1200 \cdots$$

 $\operatorname{Aut}(X,\sigma)$ contains the free product $\mathbb{Z}/2\mathbb{Z}*\mathbb{Z}/2\mathbb{Z}*\mathbb{Z}/2\mathbb{Z}$.

For simplicity $X = \{*, 0, 1, 2, 3\}^{\mathbb{Z}}$

For $j \in \{1, 2, 3\}$, define $\phi_j \in \operatorname{Aut}(X, \sigma)$ be the automorphisms s.t.

$$sj \leftrightarrow s0 \text{ for } s \notin \{0, j\}.$$

Study the action of $\langle \phi_1, \phi_2, \phi_3 \rangle$ on the point $\cdots 000*000 \cdots$. See it generates a group isomorphic to $\mathbb{Z}/2\mathbb{Z}*\mathbb{Z}/2\mathbb{Z}*\mathbb{Z}/2\mathbb{Z}$.

$$\phi_3\phi_2\phi_1: \cdots 000*0000\cdots \mapsto \cdots 000*1230\cdots$$

 $\operatorname{Aut}(X,\sigma)$ contains the free product $\mathbb{Z}/2\mathbb{Z}*\mathbb{Z}/2\mathbb{Z}*\mathbb{Z}/2\mathbb{Z}$.

For simplicity $X = \{*, 0, 1, 2, 3\}^{\mathbb{Z}}$ For $j \in \{1, 2, 3\}$, define $\phi_j \in \operatorname{Aut}(X, \sigma)$ be the automorphisms s.t.

$$sj \leftrightarrow s0 \text{ for } s \notin \{0, j\}.$$

Study the action of $\langle \phi_1, \phi_2, \phi_3 \rangle$ on the the point $\cdots 000 * 000 \cdots$. See it generates a group isomorphic to $\mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/2\mathbb{Z}$.

$$\phi_2\phi_3\phi_2\phi_1: \cdots 000*0000\cdots \mapsto \cdots 000*10320\cdots$$

 $\operatorname{Aut}(X,\sigma)$ contains the free product $\mathbb{Z}/2\mathbb{Z}*\mathbb{Z}/2\mathbb{Z}*\mathbb{Z}/2\mathbb{Z}$.

For simplicity $X = \{*, 0, 1, 2, 3\}^{\mathbb{Z}}$ For $j \in \{1, 2, 3\}$, define $\phi_j \in \operatorname{Aut}(X, \sigma)$ be the automorphisms s.t.

$$sj \leftrightarrow s0 \text{ for } s \notin \{0, j\}.$$

Study the action of $\langle \phi_1, \phi_2, \phi_3 \rangle$ on the point $\cdots 000 * 000 \cdots$. See it generates a group isomorphic to $\mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/2\mathbb{Z}$.

Basic algebra shows it contains the free group on 2 generators, hence the free group with countably many generators.

A group G is residually finite if for any $1_G \neq g \in G$ there is a homomorphism $\varphi \colon G \to G_0$ onto a finite group G_0 such that $\varphi(g) \neq 1_{G_0}$.

Ex: finite group, \mathbb{Z}^d , free group, finitely generated linear group,...

A group G is residually finite if for any $1_G \neq g \in G$ there is a homomorphism $\varphi \colon G \to G_0$ onto a finite group G_0 such that $\varphi(g) \neq 1_{G_0}$.

Ex: finite group, \mathbb{Z}^d , free group, finitely generated linear group,...

Theorem (BLR)

For an SFT, the group $Aut(X, \sigma)$ is residually finite.

A group G is residually finite if for any $1_G \neq g \in G$ there is a homomorphism $\varphi \colon G \to G_0$ onto a finite group G_0 such that $\varphi(g) \neq 1_{G_0}$.

Ex: finite group, \mathbb{Z}^d , free group, finitely generated linear group,...

Theorem (BLR)

For an SFT, the group $Aut(X, \sigma)$ is residually finite.

Proof. Let
$$\operatorname{Per}_n := \{x \in X : \sigma^n(x) = x\}, n \geq 1$$

A group G is residually finite if for any $1_G \neq g \in G$ there is a homomorphism $\varphi \colon G \to G_0$ onto a finite group G_0 such that $\varphi(g) \neq 1_{G_0}$.

Ex: finite group, \mathbb{Z}^d , free group, finitely generated linear group,...

Theorem (BLR)

For an SFT, the group $Aut(X, \sigma)$ is residually finite.

Proof. Let $\operatorname{Per}_n := \{x \in X : \sigma^n(x) = x\}, n \geq 1$ It is a non empty finite set.

A group G is residually finite if for any $1_G \neq g \in G$ there is a homomorphism $\varphi \colon G \to G_0$ onto a finite group G_0 such that $\varphi(g) \neq 1_{G_0}$.

Ex: finite group, \mathbb{Z}^d , free group, finitely generated linear group,...

Theorem (BLR)

For an SFT, the group $Aut(X, \sigma)$ is residually finite.

Proof. Let $\operatorname{Per}_n := \{x \in X : \sigma^n(x) = x\}, \ n \geq 1$

It is a non empty finite set.

Each $\phi \in \operatorname{Aut}(X, \sigma)$ induces a permutation on Per_n .

A group G is residually finite if for any $1_G \neq g \in G$ there is a homomorphism $\varphi \colon G \to G_0$ onto a finite group G_0 such that $\varphi(g) \neq 1_{G_0}$.

Ex: finite group, \mathbb{Z}^d , free group, finitely generated linear group,...

Theorem (BLR)

For an SFT, the group $Aut(X, \sigma)$ is residually finite.

Proof. Let $\operatorname{Per}_n := \{x \in X : \sigma^n(x) = x\}, \ n \geq 1$

It is a non empty finite set.

Each $\phi \in \operatorname{Aut}(X, \sigma)$ induces a permutation on Per_n .

$$\varphi_n : \phi \in \operatorname{Aut}(X, \sigma) \mapsto \phi|_{\operatorname{Per}_n} \in \mathfrak{S}(\operatorname{Per}_n).$$

A group G is residually finite if for any $1_G \neq g \in G$ there is a homomorphism $\varphi \colon G \to G_0$ onto a finite group G_0 such that $\varphi(g) \neq 1_{G_0}$.

Ex: finite group, \mathbb{Z}^d , free group, finitely generated linear group,...

Theorem (BLR)

For an SFT, the group $Aut(X, \sigma)$ is residually finite.

Proof. Let $\operatorname{Per}_n := \{x \in X : \sigma^n(x) = x\}, \ n \geq 1$

It is a non empty finite set.

Each $\phi \in \operatorname{Aut}(X, \sigma)$ induces a permutation on Per_n .

$$\varphi_n : \phi \in \operatorname{Aut}(X, \sigma) \mapsto \phi|_{\operatorname{Per}_n} \in \mathfrak{S}(\operatorname{Per}_n).$$

Since $\bigcup_n \operatorname{Per}_n$ is dense in X,

$$\varphi_n(\phi) = \mathrm{Id}, \ \forall n \Rightarrow \phi = \mathrm{Id}.$$

Theorem (BLR)

For an SFT, the group $Aut(X, \sigma)$ is residually finite.

Corollary

For an SFT, $\operatorname{Aut}(X, \sigma)$ does not contains a divisible subgroup: For any $\phi \in \operatorname{Aut}(X, \sigma) \setminus \{\operatorname{Id}\}$, there exists $n \in \mathbb{N}$ s.t. the equation

$$\psi^n = \phi$$

has no solution $\psi \in Aut(X, \sigma)$.

Ex: $Aut(X, \sigma)$ does not contains \mathbb{Q} .

Theorem (BLR)

For an SFT, the group $Aut(X, \sigma)$ is residually finite.

Corollary

For an SFT, $\operatorname{Aut}(X, \sigma)$ does not contains a divisible subgroup: For any $\phi \in \operatorname{Aut}(X, \sigma) \setminus \{\operatorname{Id}\}$, there exists $n \in \mathbb{N}$ s.t. the equation

$$\psi^n = \phi$$

has no solution $\psi \in \operatorname{Aut}(X, \sigma)$.

Ex: $Aut(X, \sigma)$ does not contains \mathbb{Q} .

Open problem: is $\mathbb{Z}[1/p]$ contained in $\operatorname{Aut}(X,\sigma)$ for any prime

р?

Theorem (BLR)

For an SFT, the group $\operatorname{Aut}(X, \sigma)$ contains no finitely generated group with unsolvable word problem.

Theorem (BLR)

For an SFT, the group $\operatorname{Aut}(X, \sigma)$ contains no finitely generated group with unsolvable word problem.

Proof. Given $\phi_1, \ldots, \phi_\ell \in \operatorname{Aut}(X, \sigma)$, find a finite procedure to decide if

$$\psi = \phi_{i_1}^{\pm} \circ \cdots \circ \phi_{i_r}^{\pm} = \mathrm{Id}, \quad i_1, \dots, i_r \in \{1, \dots, \ell\}.$$

By Curtys-Hedlund-Lyndon Theorem, it is enough to check if the block map of ψ with range $r_{\psi} = \mathrm{O}(r)$ satisfies

$$\hat{\psi}(x_{-r_{\psi}}\cdots x_{r_{\psi}})=x_0.$$

Automorphism of \mathbb{Z}^d - SFT

Theorem (Hochman (10))

Let (X, σ) be a \mathbb{Z}^d -SFT with $h(X, \sigma) > 0$ then $\operatorname{Aut}(X, \sigma)$ contains the direct sum of every countable collection of finite group.

Automorphism of \mathbb{Z}^d - SFT

Theorem (Hochman (10))

Let (X, σ) be a \mathbb{Z}^d -SFT with $h(X, \sigma) > 0$ then $\operatorname{Aut}(X, \sigma)$ contains the direct sum of every countable collection of finite group.

Theorem (Hochman (10))

Let (X, σ) be a \mathbb{Z}^d -SFT with $h(X, \sigma) > 0$ such that the minimal orbits are dense (e.g. periodic orbits) then $\operatorname{Aut}(X, \sigma)$ conains a copy of $\operatorname{Aut}(\{1, \ldots, n\}^{\mathbb{Z}}, \sigma)$ for any n.

References

- M. BOYLE, D. LIND & D. RUDOLPH, The automorphism group of a shift of finite type. Trans. Amer. Math. Soc. 1988
- G.A. Hedlund, *Endomorphisms and automorphism of the shift dynamical system*. Math. Systems theory, 1969
- M. HOCHMAN On the automorphism groups of multidimensional shifts of finite type. Egrodic Theory Dynam. Systems, 2010
- K.H. KIM & F. W. ROUSH, On the automorphism groups of subshifts. pure Math. Appl. Ser. B, 1990
- P. RYAN, The shift and commutativity. Math. Systems theory, 1972