On the Gap Between Separating Words and Separating Their Reversals

Farzam Ebrahimnejad Combinatorics, Automata and Number Theory – CANT, December 2016

Department of Computer Engineering, Sharif University of Technology

Definition

- For a DFA D, We denote the set of states of D by Q_D .
- For a state $q \in Q_D$, we define $\delta_D(q, w)$ to be the state in Q_D at which we end if we start reading w from q.
- Assuming the start state of D is $q_0 \in Q_D$, we define $\delta_D(w) = \delta_D(q_0, w)$.

1

Definition

We say a DFA D separates two distinct words $w,x\in \Sigma^*$, if it accepts w but rejects x. Furthermore, we let ${\rm sep}(w,x)$ be the minimum number of states required for a DFA to separate w and x.

Definition

We say a DFA D separates two distinct words $w,x\in \Sigma^*$, if it accepts w but rejects x. Furthermore, we let ${\rm sep}(w,x)$ be the minimum number of states required for a DFA to separate w and x.

Remark

- If D separates w and x, then $\delta_D(w) \neq \delta_D(x)$.
- $\operatorname{sep}(w, x) = \operatorname{sep}(x, w)$.

The Separating Words Problem

· Good upper and lower bounds on

$$S(n) := \max_{w \neq x \land |w|, |x| \le n} \operatorname{sep}(w, x)?$$

- $S(n) = O(n^{2/5} (\log n)^{3/5})$
- $S(n) = \Omega(\log n)$

Remarks on Separating Words

In 2011, Demaine, Eisenstat, Shallit, and Wilson published a paper titled "Remarks on Separating Words" that surveys the latest results about this problem, and while proving several new theorems, they also introduced three new open problems.

The Problem

Must $\operatorname{sep}(w^R, x^R) = \operatorname{sep}(w, x)$? No, for w = 1000, x = 0010, we have

$$sep(w, x) = 3$$

but

$$sep(w^R, x^R) = 2.$$

The Problem

Problem

Is $|\text{sep}(w, x) - \text{sep}(w^R, x^R)|$ unbounded?

The Proof

Lemma

 $\forall u,v,w,x \in \Sigma^* : \operatorname{sep}(uwv,uxv) \geq \operatorname{sep}(w,x)$

Proof.

- 1. $sep(wv, xv) \ge sep(w, x)$
- 2. $sep(uwv, uxv) \ge sep(wv, xv)$

7

Lemma

 $\forall u,v,w,x \in \Sigma^* : \operatorname{sep}(uwv,uxv) \geq \operatorname{sep}(w,x)$

Proof.

- 1. $sep(wv, xv) \ge sep(w, x)$
- 2. $sep(uwv, uxv) \ge sep(wv, xv)$

• Must sep(uwv, uxv) = sep(w, x)?

Lemma

 $\forall u, v, w, x \in \Sigma^* : \operatorname{sep}(uwv, uxv) \ge \operatorname{sep}(w, x)$

Proof.

- 1. $sep(wv, xv) \ge sep(w, x)$
- 2. $sep(uwv, uxv) \ge sep(wv, xv)$

• Must sep(uwv, uxv) = sep(w, x)? No, we have sep(100, 001) = 2 but sep(1000, 0010) = 3.

- Let $f_n = 0^n, g_n = 0^{n+(2n+1)!}$.
- $\operatorname{sep}(f_n, g_n) = n + 2$.

• Let
$$f_n = 0^n, g_n = 0^{n+(2n+1)!}$$
.

- $\operatorname{sep}(f_n, g_n) = n + 2$.
- By the previous lemma, we have

$$sep(uf_nv, ug_nv) \ge n + 2.$$

The Basic Idea

For all $k \in \mathbb{N}$, we will construct two words

$$w_k = u_k f_n v_k,$$

$$x_k = u_k g_n v_k,$$

for some $n \in \mathbb{N}$ and $u_k, v_k \in \{0, 1, 2\}^+$, s.t.

$$sep(w, x) - sep(w^R, x^R)$$

approaches infinity as k approaches infinity.

The Function C_n

Lemma

$$\forall n \in \mathbb{N}, w_0 \in \Sigma^+ : \exists w \in w_0(0^+w_0)^* \text{ s.t.}$$

$$sep(wf_nw, wg_nw) \ge 2n + 2.$$

We denote the w corresponding to w_0 by $C_n(w_0)$.

Definition

For $k \in \mathbb{N}$, we define

$$L_{k} := \left\{ 1^{2i} 2 \mid i \in \mathbb{N} \land i \leq k \right\}$$

$$\cup \left\{ 1^{i_{1}} 21^{i_{2}} 2 \cdots 21^{i_{s-1}} 21^{i_{s}} 2 \mid s, i_{1}, \dots, i_{s} \in \mathbb{N} \right.$$

$$\wedge i_{1} + i_{2} + \dots + i_{s} = 2k + 1$$

$$\wedge i_{1}, i_{2}, \dots, i_{s-1} \equiv 0 \pmod{2} \right\}.$$

Also, we define $G_k := L_k^*$.

Definition

For a regular language $L\subseteq \Sigma^*$, we define $\mathrm{sc}(L)$ to be the minimum number of states needed for a DFA to accept L.

Definition

For a regular language $L\subseteq \Sigma^*$, we define $\mathrm{sc}(L)$ to be the minimum number of states needed for a DFA to accept L.

Lemma

 $\forall k \in \mathbb{N}$:

$$\operatorname{sc}(G_k) \ge 2^k \wedge \operatorname{sc}(G_k^R) \le 5k + 3$$

Definition

For a regular language $L\subseteq \Sigma^*$, we define $\mathrm{sc}(L)$ to be the minimum number of states needed for a DFA to accept L.

Lemma

 $\forall k \in \mathbb{N}:$

$$\operatorname{sc}(G_k) \ge 2^k \wedge \operatorname{sc}(G_k^R) \le 5k + 3$$

Lemma

$$\exists z_k \in (G_k - \{ \epsilon \})$$
 s.t.

$$sep(z_k, \{1,2\}^* - G_k) \ge 2^k$$

Mapping $\{0,1,2\}^*$ to $\{0,1\}^*$

Definition

 $\operatorname{tl}: \{\,0,1,2\,\}^* \longrightarrow \{\,0,1\,\}^*$

- $0 \rightarrow 0$
- $1 \rightarrow 11$
- · 2 → 01

Mapping $\{0,1,2\}^*$ to $\{0,1\}^*$

Lemma

 $sep(tl(w), tl(x)) \ge sep(w, x)$

Proof.

Let D be a DFA that separates $\mathrm{tl}(w)$ and $\mathrm{tl}(x)$. We construct a new DFA E with $Q_E=Q_D$ that separates w and x. For all $q\in Q_E$, we set

$$\delta_E(q,0) = \delta_D(q,0), \delta_E(q,1) = \delta_D(q,11), \delta_E(q,2) = \delta_D(q,01).$$

The Main Result

Theorem

For all $k, n \in \mathbb{N}$, there exist two distinct words $w, x \in \{0, 1\}^*$ such that

$$sep(w,x) \ge \min(2n+2,2^{k/2}),$$

but

$$sep(w^R, x^R) \le n + 10k + 10.$$

The Main Result

Theorem

The difference

$$\left| \operatorname{sep}(w, x) - \operatorname{sep}(w^R, x^R) \right|$$

is unbounded.

The Main Result

Proof.

Let $k \in \mathbb{N}$. We set $n = 2^{k/2-1} - 1$. By the previous theorem, there exist $w, x \in \Sigma^*$ such that

$$sep(w, x) \ge \min(2n + 2, 2^{k/2}) = 2^{k/2},$$

and

$$sep(w^R, x^R) \le n + 10k + 10 = (2^{k/2 - 1} - 1) + 10k + 10.$$

Hence

$$sep(w,x) - sep(w^R, x^R) \ge 2^{k/2} - \left(2^{k/2-1} + 10k + 9\right)$$
$$= 2^{k/2-1} - 10k - 9,$$

which tends to infinity as k tends to infinity.

Conclusion

Open Problem

Is

$$\operatorname{sep}(w, x) / \operatorname{sep}(w^R, x^R)$$

unbounded?

