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Shift spaces and codes

Let X be a shift of finite type (SFT).

I A word is a finite sequence of symbols from an alphabet. Denote by Bn(X)
the set of words of length n occurring in X and B(X) =

⋃
n Bn(X).

I The entropy of X is defined by

h(X) = lim
n→∞

1

n
log |Bn(X)|.

I X is irreducible if, given u, v ∈ B(X), there is w ∈ B(X) with uwv ∈ B(X).

I A point x ∈ X is doubly transitive if every word in X appears in x infinitely
often to the right and the left.

I A shift space X is irreducible if and only if it has a right (or left) transitive
point. If X is irreducible, the set of doubly transitive points in X is residual.
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Degree of a code

Let X be an SFT and π : X → Y be a factor code onto a subshift Y .

I Let X be irreducible. Then the following are equivalent.

1. h(X) = h(Y ).
2. For each y ∈ Y , we have |π−1(y)| <∞.
3. For each y ∈ Y , the set |π−1(y)| is at most countable.
4. π is finite-to-one, i.e., there is M ∈ N such that |π−1(y)| ≤M for each y ∈ Y .

I The degree of π is defined to be the minimum number of π-preimages of
points in Y , i.e., degree of π = inf{|π−1(y)| : y ∈ Y }.

I (Welch; Hedlund; Coven and Paul) If π is finite-to-one and d is the degree of
π, then every doubly transitive point of Y has exactly d preimages.
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Structure and the existence of factor maps

Let X and Y be irreducible SFTs.

h(X) = h(Y ) h(X) > h(Y )

Structure

bounded preimages unbounded preimages
finite-to-one infinite-to-one
x is transitive iff φ(x) is.
same number of preimages a.e.
preimages are unif. separated a.e.
degree represented combinatorically
∃ permutation properties
...

Existence

generally hard solved completely (Boyle, ’83)
only known for closing maps known for many maps
K-theoretical invariants simple iff condition

... and many generalizations
(Boyle,Tuncel,Thomsen,J.)
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Induced mapping on the space of measures

I For a shift space X, let M(X) be the set of σ-invariant Borel probability
measures on X.

I M(X) is compact and convex.
I M(X) 3 Bernoulli measures, Markov measures, Gibbs measures, · · ·

I A factor code π : X → Y induces a surjective map π̄ :M(X)→M(Y )
defined by (π̄(µ))(B) = µ(π−1(B)) for µ ∈M(X) and a Borel set B of Y .

I The map x 7→ δx is a natural embedding from X into the set of Borel
probability measures on X, hence π̄ is a restriction of an extension of π to
M(X); We will use π again instead of π̄.

I If π is finite-to-one, then there is d ∈ N, the degree of π, with (1)
|π−1(y)| ≥ d and (2) |π−1(y)| = d for almost all y ∈ Y .

I What are the numbers of preimages of this induced map
π :M(X)→M(Y )?
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Ergodic measures

I Question: What are the numbers of preimages of π :M(X)→M(Y )?

I π is affine: If π(µ1) = π(µ2) = ν, then π(pµ1 + (1− p)µ2) = ν;
Hence for each ν ∈M(Y ), we have |π−1(ν)| = 1 or ∞.

I A measure µ ∈M(X) is ergodic if every µ-invariant set has measure 0 or 1,
equivalently, if µ is an extreme point of a convex set M(X).

I Each measure in M(X) can be described as a limit of convex combinations
of ergodic measures in M(X); An image of ergodic measure is ergodic.

I Question’: What are the numbers of ergodic preimages of an ergodic
measure under π :M(X)→M(Y )?

I (Folklore) For each fully supported ergodic measure ν ∈M(Y ), π−1(ν)
contains at most d ergodic measures.
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Inverse stucture of Markov measures

Let X be an irreducible SFT and π : X → Y be a finite-to-one factor code onto Y .

I For µ ∈M(X) and w ∈ B(X), let µ(w) = µ({x ∈ X : x1 · · ·xn = w}).

I A measure µ ∈M(X) is a Markov measure if

µ(uvw|uv) = µ(vw|v) for all v ∈ B1(X) and uvw ∈ B(X).

I (Boyle and Tuncel) Let v ∈M(Y ) be a fully supported Markov measure.
Then |π−1(ν)| = 1.

I Since X and Y are intrinsically ergodic, this is clear for maximal measure in Y .
I Inverses of Markov measures in Y have the same structure.

I Markov measures on Y are dense in M(Y ). Hence |π−1(ν)| = 1 on a dense
(but not residual) set.
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Number of ergodic lifts

Theorem (J and Yoo)
Let X be an SFT and π : X → Y be a finite-to-one factor code onto a subshift Y .
Let d be the degree of π. Then there is a fully supported measure ν ∈M(Y ) with
exactly d ergodic preimages (i.e., π−1(ν) contains exactly d ergodic measures).

I π−1(ν) is the d− 1 dimensional simplex in M(X).

I ν cannot be a Markov measure. Indeed, ν cannot be a Gibbs measure with
nice potential function.

I There is a factor code π such that π−1(ν) contains only 1 or d ergodic
measures.

I Such ν’s are dense in M(Y ). It is open whether (1) such ν’s are residual in
M(Y ) (2) the metric entropies of such ν’s are dense in (0, h(Y )).

I It is open whether the analogous statement holds for the infinite-to-one case,
i.e., the case where h(X) > h(Y ).
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Sketch of the proof I

Theorem (J and Yoo)
Let X be an SFT and π : X → Y be a finite-to-one factor code onto a subshift Y .
Let d be the degree of π. Then there is a fully supported measure ν ∈M(Y ) with
exactly d ergodic preimages (i.e., π−1(ν) contains exactly d ergodic measures).

I 1. Construct a periodic point y ∈ Y so that π−1(y) consists of d periodic
points whose orbits are all distinct.

I heavily depends on the structure of magic word and permutation property for
factor maps in symbolic dynamics

I 2. Consider an atomic measure

ν =
1

per(y)

per(y)∑
i=1

σ̄iδy =
1

per(y)

per(y)∑
i=1

δy ◦ σ−i.

ν ∈M(Y ) has exactly d ergodic preimages, which are atomic measures
concentrated on the orbits of elements in π−1(y).
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Sketch of the proof II

I Let x1, · · · , xd = π−1(y) and µ1, · · · , µd be the ergodic measures over ν.
Each µi is a CO-measure generated by xi.

I 3. Construct a d-fold joining λ∗ of µ1, · · · and µd.

I λ∗ is ergodic, mutually separated, has different margins, but their margins
don’t have full support.

I 4. Modify λ∗ to obtain another d-fold joining λ, which is ergodic, mutually
separated and has different margins, and all margins having full support.

I Choose an invariant measure η on {0, 1}Z with high probability of the symbol
1 and positive probability for each arbitrary long 00 . . . 00.

I For η-a.e. s, we construct a point (z(1), . . . , z(d)) ∈ Xd that copies from
(x(1), . . . , x(d)) for regions of 1 in s.

I For regions of 0 in s, fill in a way that ensures full support margins.
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Number of ergodic lifts

Theorem (J and Yoo)
Let X be an SFT and π : X → Y be a finite-to-one factor code onto a subshift Y .
Let d be the degree of π. Then there is a fully supported measure ν ∈M(Y ) with
exactly d ergodic preimages (i.e., π−1(ν) contains exactly d ergodic measures).

I Is it true whether (1) such ν’s are dense in M(Y )? (2) the metric entropies
of such ν’s are dense in (0, h(Y ))?.

I What is the condition on a factor code of degree d to have ν ∈M(Y ) such
that π−1(ν) contains exactly k ergodic measures for 1 < k < d?

I Is it true whether the analogous statement holds for the infinite-to-one case,
i.e., the case where h(X) > h(Y ).
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Ergodic measures, revisited

I M(X) is the set of σ-invariant Borel probability measures on X.

I Let E(X) ⊂M(X) be the set of ergodic measures on X, i.e. the set of
extreme points of the convex set (Choquet simplex) M(X).

I { CO-measures } ⊂ { ergodic Markov measures } ⊂ E(X).

I E(X) is a Gδ set. The set of fully supported measures is ∅ or residual.

I For SFT X, CO-measures are dense in M(X). Hence E(X) is residual and
the closure of E(X) is M(X) (i.e. M(X) is a Poulsen simplex).

I (Lindenstrauss, Olsen, Sternfeld ’78) E(X) is path-connected.

I (Sigmund ’78) Let µ1 and µ2 be CO-measures in E(X). Then there is a path
in E(X) consisting of fully supported Markov measures.
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Number of ergodic lifts

Theorem (J and Yoo)
Let X be an SFT and π : X → Y be a finite-to-one factor code onto a subshift
Y . Let d be the degree of π. Then there is a fully supported measure ν ∈M(Y )
with exactly d ergodic preimages. Such measures are dense in M(Y ).

I 1. Let Σ ⊂ Xd be a d-fold fibered product of π : X → Y :
Σ = {(x1, · · · , xd) ∈ Xd : π(x1) = · · · = π(xd)}.

and Σ0 ⊂ Σ be an irreducible component of mutual separated part of Σ.
I Entropy argument gives h(Σ0) = h(X) = h(Y ).

I 2. Given µ ∈M(Σ0), find a CO-measure λ ∈M(Σ0) near µ.

I The support of CO-measure is a d-pair of disjoint periodic points with the
same image.

I λ is ergodic, mutually separated, has different margins.
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Number of ergodic lifts

Theorem (J and Yoo)
Let X be an SFT and π : X → Y be a finite-to-one factor code onto a subshift
Y . Let d be the degree of π. Then there is a fully supported measure ν ∈M(Y )
with exactly d ergodic preimages. Such measures are dense in M(Y ).

I 3. Find a path from λ to another CO-measure in M(Σ0), which gives a fully
supported measure λ∗ which is close to λ.

I full supportedness of λ∗ follows from Sigmund.
I Since λ∗ and λ are close, λ∗ has d-margins.
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Transition between points

Let X be an SFT and φ : X → Y be a factor code onto a subshift Y .

I Let x, x̄ ∈ X. We say that there is a transition from x to x̄ and denote it by
x→ x̄ if, for each n ∈ Z, there is a point z ∈ Z such that

1. φ(z) = φ(x) = φ(x̄),
2. z(−∞,n] = x(−∞,n], and
3. z and x̄ are right asymptotic.
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I Write x ∼ x̄ if x→ x̄ and x̄→ x. The relation ∼ is an equivalence relation.
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Class degrees

Let X be an SFT and φ : X → Y be a factor code onto a subshift Y .

I For x, x̄ ∈ X, write x ∼ x̄ if x→ x̄ and x̄→ x. An equivalence class over ∼
is called a transition class.

I For y ∈ Y , denote by C(y) the set of transition classes in X over y.

I The minimal number of transition classes over points of Y is called the class
degree of φ. The class degree is a conjugacy invariant.

Theorem (Allahbakhshi and Quas, Allahbakhshi and J. and Hong)
Let X be irreducible and d the class degree of φ. Then the following holds.

1. There are d transition classes over every right transitive point of Y .

2. If φ is finite-to-one, then the degree = d = class degree.

3. For a typical y ∈ Y , their transition classes are mutually separated.

4. Let ν be a fully supported ergodic measure on Y . Then the number of
ergodic measures of relative maximal entropy over ν is at most d.
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Thank You!
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