# Quest for Short Identities in Transformation Semigroups and Symmetric Groups

Olga Karpova Ural Federal University

Joint work with: Andrei Bulatov (Simon Fraser University), Arseny Shur (Ural Federal University), and Konstantin Startsev (Ural Federal University)

### Basic definitions

- $A = (\Sigma, Q, \delta, s, T)$  deterministic finite automaton (DFA), where
  - Σ finite input alphabet,
  - Q finite set of states,
  - $\delta: (Q \times \Sigma) \to Q$  full transition function,
  - $s \in Q$  initial state,
  - $T \subseteq Q$  set of terminal states.
- $q.w \in Q$  is the state obtained by reading the word  $w \in \Sigma^*$  from the state q
- $\mathcal{A}$  accepts w if  $s.w \in T$
- $\mathcal{A}$  separates u from v if  $\mathcal{A}$  accepts exactly one of u and v
- A simplified view:  $\mathcal{A}$  separates u from v if  $s.u \neq s.v$ , terminal states do not matter.  $\mathcal{A} = (\Sigma, Q, \delta, s)$  is a quadruple

### Separating words problem

- A general question: given two words u and v, how big is the smallest automaton separating u from v?
- Let Sep(u, v) be the minimum number of states in a DFA separating u from v.
- $n = \max(|u|, |v|)$
- $Sep(n) = max_{u \neq v; |u|, |v| \leq n} Sep(u, v)$
- Problem: find the asymptotics of the function Sep(n).
  - stated by Goralcik and Koubek in 1986.

#### Known results

#### Separation function:

- Lower bound:  $Sep(n) = \Omega(\log n)$  (Goralcik and Koubek)
  - More precisely, the lower bound is  $\log n + o(\log n)$  (natural logarithm)
- Upper bound:  $Sep(n) = O(n^{2/5} \log^{3/5}(n))$  (Robson, 1989)
- No advances on the problem since then.

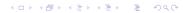
#### Known results

#### Separation function:

- Lower bound:  $Sep(n) = \Omega(\log n)$  (Goralcik and Koubek)
  - More precisely, the lower bound is  $\log n + o(\log n)$  (natural logarithm)
- Upper bound:  $Sep(n) = O(n^{2/5} \log^{3/5}(n))$  (Robson, 1989)
- No advances on the problem since then.

#### Related results:

- A pair of random words of any length needs, on expectation, less than 3 states to separate;
- The words that are hard to separate (if exist) should have
  - a long common prefix;
  - a long common suffix;
  - the same number of occurrences of each short factor;
  - a big enough Hamming distance;
  - ...



### Identities in full transformation semigroup

- Full transformation semigroup  $T_k$  is the semigroup of all selfmaps of the set  $\{1, 2, ..., k\}$  under the composition of maps.
- Example.  $T_2$  consists of four maps:  $f_1(x) = 1$ ,  $f_2(x) = 2$ ,  $f_3(x) = x$ ,  $f_4(x) = 3 x$ , and has the Cayley table

| 0     | $f_1$ | $f_2$ | $f_3$ | $f_4$ |
|-------|-------|-------|-------|-------|
| $f_1$ | $f_1$ | $f_2$ | $f_1$ | $f_2$ |
| $f_2$ | $f_1$ | $f_2$ | $f_2$ | $f_1$ |
| $f_3$ | $f_1$ | $f_2$ | $f_3$ | $f_4$ |
| $f_4$ | $f_1$ | $f_2$ | $f_4$ | $f_3$ |

- Identity in  $T_k$ :  $u \equiv_k v$  if for every subtitution  $\sigma : \Sigma \to T$  one has  $\sigma(u) = \sigma(v)$
- Given an automaton  $\mathcal{A}$ , the set of all maps  $w: q \to q.w$  is a subsemigroup of  $T_{|\mathcal{Q}|}$  called the transition semigroup of  $\mathcal{A}$ .
- All these semigroups are in fact monoids.



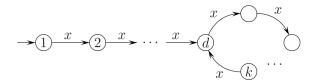
### Identities in $T_k$ and words separation

Observation. For any words  $u, v \in \Sigma^*$   $u \equiv_k v$  iff Sep(u, v) > k.

- Decision problem "given u, v, and k, is u ≡<sub>k</sub> v?" is coNP-complete for k ≥ 3. (Almeida, Volkov, Goldberg 2007).
  - Then the decision problem "given u, v, and k, is  $Sep(u, v) \le k$ ?" is NP-complete.
- Finding the asymptotics of Sep(n) is equivalent to finding the asymptotics of the length of the shortest identity in  $T_k$ .

### Unary identity

- The shortest known identity in  $T_k$  is  $x^{k-1} \equiv_k x^{k-1+lcm\{1,...,k\}}$ , where lcm is the least common multiple.
- This means that for any  $\mathcal{A}=(\Sigma,Q,\delta,s)$  such that  $|Q|\leq k$ , any  $q\in Q$  and any  $x\in \Sigma$  the states  $q.x^{k-1}$  and  $q.x^{k-1+lcm\{1,...,k\}}$  coincide:



- Since  $lcm\{1,..,k\} = e^{k+o(k)}$  from the Prime Number Theorem, one gets  $Sep(n) \ge \log n + o(\log n)$ .
- Does  $T_k$  have shorter (non-unary) identities?

### Separating words with permutational DFA

- DFA  $\mathcal{A}$  is permutational if every letter acts on the set of states as permutation: |Q.a| = |Q|.
- Sepp(n) is the analog of function Sep(n) for permutational automata.
- Sepp(u, v) > k iff (u, v) is an identity in the symmetric group  $S_k$ . Such an identity  $u \cong_k v$  is called positive (contains no inverses).

### Separating words with permutational DFA

- DFA  $\mathcal{A}$  is permutational if every letter acts on the set of states as permutation: |Q.a| = |Q|.
- Sepp(n) is the analog of function Sep(n) for permutational automata.
- Sepp(u, v) > k iff (u, v) is an identity in the symmetric group S<sub>k</sub>. Such an identity u ≅<sub>k</sub> v is called positive (contains no inverses).

#### Known results for permutational automata:

- Upper bound:  $Sepp(n) = O(n^{1/2})$  (Robson, 1996).
- Lower bound:  $Sepp(n) \ge \log(n) + o(\log(n))$ 
  - from the identity  $x^{lcm\{1,...,k\}} = 1$
- Are there short identities in  $S_k$ ?
  - Yes, of length  $O(e^{\log^4 n \log \log n})$  (Kozma, Thom, 2016)
  - No positive short identities is known



### Our goals

- To find short identities in  $T_k$  and  $S_k$  for small k (as far as the optimized exhaustive search is feasible).
- Using these identities, find some general series of identities for arbitrary k and use them to update lower bounds on Sep and Sepp

#### Restrictions for examined words

- The shortest non-unary identity in  $T_k$  ( $S_k$ ) is binary; so  $\Sigma = \{x, y\}$ .
- If  $u \equiv_k v$ , then  $u = pu_1r$ ,  $v = pv_1r$ , where  $|p| \ge k 2$ ,  $|r| \ge k 1$ , and  $u_1 \cong_k v_1$ . Idea:
  - Identity in  $S_k$  + common prefixes and suffixes = identity in  $T_k$
- If an identity is shorter than the unary identity, then |u| = |v| and  $|u|_x = |v|_x$ .

### Shortest Identities for k = 3, 4

### In $S_3$ :

•  $x^2y^2 = y^2x^2$  (length 4).

#### In $T_3$ :

- $x^2 = x^8$  (length 8).
- \* the shortest binary identity has length 10

### In $S_4$ :

• 
$$x^6y^2xy^2 = y^2xy^2x^6$$
 (length 11).

#### In $T_4$ :

- $x^3 = x^{15}$  (length 15)
- \* the shortest binary identity has length 18

### Shortest Identities for k=5,6

#### In $S_5$ :

- $(xy)(xyyx)^3(yxxy)^2(yx)(yxxy)^2 = (yxxy)^2(xy)(yxxy)^2(xyyx)^3(yx)$  (length 32)
- $(xy)^4(yx)^5(xy)^6(yx) = (yx)(xy)^6(yx)^5(xy)^4$  (length 32)
- No irreducible identities of length 33.

#### In $T_5$ :

- $(xy)^{15}(yx)^5(xy)^4 = (xy)^3(yx)^5(xy)^{16}$  (length 48)
  - suspected (but not proved) to be the shortest identity

#### In S<sub>6</sub>

• 
$$(xy)^4(yx)^5(xy)^6(yx) = (yx)(xy)^6(yx)^5(xy)^4$$
 (length 32)

#### In $T_6$

No luck yet.

### Identities in $T_k$

Theorem. Semigroup  $T_k$  satisfies the following identity of length  $2lcm\{1,..,k-1\}+6(k-1)$ :

$$(xy)^{k-2+lcm\{1,...,k-1\}}(yx)^k(xy)^{k-1} \equiv_k (xy)^{k-2}(yx)^k(xy)^{k-1+lcm\{1,...,k-1\}}$$

Corollary. If  $k \geq 5$  is either a prime or an odd prime power, the semigroup  $T_k$  satisfies an identity which is shorter than the unary identity.

• The result improves a little the lower bound for Sep(n), but the improvement is swallowed by the o-term.



### Identities in $S_k$

Proposition.  $(xy)^a(yx)^b \cong_k (yx)^b(xy)^a$ , if the order of any element of  $S_k$  divides at least one of a, b.

Theorem. 
$$Sepp(n) \ge \frac{3}{2}\log(n) + O(\frac{\log n}{\log\log n})$$

 This is the first (though small) asymptotic improvement of the lower bound on words seperation.

Proposition.  $(xy)^a(yx)^b(xy)^c(yx)^d \cong_k (yx)^d(xy)^c(yx)^b(xy)^a$ , if any order h of an element of  $S_k$  satisfies at least one of the following conditions or their counterparts obtained by swapping b with c and a with d:

- h|a and h|c
- h|(a+c) and h|b
- h|a and  $b \equiv d \pmod{h}$

## Short identities of special forms in $S_k$

|      | Identities of type "abcd" |     |     | Identities of type "ab" |      |        |        |         |            |
|------|---------------------------|-----|-----|-------------------------|------|--------|--------|---------|------------|
| k    | а                         | Ь   | С   | d                       | Len  | а      | Ь      | Len     | lcm(k)     |
| 5, 6 | 1                         | 6   | 5   | 4                       | 32   | 12     | 5      | 34      | 60         |
| 7    | 2                         | 14  | 12  | 10                      | 76   | 60     | 7      | 134     | 420        |
| 8    | 23                        | 60  | 7   | 24                      | 228  | 60     | 56     | 232     | 840        |
| 9    | 18                        | 60  | 42  | 24                      | 288  | 180    | 56     | 472     | 2520       |
| 10   | 18                        | 60  | 42  | 24                      | 288  | 120    | 126    | 492     | 2520       |
| 11   | 48                        | 180 | 132 | 84                      | 888  | 840    | 198    | 2076    | 27720      |
| 12   | 24                        | 222 | 420 | 198                     | 1728 | 840    | 198    | 2076    | 27720      |
| 13   |                           |     |     |                         |      | 2520   | 286    | 5612    | 360360     |
| 14   |                           |     |     |                         |      | 2520   | 858    | 6756    | 360360     |
| 15   |                           |     |     |                         |      | 2520   | 1716   | 8472    | 360360     |
| 16   |                           |     |     |                         |      | 5040   | 8580   | 27240   | 720720     |
| 17   |                           |     |     |                         |      | 27720  | 10608  | 76656   | 12252240   |
| 18   |                           |     |     |                         |      | 55440  | 13260  | 137400  | 12252240   |
| 19   |                           |     |     |                         |      | 55440  | 251940 | 614760  | 232792560  |
| 20   |                           |     |     |                         |      | 360360 | 15504  | 751728  | 232792560  |
| 21   |                           |     |     |                         |      | 360360 | 77520  | 875760  | 232792560  |
| 22   |                           |     |     |                         |      | 360360 | 77520  | 875760  | 232792560  |
| 23   |                           |     |     |                         |      | 720720 | 445740 | 2332920 | 5354228880 |

# Thank you for attention!