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Sets of numbers and their representations

In this 
ourse we will be interested in sets of numbers.

In 
omputer s
ien
e, we are 
on
erned by the question: how do we

have su
h sets at our disposal?

This is why numeration systems 
ome into play.

The basi
 
onsideration is as follows: properties of numbers are

translated into synta
ti
al (or 
ombinatorial) properties of their

representations.



Simple sets of numbers

Are the following sets of naturals simple ?

◮
X

1

= {n2 : n ∈ N}
◮

X

2

= {n ∈ N : n is prime}
◮

X

3

= {n ∈ N : n is even}
◮

X

4

= {2n : n ∈ N}
◮

X

5

= {n ∈ N : ∃m ∈ N, n2 + n + 1 = 3m}
◮

X

6

= {n ∈ N : ∃m ∈ N, n2 + n + 1 = 3m

2}
Non-trivial properties of numbers are dependent of the base, or the


hosen numeration system.



Combinatori
s on words

Numbers are represented by words.

Usually integers are represented by �nite words while real numbers

are represented by in�nite words.

This is not true anymore when we 
onsider non-standard

numeration systems. . .

On the other hand, in�nite words may also represent sets of

numbers: the 
hara
teristi
 sequen
e of X ⊆ N is a binary in�nite

word.

This notion 
an be extended to subsets of N
d

.



Re
ognizable sets of integers

A subset X of N is re
ognizable w.r.t. a numeration system if the

language

{rep(n) : n ∈ X} ⊆ A

∗

is a

epted by a �nite automaton.

Multidimensional 
ase:

A subset X of N
d

is re
ognizable w.r.t. a numeration system if the

language

{(rep(n
1

), . . . , rep(n
d

)) : (n
1

, . . . , n
d

) ∈ X}# ⊆ ((A ∪ {#})d )∗,

where the padding symbol # is not 
ontained in the numeration

alphabet A, is a

epted by a �nite automaton.



Produ
ts of free monoids

If A

1

, . . . ,A
d

are �nite alphabets then

◮
For all i , A

∗
i

are free monoids.

◮
For d ≥ 2, A

∗
1

× · · · × A

∗
d

is a monoid (for 
omponentwise


on
atenation) whi
h is not free:

for d = 2, one has (a
1

, a
2

) = (a
1

, ε)(ε, a
2

).

◮ (A
1

× · · · × A

d

)∗ is a free monoid � letters are elements of

A

1

× · · · × A

d

.

◮ (A
1

× · · · × A

d

)∗ is a submonoid of A

∗
1

× · · · × A

∗
d

.



◮ N is a free monoid.

◮ N
d

is a monoid whi
h is not free.

◮
Question: How to represent subsets of N

d

?

◮
If X ⊆ N

d

then {(rep(n
1

), . . . , rep(n
d

)) : (n
1

, . . . , n
d

) ∈ X} is

not a language.

Example (d=3)




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Depending on the 
ontext, we 
an interpret this word di�erently.

For example, we 
an see this word as the binary representation of

the triplet (5,9,1). In the Fibona

i numeration system, it is (4,6,1).



A range of numeration systems

Integer base representations

Let b ≥ 2 be an integer. A natural number n is represented by the

�nite word rep

b

(n) = 
ℓ · · · 
1
0 over the alphabet

A

b

= {0, 1, . . . , b − 1} obtained from the greedy algorithm:

n =

ℓ
∑

i=0




i

b

i .

The greedy algorithm only imposes to have a nonzero leading digit


ℓ and the set of all possible representations is

L
b

= {1, . . . , b − 1}{0, · · · , b − 1}∗ ∪ {ε}.

In this 
ase, we talk about b-re
ognizable sets of N
d

.



Alternative de�nitions of b-re
ognizable sets

There exist several equivalent de�nitions of b-re
ognizable sets of

integers using

◮
logi


◮
uniform morphisms

◮
�niteness of the b-kernel

◮
algebrai
 formal series

◮
re
ognizable/rational formal series

See the survey of Bruyère-Hansel-Mi
haux-Villemaire.



Unary representations

A natural number n is represented by rep

1

(n) = a

n

, where a is any

letter. The set of all possible representations is L
1

= a

∗
.

In this 
ase, we talk about 1-re
ognizable sets of N
d

.

In dimension 1, they 
orrespond exa
tly to ultimately periodi
 sets

(easy to see).

In the multidimensional 
ase, it is more 
ompli
ated to 
apture the

essen
e of 1-re
ognizable sets.



Fibona

i representations

Let F = (F
i

)
i≥0

= (1, 2, 3, 5, 8, . . .) be the sequen
e obtained from

the rules:

F

0

= 1, F
1

= 2 and F

i+2

= F

i+1

+ F

i

for i ≥ 0.

A natural number n is represented by the �nite word

rep

F

(n) = 
ℓ · · · 
1
0 over the alphabet A

F

= {0, 1} obtained from

the greedy algorithm:

n =
ℓ

∑

i=0




i

F

i

.

The greedy algorithm imposes, in addition to having a nonzero

leading digit 
ℓ, that the valid representations do not 
ontain two


onse
utive digits 1. The set of all possible representations is

L
F

= 1{0, 01}∗ ∪ {ε}.



Positional representations

Let U = (U
i

)
i≥0

= (1, 2, 3, 5, 8, . . .) be a base sequen
e, that is, an

in
reasing sequen
e of positive integers satisfying:

U

0

= 1 and C

U

= sup

i≥0

U

i+1

U

i

< +∞.

A natural number n is represented by the �nite word

rep

U

(n) = 
ℓ · · · 
1
0 over the alphabet A

U

= {0, 1, . . . , ⌈C
U

⌉ − 1}
obtained from the greedy algorithm:

n =

ℓ
∑

i=0




i

U

i

.

In this 
ase, we talk about U-re
ognizable sets of integers.



The set of all possible representations is denoted by

L
U

= {rep
U

(n) : n ∈ N}.

Of 
ourse a des
ription of the numeration language L
U

highly

depends on the base sequen
e U.

Given su
h a system U, other 
hoi
es of representations 
ould be

made: lazy algorithm, or even, 
onsidering all possible

representations of a given integer.



Part 1

First order theory in base b and automata



b-re
ognizable sets of integers

Fix an integer b ≥ 2.

We let rep

b

(n
1

, . . . , n
d

) = (rep
b

(n
1

), . . . , rep
b

(n
d

))#.

A set X ⊆ N
d

is b-re
ognizable if the language

rep

b

(X ) = {rep
b

(n
1

, . . . , n
d

) : (n
1

, . . . , n
d

) ∈ X}

is regular.

For d = 1, this is equivalent to say that its 
hara
teristi
 sequen
e

χ
X

∈ {0, 1}N is b-automati
: there exists a DFAO that on input

rep

b

(n) ouputs 1 if n ∈ X , and outputs 0 otherwise.



Example

The DFAO

0 1

0, 1

1

0

generates the sequen
e

011010111 · · ·

when reading 2-representations of integers, whi
h 
orresponds to

the subset of integers

{1, 2, 4, 6, 7, 8, . . .}.



Cobham-Semenov theorem

Semi-linear sets of N
d

are �nite unions of sets of the form

p

0

+ p

1

N+ · · ·+ pℓN

where p

0

, p
1

, . . . , pℓ ∈ N
d

.

Theorem (Cobham 1969, Semenov 1977)

Let b and b

′
be multipli
atively independent bases. If a subset of

N
d

is simultaneously b-re
ognizable and b

′
-re
ognizable, then it is

semi-linear.



Theorem (Cobham 1969, Semenov 1977)

Let b and b

′
be multipli
atively independent bases. If a subset of

N
d

is simultaneously b-re
ognizable and b

′
-re
ognizable, then it is

semi-linear.

As linear sets are b-re
ognizable for all b ≥ 2, we obtain that a subset

of N
d

is b-re
ognizable for all b ≥ 2 i� it is semi-linear.



Theorem (Cobham 1969, Semenov 1977)

Let b and b

′
be multipli
atively independent bases. If a subset of

N
d

is simultaneously b-re
ognizable and b

′
-re
ognizable, then it is

semi-linear.

As linear sets are b-re
ognizable for all b ≥ 2, we obtain that a subset

of N
d

is b-re
ognizable for all b ≥ 2 i� it is semi-linear.

NB: We 
an't repla
e b ≥ 2 by b ≥ 1!



Theorem (Cobham 1969, Semenov 1977)

Let b and b

′
be multipli
atively independent bases. If a subset of

N
d

is simultaneously b-re
ognizable and b

′
-re
ognizable, then it is

semi-linear.

As linear sets are b-re
ognizable for all b ≥ 2, we obtain that a subset

of N
d

is b-re
ognizable for all b ≥ 2 i� it is semi-linear.

NB: We 
an't repla
e b ≥ 2 by b ≥ 1!



Theorem (Cobham 1969, Semenov 1977)

Let b and b

′
be multipli
atively independent bases. If a subset of

N
d

is simultaneously b-re
ognizable and b

′
-re
ognizable, then it is

semi-linear.

As linear sets are b-re
ognizable for all b ≥ 2, we obtain that a subset

of N
d

is b-re
ognizable for all b ≥ 2 i� it is semi-linear.

NB: We 
an't repla
e b ≥ 2 by b ≥ 1!

The linear set X = {(n, 2n) : n ∈ N} = (1, 2)N is not 1-re
ognizable

sin
e the language

rep

1

(X ) = {(#n

a

n, a2n) : n ∈ N} = {(#, a)n(a, a)n : n ∈ N}

is not regular (apply the pumping lemma).



Chara
terizing b-re
ognizable sets with logi


Theorem (Bü
hi 1960, Bruyère 1985)

Let b ≥ 2 be an integer. A subset X of N
d

is b-re
ognizable i� it is

b-de�nable.



De�nable sets

Let S be a logi
al stru
ture whose domain is D and let n ≥ 1. A

set X ⊆ D

n

is de�nable in S if there exists a �rst-order formula

ϕ(x
1

, . . . , x
n

) of S, so that, for all (d
1

, . . . , d
n

) ∈ D

n

, ϕ(d
1

, . . . , d
n

)
is true i� (d

1

, . . . , d
n

) ∈ X :

X = {(d
1

, . . . , d
n

) ∈ D

n : S � ϕ(d
1

, . . . , d
n

)}.

A �rst-order formula is de�ned re
ursively from

◮
variables x

1

, x
2

, x
3

, . . . des
ribing elements of the domain D

◮
the equality =

◮
the relations and fun
tions given in the stru
ture S

◮
the 
onne
tives ∨,∧, =⇒ , ⇐⇒ ,¬

◮
the quanti�ers ∀,∃ on variables.



Presburger arithmeti
 〈N,+〉

x ≤ y is de�nable by (∃z) (x + z = y). Not true in 〈Z,+〉.
x = y is de�nable by x ≤ y ∧ y ≤ x . Not true in 〈Z,+〉.
x = 0 is de�nable by x + x = x . OK in 〈Z,+〉.
x = 1 is de�nable by (∀y) (y = 0 ∨ x ≤ y). Not true in 〈Z,+〉.
Indu
tively, x = 
 is de�nable for every 
 ∈ N.

The sets aN+b are de�nable: aN+b = {x : (∃y) (x = ay + b)}
where ay stands for y + y + · · · y (a times).

In fa
t, a subset X ⊆ N is de�nable in 〈N,+〉 i� it is a �nite union

of arithmeti
 progressions, or equivalently, ultimately periodi
.

A subset X ⊆ N
d

is de�nable in 〈N,+〉 i� it is semi-linear.



b-de�nable sets

A set X ⊆ N
d

is b-de�nable if it is de�nable in the stru
ture

〈N,+,V
b

〉, where
◮ +(x , y , z) is the ternary relation de�ned by x + y = z ,

◮
V

b

(x) is the unary fun
tion de�ned as the largest power of b

dividing x if x ≥ 1 and V

b

(0) = 1.

For example, the set X = {x ∈ N : x is a power of b} is de�nable

by V

b

(x) = x .

It 
an be shown that the stru
tures 〈N,+,V
b

〉 and 〈N,+,P
b

〉 are
not equivalent, where P

b

(x) is 1 if x is a power of b and 0

otherwise.



Bü
hi-Bruyère's theorem

Theorem (Bü
hi 1960, Bruyère 1985)

Let b ≥ 2 be an integer. A subset X of N
d

is b-re
ognizable i� it is

b-de�nable. Moreover, both dire
tions are e�e
tive.

Sket
h of the proof.

◮
From an automaton a

epting rep

b

(X ), 
onstru
t a �rst-order

formula ϕ of the stru
ture 〈N,+,V
b

〉 de�ning X , that is, su
h

that ϕ(x
1

, . . . , x
d

) is true i� (x
1

, . . . , x
d

) ∈ X .

◮
Conversely, given a �rst-order formula ϕ of the stru
ture

〈N,+,V
b

〉 de�ning X , build an automaton a

epting the

language rep

b

(X ).



Bü
hi-Bruyère's theorem

Theorem (Bü
hi 1960, Bruyère 1985)

Let b ≥ 2 be an integer. A subset X of N
d

is b-re
ognizable i� it is

b-de�nable. Moreover, both dire
tions are e�e
tive.

Sket
h of the proof.

◮
From an automaton a

epting rep

b

(X ), 
onstru
t a �rst-order

formula ϕ of the stru
ture 〈N,+,V
b

〉 de�ning X , that is, su
h

that ϕ(x
1

, . . . , x
d

) is true i� (x
1

, . . . , x
d

) ∈ X .

◮
Conversely, given a �rst-order formula ϕ of the stru
ture

〈N,+,V
b

〉 de�ning X , build an automaton a

epting the

language rep

b

(X ).

Proof of the se
ond part on the board...



Corollary: The �rst order theory of 〈N,+,V
b

〉 is de
idable

We have to show that, given any 
losed �rst-order formula of

〈N,+,V
b

〉, we 
an de
ide whether it is true or false in N.

Sin
e there is no 
onstant in the stru
ture, a 
losed formula of

〈N,+,V
b

〉 is ne
essarily of the form ∃xϕ(x) or ∀xϕ(x).

The set

Xϕ = {x ∈ N : 〈N,+,V
b

〉 � ϕ(x)}
is b-de�nable, so it is b-re
ognizable by Bü
hi-Bruyère's theorem.

This means that we 
an e�e
tively 
onstru
t a �nite automaton

a

epting rep

b

(Xϕ).



The 
losed formula ∃xϕ(x) is true if rep

b

(Xϕ) is nonempty, and

false otherwise.

As the emptiness of the language a

epted by a �nite automaton is

de
idable, we 
an de
ide if ∃xϕ(x) is true.

The 
ase ∀xϕ(x) redu
es to the previous one sin
e ∀xϕ(x) is
logi
ally equivalent to ¬∃x¬ϕ(x). We 
an again 
onstru
t a �nite

automaton a

epting the base-b representations of

X¬ϕ = {x ∈ N : 〈N,+,V
b

〉 6� ϕ(x)}.

The language it a

epts is empty i� the formula ∀xϕ(x) is true.



Appli
ations to de
idability questions for automati


sequen
es

Corollary

If we 
an express a property P(n) of an integer n using quanti�ers,

logi
al operations, the operations of addition, subtra
tion, and


omparison of integers or elements of a b-automati
 sequen
e x,

then ∃nP(n), ∃∞nP(n) and ∀nP(n) are de
idable.

We just have to 
onvin
e ourselves that those properties P 
an all

be expressed by a �rst-order formula of 〈N,+,V
b

〉.



In parti
ular, what about the property x [i] = x [j]?

If x is b-automati
 then, for all letters a o

urring in x , the subsets

x

−1(a) of N are b-re
ognizable.

Hen
e they are de�nable by some �rst-order formulae ψ
a

of

〈N,+,V
b

〉 (by Bü
hi-Bruyère theorem): ψ
a

(n) is true i� x [n] = a.

Therefore, we 
an express x [i ] = x [j ] by the �rst-order formula

ϕ(i , j) of 〈N,+,V
b

〉:

ϕ(i , j) ≡
∨

a

(ψ
a

(i) ∧ ψ
a

(j)).



In parti
ular, what about the property x [i] = x [j]?

In pra
ti
e, given a DFAO M 
omputing x , we 
an dire
tly


ompute a �nite automaton re
ognizing the pairs (i , j) ∈ N
2

su
h

that x [i ] = x [j ].

We simply do the produ
t of automata M ×M, simulate i on the

�rst 
omponent and j on the se
ond 
omponent, and we a

ept if

the outputs of M after reading rep

b

(i) and rep

b

(j) are the same,

and reje
t otherwise.



Appli
ations

Consider the property of having an overlap.

A sequen
e x = x [0]x [1] . . . has an overlap beginning at position i

i� (∃ℓ ≥ 1) (∀j ≤ ℓ) x [i + j ] = x [i + ℓ+ j ].

Now suppose that x is b-automati
.

Given a DFAO M

1

generating x , we �rst 
reate an NFA M

2

that on

input (i , ℓ) a

epts if (∃j ≤ ℓ) x [i + j ] 6= x [i + j + ℓ].

To do this, M

2

guesses the base-b representation of j ,

digit-by-digit, veri�es that j ≤ ℓ, 
omputes i + j and i + j + ℓ on

the �y, and a

epts if x [i + j ] 6= x [i + j + ℓ].



We now 
onvert M

2

to a DFA M

3

using the subset 
onstru
tion,

and inverse the �nal status of ea
h state, obtaining a DFA M

3

whi
h a

epts those pairs (i , ℓ) su
h that

(∀j ≤ ℓ) x [i + j ] = x [i + j + ℓ].

Now we 
reate an NFA M

4

that on input i guesses ℓ ≥ 1 and

a

epts if M

3

a

epts (i , ℓ).

As we 
an de
ide if M

4

a

epts anything, we have obtained that

Proposition

It is de
idable if a b-automati
 sequen
e has an overlap.



Many de
idability results for automati
 sequen
es

◮
It is de
idable whether a b-automati
 sequen
e has k-powers

(for a �xed k).

◮
It is de
idable whether a b-automati
 sequen
e is ultimately

periodi
.

◮
Given two b-automati
 sequen
es x and y , it is de
idable

whether Fa
(x) ⊆ Fa
(y).

◮
. . .



What about de
iding whether a b-automati
 sequen
e is

Toeplitz (see Samuel Petite's le
ture)?

The predi
ate

∀n ∃p ≥ 1 ∀ℓ x [n] = x [n + ℓp]

is not a �rst order formula in 〈N,+,V
b

〉. Why? Is this property

b-de�nable? What about the 
ase where the periods p are

restri
ted to powers of the base b?



A negative result by S
hae�er

If x is an arbitrary b-automati
 sequen
e, then the predi
ate

“x [i , i + 2n − 1] is an abelian square�

is not expressible in the logi
al theory 〈N,+,V
b

〉.



Complexity issues

This method for de
iding �rst-order expressible properties of

b-automati
 sequen
es is very bad in terms of 
omplexity.

In the worst 
ase, we have a tower of exponentials:

2

2

·

·

·

2

n

where n is the number of states of the given DFAO and the height

of the tower is the number of alternating quanti�ers if the

�rst-order predi
ate.

This pro
edure was implemented by Go
, Henshall, Mousavi, and

Shallit. In pra
ti
e, they were able to run their programs in order to

prove (and reprove) many results about k-automati
 sequen
es, in

a purely me
hani
al way.



Part 2

Enumeration: 
ounting �rst-order properties of b-automati


sequen
es is b-regular

On the bla
kboard...



Part 3

Logi
 and other numeration systems



Positional numeration systems

Let U = (U
i

)
i≥0

= (1, 2, 3, 5, 8, . . .) be a base sequen
e, that is, an

in
reasing sequen
e of positive integers satisfying:

U

0

= 1 and C

U

= sup

i≥0

U

i+1

U

i

< +∞.

A natural number n is represented by the �nite word

rep

U

(n) = 
ℓ · · · 
1
0 over the alphabet A

U

= {0, 1, . . . , ⌈C
U

⌉ − 1}
obtained from the greedy algorithm:

n =
ℓ

∑

i=0




i

U

i

.

The set of all possible representations is denoted by

L
U

= {rep
U

(n) : n ≥ 0}.

In this 
ase, we talk about U-re
ognizable sets of integers.



A logi
al framework for positional numeration systems

Two problems:

◮
In general, N is not U-re
ognizable.

◮
The addition is not re
ognized by �nite automaton.



Pisot systems

A Pisot number is an algebrai
 integer > 1 su
h that all of its

Galois 
onjugates have absolute value < 1.

Working Hypothesis : U sati�es a linear re
urren
e whose


hara
teristi
 polynomial is the minimal polynomial of a Pisot

number.

For su
h systems, Frougny showed that N and the addition are

re
ognizable by �nite automata.



A logi
al framework for Pisot systems

U-de�nable sets are subsets of N
d

that are de�nable in the logi
al

stru
ture 〈N,+,V
U

〉, where, for n ≥ 1, V

U

(n) denotes the smallest

U

i

o

urring in rep

U

(n) with a nonzero 
oe�
ient and V

U

(0) = 1.

Theorem (Bruyère-Hansel 1997)

Under WH, the U-re
ognizable sets of integers 
oin
ide with the

U-de�nable sets of integers.



Corollary: The �rst order theory of 〈N,+,V
U

〉 is de
idable

This result implies that there exist algorithms to de
ide U-de�nable

properties for U-automati
 sequen
es.

As an appli
ation, one 
an prove (and reprove, or verify) many

results about the Fibona

i in�nite word

f = 01001010010010100101001001010010 · · ·

(whi
h is the �xed point of 0 7→ 01, 1 7→ 0).

0 1

0

1

0



Con
rete appli
ations (among many others)

In a purely me
hani
al way, Mousavi, S
hae�er and Shallit show:

◮
f is not ultimately periodi
.

◮
f 
ontains no fourth powers.

◮
Chara
terizations of squares, 
ubes, antisquares, palindromes,

antipalindromes of f.

◮
f is mirror-invariant.

◮
Fa
tors of f: least periods of fa
tors, unbordered fa
tors,

Lyndon fa
tors, spe
ial fa
tors . . .

◮
f is linearly re
urrent.

◮
Computation of the 
riti
al exponant and i
e.

◮
The lexi
ographi
ally least element in S(f) is 0f.

◮
. . .



Representing real numbers

In general real numbers are represented by in�nite words.

In this 
ontext, we 
onsider Bü
hi automata. An in�nite word is

a

epted when the 
orresponding path goes in�nitely many times

through an a

epting state.

We talk about ω-languages and ω-regular languages.



Regular languages vs ω-regular languages

Regular and ω-regular languages share some important properties:

they both are stable under

◮

omplementation

◮
�nite union

◮
�nite interse
tion

◮
morphi
 image

◮
inverse image under a morphism.

Nevertheless, they di�er by some other aspe
ts. One of them is

determinism.



Deterministi
 Bü
hi automata

As for DFAs, we 
an de�ne deterministi
 Bü
hi automata.

But one has to be 
areful as the family of ω-languages that are

a

epted by deterministi
 Bü
hi automata is stri
tly in
luded in

that of ω-regular languages.

Example

No deterministi
 Bü
hi automaton a

epts the language a

epted

by

a, b

b

b



β-representation of real numbers

Let β > 1 be a real number and let C ⊂ Z be an alphabet. For a

real number x , any in�nite word u = u

k

· · · u
1

u

0

⋆ u−1

u−2

· · · over

C ∪ {⋆} su
h that

valβ(u) :=
∑

−∞<i≤k
u

i

βi = x

is a β-representation of x .

In general, this is not unique.



Example (β = 1+
√
5

2

, the golden ratio)

Consider x =
∑

i≥1

β−2i

.

As we also have x =
∑

i≥3

β−i , the words

u = 0 ⋆ 001111 · · ·

and

v = 0 ⋆ 0101010 · · ·
are both β-representations of x .



β-expansions of real numbers

For x ≥ 0, among all su
h β-representations of x , we distinguish

the β-expansion

dβ(x) = x

k

· · · x
1

x

0

⋆ x−1

x−2

· · ·

whi
h is the in�nite word over Aβ = {0, . . . , ⌈β⌉ − 1} 
ontaining

exa
tly one symbol ⋆ and obtained by the greedy algorithm.

Reals in [0, 1) have a β-expansion of the form 0 ⋆ u with u ∈ A

ω
β .

In parti
ular dβ(0) = 0 ⋆ 0ω.



Parry's 
riterion

Theorem (Parry 1960)

An in�nite word u is su
h that 0 ⋆ u
1

u

2

· · · is the β-expansion of a

real number in [0, 1) i� for all k ≥ 1, u

k

u

k+1

· · · <
lex

d

∗
β (1).

Here d

∗
β (1) denotes the lexi
ographi
ally greatest w ∈ A

ω
β not

ending in 0

ω
su
h that valβ(0 ⋆ w) = 1.



Example (β = 1+
√
5

2

, the Golden ratio)

We have seen that the words u = 0 ⋆ 001111 · · · and

v = 0 ⋆ 0101010 · · · are both β-representations of x =
∑

i≥1

β−2i

.

We have d

∗
β(1) = (10)ω.

Thanks to Parry's theorem, the β-expansions of real numbers in

[0, 1) are of the form 0 ⋆ u, where u ∈ {0, 1}ω does not 
ontain 11

as a fa
tor.

So v is the β-expansion of x .



Representing negative numbers

In order to deal with negative numbers, a denotes the integer −a

for all a ∈ Z. Moreover we write

u v = u v , u ⋆ v = u ⋆ v and u = u.

For x < 0, the β-expansion of x is de�ned as

dβ(x) = dβ(−x).

We let Aβ = {0̄, 1̄, . . . , ⌈β⌉ − 1} and Ãβ = Aβ ∪ Aβ (with 0̄ = 0).



Multidimensional framework

Let β = 1+
√
5

2

.

Consider x = (x
1

, x
2

) = (1+
√
5

4

, 2+
√
5). We have

dβ(x) =
0 0 0 ⋆ 1 0 0 1 0 0 · · ·
1 0 1 ⋆ 0 1 0 1 0 1 · · ·

where the �rst β-expansion is padded with some leading zeroes.

With y = (x
1

, x
2

) = (1+
√
5

4

,−1

2

), we get

dβ(y) =
0 ⋆ 1 0 0 1 0 0 · · ·
0 ⋆ 0 1 0 0 1 0 · · ·



β-re
ognizable subsets of R
d

A set X ⊆ R
d

is β-re
ognizable if dβ(X ) is a

epted by some Bü
hi

automaton.

Theorem

Let X ⊆ R
d

. The following are equivalent:

1. X is β-re
ognizable.

2. 0

∗
dβ(X ) is ω-regular.

3. For some map m : x → N, {0m(x)
dβ(x) : x ∈ X} is ω-regular.



Parry numbers

A Parry number is a real number β > 1 for whi
h d

∗
β(1) is

ultimately periodi
.

Corollary (of Parry's theorem)

If β is a Parry number then dβ([0, 1)
d ) is a

epted by a

deterministi
 Bü
hi automaton.

Example (β = 1+
√
5

2

, the Golden ratio)

The ω-language dβ([0, 1)) is a

epted by

1

0

0



First order theory for mixed real and β-integer variables

A real number x is a β-integer if dβ(x) is of the kind u ⋆ 0ω. The

set of β-integers is denoted by Zβ.

A subset of R
d

is β-de�nable if it is de�nable by a �rst-order

formula of

〈R,+,≤,Zβ,Xβ〉,
where Xβ is the �nite 
olle
tion of binary predi
ates {Xβ,a : a ∈ Ãβ}
de�ned by Xβ,a(x , y) i� y = βi for some i ∈ Z, and

◮
either |x | < y and a = 0,

◮
or |x | ≥ y , i ≤ k and x

i

= a.



0 and 1 are β-de�nable

x = 0 is de�ned by x + x = x .

z = 1 
an be de�ned in 〈R,+,≤,Zβ,Xβ〉 by the formula

z ∈ Zβ ∧
[

(∀x)
((

x ∈ Zβ ∧ x > 0

)

=⇒ x ≥ z

)]



The stru
ture 〈R,+,≤, 1,Xβ〉
The property of being an integer power of β is de�nable in

〈R,+,≤, 1,Xβ〉 by the formula

x is a power of β ⇐⇒ (∃y) (Xβ,1(x , y) ∧ x = y) .

We 
an also de�ne the properties of being a positive or negative

power of β by adding x > 1 or x < 1 respe
tively.

Let b be a power of β. One 
an de�ne the next (or the previous)

power of β as follows:

b

′ = βb ⇐⇒ (b′ is a power of β)

∧ (b′ > b)

∧ (∀
)((
 is a power of β ∧ 
 > b) =⇒ 
 ≥ b

′).

Consequently, any 
onstant (positive or negative) power of β is

de�nable in 〈R,+,≤, 1,Xβ〉.



The two stru
tures 〈R,+,≤, 1,Xβ〉 and 〈R,+,≤,Zβ,Xβ〉
are equivalent.

The set Zβ 
an be de�ned in 〈R,+,≤, 1,Xβ〉 by the formula

z ∈ Zβ ⇔ (∀y)
[

(y is a negative power of β) =⇒ Xβ,0(z , y)
]

.



Multipli
ation (or division) by β is β-de�nable

y = βx ⇔ (∀b)
[

∧

a∈Ãβ

(Xβ,a(x , b) =⇒ Xβ,a(y , βb))
]

.

Note that Xβ,a(x , b) implies that b is an integer power of β.

Consequently, multipli
ation (or division) by a 
onstant power of β

is β-de�nable.



First order theory for mixed real and integer variables

Here we suppose that β = b ∈ N.

Theorem (Boigelot-Rassart-Wolper 1998)

A subset of R
d

is b-re
ognizable i� it is b-de�nable.

As the emptiness of an ω-regular language is de
idable, we obtain

Corollary

The �rst order theory of 〈R,+,≤,Z,X
b

〉 is de
idable.



De
iding topologi
al properties

The following properties of b-re
ognizable subsets X of R
d

are

de
idable:

◮
X has a nonempty interior:

(∃x ∈ X ) (∃ε > 0) (∀y) (|x − y | < ε =⇒ y ∈ X ).

◮
X is open:

(∀x ∈ X ) (∃ε > 0) (∀y) (|x − y | < ε =⇒ y ∈ X ).

◮
X is 
losed: OK as R

d \X is b-re
ognizable.

◮
. . .



A Cobham theorem for real numbers

Theorem (Boigelot-Brusten-Bruyère-Jodogne-Leroux 2001,

2008, 2009)

Let b and b

′
be multipli
atively independent integer bases.

A subset X ⊆ R
d

is simultaneously weakly b-re
ognizable and

b

′
-re
ognizable i� it is de�nable in 〈R,+,≤,Z〉.

For d = 1, this result is equivalent to

Theorem (Adam
zewski-Bell 2011)

Let b, b′ ≥ 2 be multipli
atively independent integers. A 
ompa
t

set X ⊆ [0, 1] is simultaneously b-self-similar and b

′
-self-similar i� it

is a �nite union of 
losed intervals with rational endpoints.



b-self-similarity

Let b ≥ 2 be an integer.

A 
ompa
t set X ⊂ [0, 1]d is b-self-similar if its b-kernel

{

(bkX − a) ∩ [0, 1]d : k ≥ 0, a = (a
1

, . . . , a
d

) ∈ Z
d ,

(∀i) 0 ≤ a

i

< b

k

}

is �nite.



Pas
al's triangle modulo 2 is 2-self-similar.



Menger sponge is 3-self-similar.



Sets of integers de�nable in 〈R,+,≤,Z〉

A rational polyhedron is a region of R
d

delimited by a �nite

number of hyperplanes whose equations have integer 
oe�
ients.

Any �nite union of rational polyhedra is b-self-similar.

As it admits the elimination of quanti�ers, a bounded subset

X ⊆ R
d

is de�nable in 〈R,+,≤,Z〉 is a �nite union of rational

polyhedra.

In parti
ular, for d = 1, a subset X ⊆ [0, 1] is de�nable in

〈R,+,≤,Z〉 i� it is a �nite union of 
losed intervals with rational

endpoints.



Linking b-self-similarity and b-re
ognizability

Theorem (C-Leroy-Rigo 2015)

A subset of [0, 1]d is b-self-similar i� it is weakly b-re
ognizable.

Corollary (simultaneously obtained by Chan-Hare 2014)

Let b, b′ ≥ 2 be two multipli
atively independent integers.

A 
ompa
t set X ⊂ [0, 1]d is simultaneously b-self-similar and

b

′
-self-similar i� it is a �nite union of rational polyhedra.

In fa
t, we proved the above link in the more general 
ase of a real

Pisot base β.



Chara
terizing β-re
ognizable sets using logi


Theorem (C-Leroy-Rigo 2015)

◮
If β is Parry then every β-re
ognizable X ⊆ R

d

is β-de�nable.

◮
If β is Pisot then every β-de�nable X ⊆ R

d

is β-re
ognizable.

Again, the proof of the se
ond item is by indu
tion on the length of

the formula de�ng X .

The indu
tion step follows from the properties of ω-regular

languages: they are stable under 
omplementation, interse
tion,

union, and proje
tion on 
omponents.

What we have to 
he
k that the atomi
 formulas are all

β-re
ognizable.



Lemma 1: If β is Parry then R is β-re
ognizable.

Example (β = 1+
√
5

2

)

The following Bü
hi automaton a

epts the ω-language

0

∗
dβ(x ∈ R : x ≥ 0}.

10

0

10

0

⋆

⋆

0

1

0

To handle negative numbers, we make the union of two su
h

automata.



Lemma 2: If β is Pisot then the addition is β-re
ognizable.

Let C ⊂ Z be �nite. The normalization fun
tion is the fun
tion

νβ,C : C+ ⋆ Cω → Ãβ
+
⋆ Ãβ

ω

that maps any β-representation of a real number x onto dβ(x).

Theorem (Frougny 1992)

Let β be a Pisot number and C ⊂ Z be �nite. The normalization is

realizable by a (non-deterministi
) letter-to-letter transdu
er T :

∀u ∈ C

ω ∃
1

v ∈ Aβ
ω (u, v) ∈ RT . Further, dβ(valβ(0 ⋆ u)) = 0 ⋆ v .

Corollary

If β is Pisot then the addition is β-re
ognizable.



Lemma 3: If β is Parry then {(x , y) ∈ R
2 : x < y} is

β-re
ognizable.

Proof.

It is re
ognized by the interse
tion of the Bü
hi automaton

a

epting dβ(R
2) with

{(a, b) ∈ Ãβ × Ãβ : a < b}

{(a, a) : a ∈ Ãβ ∪ {⋆}} (Ãβ × Ãβ) ∪ {(⋆, ⋆)}



Lemma 4: If β is Parry then Zβ is β-re
ognizable.

Proof.

The Bü
hi automaton re
ognizing Zβ is the interse
tion of the one

re
ognizing R with the one a

epting Ãβ
+
⋆ 0ω.



Lemma 5: If β is Parry then Xβ is β-re
ognizable.

Proof.

For ea
h a ∈ Ãβ, dβ(Xβ,a) is a

epted by the interse
tion of the

Bü
hi automaton a

epting dβ(R
2) with

(a, 1)

(a, 1)

(⋆, ⋆) (⋆, ⋆)

{(a, 0) : a ∈ Ãβ} {(a, 0) : a ∈ Ãβ}

{(a, 0) : a ∈ Ãβ} {(a, 0) : a ∈ Ãβ}



De
idability

As a 
onsequen
e of this and the fa
t that emptiness of an

ω-language is de
idable, we obtain

Corollary

The �rst order theory of 〈R,+,≤,Zβ,Xβ〉 is de
idable.


