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Sets of numbers and their representations

In this course we will be interested in sets of numbers.

In computer science, we are concerned by the question: how do we
have such sets at our disposal?

This is why numeration systems come into play.

The basic consideration is as follows: properties of numbers are
translated into syntactical (or combinatorial) properties of their
representations.



Simple sets of numbers

Are the following sets of naturals simple ?
» X; = {n’: ne N}
» Xp = {n e N: nis prime}
» X3 ={neN: niseven}
Xy ={2": ne N}
» Xs={neN:ImeN,n> + n+1=3m}
» Xe ={neN:ImeN,n> + n+1=3m?}

v

Non-trivial properties of numbers are dependent of the base, or the
chosen numeration system.



Combinatorics on words

Numbers are represented by words.

Usually integers are represented by finite words while real numbers
are represented by infinite words.

This is not true anymore when we consider non-standard
numeration systems. ..

On the other hand, infinite words may also represent sets of
numbers: the characteristic sequence of X C N is a binary infinite
word.

This notion can be extended to subsets of N¢.



Recognizable sets of integers

A subset X of N is recognizable w.r.t. a numeration system if the
language
{rep(n): ne X} C A*

is accepted by a finite automaton.

Multidimensional case:

A subset X of N is recognizable w.r.t. a numeration system if the
language

{(rep(m),...,rep(ng)): (n1,...,nq) € X} C ((AU{#})?)*,

where the padding symbol # is not contained in the numeration
alphabet A, is accepted by a finite automaton.



Products of free monoids

If Ay,..., Ay are finite alphabets then
» For all i, A are free monoids.

» For d > 2, A} x --- x A% is a monoid (for componentwise
concatenation) which is not free:

for d = 2,0ne has (a1, a2) = (a1,¢)(e, a2).

» (Ap X -+ X Ag)* is a free monoid — letters are elements of
Al X oo X Ad-
» (Ap x --- x Ag)* is a submonoid of A7 x --- x A%,



N is a free monoid.

v

» N7 is a monoid which is not free.

v

Question: How to represent subsets of N9?

If X C N9 then {(rep(ny),...,rep(ng)): (n1,...,ng) € X} is
not a language.

v

Example (d=3)

101 17 4 1 0 1 4 1 0 1
1000 | =] 1 0 0 1|=|1 0 0 1
1 # OH# # 1 # # # 1

Depending on the context, we can interpret this word differently.
For example, we can see this word as the binary representation of
the triplet (5,9,1). In the Fibonacci numeration system, it is (4,6,1).



A range of numeration systems

Integer base representations

Let b > 2 be an integer. A natural number n is represented by the
finite word rep,(n) = ¢; -+ - c1 ¢ over the alphabet
Ap =1{0,1,...,b— 1} obtained from the greedy algorithm:

V4
n= Z cib'.
i=0

The greedy algorithm only imposes to have a nonzero leading digit
¢; and the set of all possible representations is

Lo=1{1,...,b—1}0, -, b—1}*U{e).

In this case, we talk about b-recognizable sets of NY.



Alternative definitions of b-recognizable sets

There exist several equivalent definitions of b-recognizable sets of
integers using

> logic

» uniform morphisms

v

finiteness of the b-kernel

v

algebraic formal series

v

recognizable/rational formal series

See the survey of Bruyére-Hansel-Michaux-Villemaire.



Unary representations

A natural number n is represented by rep;(n) = a”, where a is any
letter. The set of all possible representations is £1 = a*.

In this case, we talk about 1-recognizable sets of N9,

In dimension 1, they correspond exactly to ultimately periodic sets
(easy to see).

In the multidimensional case, it is more complicated to capture the
essence of 1-recognizable sets.



Fibonacci representations

Let F = (Fi)i>o = (1,2,3,5,8,...) be the sequence obtained from
the rules:

Fo=1, Ff =2and Fj;, = Fjy1 + Fj for i > 0.

A natural number n is represented by the finite word
repe(n) = ¢;- -+ cicp over the alphabet Ag = {0, 1} obtained from
the greedy algorithm:

¢
n= Z GF;.
i=0
The greedy algorithm imposes, in addition to having a nonzero

leading digit ¢y, that the valid representations do not contain two
consecutive digits 1. The set of all possible representations is

Lr=1{0,01}* U{c}.



Positional representations

Let U = (Ui)i>0o = (1,2,3,5,8,...) be a base sequence, that is, an
increasing sequence of positive integers satisfying:

U.
Up=1and Cy =sup i+l
i>0 Ui

< +00.

A natural number n is represented by the finite word
repy(n) = ¢+ - c1cp over the alphabet Ay = {0,1,...,[Cy] — 1}
obtained from the greedy algorithm:

In this case, we talk about U-recognizable sets of integers.



The set of all possible representations is denoted by
Ly = {repy(n): n € N}.

Of course a description of the numeration language Ly highly
depends on the base sequence U.

Given such a system U, other choices of representations could be
made: lazy algorithm, or even, considering all possible
representations of a given integer.



Part 1

First order theory in base b and automata



b-recognizable sets of integers

Fix an integer b > 2.
We let rep,(ny,...,ng) = (repp(n), ..., repy(ng))”.
A set X C N9 is b-recognizable if the language
repp(X) = {repp(n1,...,ng): (m,...,ng) € X}
is regular.

For d = 1, this is equivalent to say that its characteristic sequence
xx € {0,1}" is b-automatic: there exists a DFAO that on input
repp(n) ouputs 1 if n € X, and outputs 0 otherwise.



Example
The DFAO

generates the sequence
011010111---

when reading 2-representations of integers, which corresponds to
the subset of integers

{1,2,4,6,7,8,...}.



Cobham-Semenov theorem

Semi-linear sets of N are finite unions of sets of the form
po+piN+---+p N

where po, p1,...,pe € N9.

Theorem (Cobham 1969, Semenov 1977)

Let b and b’ be multiplicatively independent bases. If a subset of
N js simultaneously b-recognizable and b'-recognizable, then it is
semi-linear.
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Theorem (Cobham 1969, Semenov 1977)

Let b and b’ be multiplicatively independent bases. If a subset of
N js simultaneously b-recognizable and b'-recognizable, then it is
semi-linear.

As linear sets are b-recognizable for all b > 2, we obtain that a subset
of N? is b-recognizable for all b > 2 iff it is semi-linear.

NB: We can't replace b > 2 by b > 1!

The linear set X = {(n,2n): n € N} = (1,2) N is not 1-recognizable
since the language

rep; (X) = {(#"a", 32"): ne N} ={(#,a)"(a,a)": ne N}

is not regular (apply the pumping lemma).



Characterizing b-recognizable sets with logic

Theorem (Biichi 1960, Bruyére 1985)

Let b > 2 be an integer. A subset X of N9 is b-recognizable iff it is
b-definable.



Definable sets

Let S be a logical structure whose domain is D and let n > 1. A
set X C D" is definable in S if there exists a first-order formula
o(x1,...,xn) of S, so that, for all (di,...,d,) € D", ¢(d1,...,dn)
is true iff (di,...,dp) € X:

X:{(dl,...,dn)EDnZSF:go(dl,...,dn)}.

A first-order formula is defined recursively from

» variables x1, x2, x3, . .. describing elements of the domain D
» the equality =
» the relations and functions given in the structure S

v

the connectives V,\, — , <,

v

the quantifiers V,3 on variables.



Presburger arithmetic (N, +)

x < y is definable by (3z) (x + z = y). Not true in (Z,+).

x =y is definable by x < y Ay < x. Not true in (Z,+).

x = 0 is definable by x + x = x. OK in (Z,+).

x = 1 is definable by (Vy) (y =0V x < y). Not true in (Z,+).
Inductively, x = c is definable for every ¢ € N.

The sets aN +b are definable: aN+b = {x: (Jy) (x =ay + b)}
where ay stands for y + y + - - - y (a times).

In fact, a subset X C N is definable in (N, +) iff it is a finite union
of arithmetic progressions, or equivalently, ultimately periodic.

A subset X C N9 is definable in (N, +) iff it is semi-linear.



b-definable sets

A set X C N9 is b-definable if it is definable in the structure
(N, +, V), where
» +(x,y,z) is the ternary relation defined by x +y = z,

» Vp(x) is the unary function defined as the largest power of b
dividing x if x > 1 and V,(0) = 1.

For example, the set X = {x € N: x is a power of b} is definable
by Vp(x) = x.

It can be shown that the structures (N, +, V},) and (N, +, Pp,) are
not equivalent, where Pp(x) is 1 if x is a power of b and 0
otherwise.



Biichi-Bruyére's theorem

Theorem (Biichi 1960, Bruyére 1985)

Let b > 2 be an integer. A subset X of N9 is b-recognizable iff it is
b-definable. Moreover, both directions are effective.

Sketch of the proof.

» From an automaton accepting rep,(X), construct a first-order
formula ¢ of the structure (N, +, V}) defining X, that is, such
that ¢(x1,...,xq) is true iff (x1,...,x4) € X.

» Conversely, given a first-order formula ¢ of the structure
(N, 4, V) defining X, build an automaton accepting the
language rep,(X).



Biichi-Bruyére's theorem

Theorem (Biichi 1960, Bruyére 1985)

Let b > 2 be an integer. A subset X of N9 is b-recognizable iff it is
b-definable. Moreover, both directions are effective.

Sketch of the proof.

» From an automaton accepting rep,(X), construct a first-order
formula ¢ of the structure (N, +, V}) defining X, that is, such
that ¢(x1,...,xq) is true iff (x1,...,x4) € X.

» Conversely, given a first-order formula ¢ of the structure
(N, 4, V) defining X, build an automaton accepting the
language rep,(X).

Proof of the second part on the board...



Corollary: The first order theory of (N, +, V},) is decidable

We have to show that, given any closed first-order formula of
(N, 4+, V), we can decide whether it is true or false in N.

Since there is no constant in the structure, a closed formula of
(N, +, Vp) is necessarily of the form Ixp(x) or Vxp(x).

The set
Xo = {x € N: (N, +, V}) F o(x)}

is b-definable, so it is b-recognizable by Biichi-Bruyére's theorem.
This means that we can effectively construct a finite automaton
accepting rep,(X.,).



The closed formula Ix¢(x) is true if rep,(X,) is nonempty, and
false otherwise.

As the emptiness of the language accepted by a finite automaton is
decidable, we can decide if Ixp(x) is true.

The case Vxy(x) reduces to the previous one since Vxo(x) is
logically equivalent to —3x—¢p(x). We can again construct a finite
automaton accepting the base-b representations of

Xop = {x € N: (N, +, V) ¥ p(x) }.

The language it accepts is empty iff the formula Vxp(x) is true.



Applications to decidability questions for automatic
sequences

Corollary
If we can express a property P(n) of an integer n using quantifiers,
logical operations, the operations of addition, subtraction, and

comparison of integers or elements of a b-automatic sequence x,
then 3nP(n), 3°°nP(n) and VnP(n) are decidable.

We just have to convince ourselves that those properties P can all
be expressed by a first-order formula of (N, +, V},).



In particular, what about the property x[i] = x[/]?

If x is b-automatic then, for all letters a occurring in x, the subsets
x~1(a) of N are b-recognizable.

Hence they are definable by some first-order formulae v, of
(N, +, V) (by Biichi-Bruyére theorem): 1,(n) is true iff x[n] = a.

Therefore, we can express x[i] = x[j] by the first-order formula
90(1’./) of <N7 +, Vb>:

o(i,j) = \/ (¥a(i) A va()))-

a



In particular, what about the property x[i] = x[/]?

In practice, given a DFAO M computing x, we can directly
compute a finite automaton recognizing the pairs (i,j) € N® such
that x[i] = x[j].

We simply do the product of automata M x M, simulate j on the
first component and j on the second component, and we accept if
the outputs of M after reading rep,(i) and rep,(j) are the same,
and reject otherwise.



Applications

Consider the property of having an overlap.

A sequence x = x[0]x[1]... has an overlap beginning at position i
iff (30> 1) (V) < 0) x[i +J] = x[i + £ +]].

Now suppose that x is b-automatic.

Given a DFAO M; generating x, we first create an NFA M, that on
input (i, ¢) accepts if (3j < ) x[i +j] # x[i +Jj + 4.

To do this, M, guesses the base-b representation of J,
digit-by-digit, verifies that j < ¢, computes i +j and i+ j + £ on
the fly, and accepts if x[i +j] # x[i +j + £].



We now convert M, to a DFA Mj3 using the subset construction,
and inverse the final status of each state, obtaining a DFA M3
which accepts those pairs (i, ¢) such that

(V<O x[i+j]=x[i+j+1.

Now we create an NFA M, that on input / guesses £ > 1 and
accepts if M3 accepts (i, ¢).
As we can decide if M, accepts anything, we have obtained that

Proposition
It is decidable if a b-automatic sequence has an overlap.



Many decidability results for automatic sequences

v

It is decidable whether a b-automatic sequence has k-powers
(for a fixed k).

It is decidable whether a b-automatic sequence is ultimately
periodic.

v

Given two b-automatic sequences x and y, it is decidable
whether Fac(x) C Fac(y).

v



What about deciding whether a b-automatic sequence is
Toeplitz (see Samuel Petite's lecture)?

The predicate
Vn 3p > 1 V¢ x[n] = x[n + £p]

is not a first order formula in (N, +, V},). Why? Is this property
b-definable? What about the case where the periods p are
restricted to powers of the base b?



A negative result by Schaeffer

If x is an arbitrary b-automatic sequence, then the predicate
“x[i,i +2n — 1] is an abelian square”

is not expressible in the logical theory (N, +, V},).



Complexity issues

This method for deciding first-order expressible properties of
b-automatic sequences is very bad in terms of complexity.

In the worst case, we have a tower of exponentials:

2on

22

where n is the number of states of the given DFAO and the height
of the tower is the number of alternating quantifiers if the
first-order predicate.

This procedure was implemented by Goc, Henshall, Mousavi, and
Shallit. In practice, they were able to run their programs in order to
prove (and reprove) many results about k-automatic sequences, in
a purely mechanical way.



Part 2

Enumeration: counting first-order properties of b-automatic
sequences is b-regular

On the blackboard...



Part 3

Logic and other numeration systems



Positional numeration systems

Let U = (Uj)i>0o = (1,2,3,5,8,...) be a base sequence, that is, an
increasing sequence of positive integers satisfying:

U.
Up=1and Cy =sup i+l
i~ Ui

< +00.

A natural number n is represented by the finite word
repy(n) = ¢+ - - cicp over the alphabet Ay = {0,1,...,[Cy] — 1}
obtained from the greedy algorithm:

The set of all possible representations is denoted by
Ly = {repy(n): n>0}.

In this case, we talk about U-recognizable sets of integers.



A logical framework for positional numeration systems

Two problems:
> In general, N is not U-recognizable.

» The addition is not recognized by finite automaton.



Pisot systems

A Pisot number is an algebraic integer > 1 such that all of its
Galois conjugates have absolute value < 1.

Working Hypothesis : U satifies a linear recurrence whose
characteristic polynomial is the minimal polynomial of a Pisot
number.

For such systems, Frougny showed that N and the addition are
recognizable by finite automata.



A logical framework for Pisot systems

U-definable sets are subsets of N that are definable in the logical
structure (N, +, Vi), where, for n > 1, Vy(n) denotes the smallest
Ui occurring in repy(n) with a nonzero coefficient and Vy(0) = 1.

Theorem (Bruyére-Hansel 1997)

Under WH, the U-recognizable sets of integers coincide with the
U-definable sets of integers.



Corollary: The first order theory of (N, +, Vi) is decidable

This result implies that there exist algorithms to decide U-definable
properties for U-automatic sequences.

As an application, one can prove (and reprove, or verify) many
results about the Fibonacci infinite word

f =01001010010010100101001001010010- - -

(which is the fixed point of 0 — 01, 1+ 0).




Concrete applications (among many others)

In a purely mechanical way, Mousavi, Schaeffer and Shallit show:
» f is not ultimately periodic.

» f contains no fourth powers.

v

Characterizations of squares, cubes, antisquares, palindromes,
antipalindromes of f.

f is mirror-invariant.

v

v

Factors of f: least periods of factors, unbordered factors,
Lyndon factors, special factors ...

v

f is linearly recurrent.

» Computation of the critical exponant and ice.

v

The lexicographically least element in S(f) is Of.



Representing real numbers

In general real numbers are represented by infinite words.

In this context, we consider Biichi automata. An infinite word is
accepted when the corresponding path goes infinitely many times
through an accepting state.

We talk about w-languages and w-regular languages.



Regular languages vs w-regular languages

Regular and w-regular languages share some important properties:
they both are stable under

» complementation
» finite union

» finite intersection
» morphic image

> inverse image under a morphism.

Nevertheless, they differ by some other aspects. One of them is
determinism.



Deterministic Blichi automata
As for DFAs, we can define deterministic Buichi automata.

But one has to be careful as the family of w-languages that are
accepted by deterministic Biichi automata is strictly included in
that of w-regular languages.

Example

No deterministic Biichi automaton accepts the language accepted
by



[-representation of real numbers

Let 5 > 1 be a real number and let C C Z be an alphabet. For a
real number x, any infinite word u = uy -+ - uyug* u_1u_»--- over

C U {x} such that

valg(u) := Z ui B =x

—oo<i<k

is a J-representation of x.

In general, this is not unique.



Example (8 = 1+\f , the golden ratio)

Consider x = Zﬁ_zi.
i>1
As we also have x = Zﬂ_’, the words
i>3

u=0%001111"--

and

v =0%0101010---

are both f-representations of x.



[-expansions of real numbers

For x > 0, among all such 3-representations of x, we distinguish
the [-expansion

which is the infinite word over Ag = {0,...,[f] — 1} containing

exactly one symbol x and obtained by the greedy algorithm.
Reals in [0,1) have a S-expansion of the form 0 x u with u € A%.

In particular dz(0) = 0% 0%,



Parry's criterion

Theorem (Parry 1960)

An infinite word u is such that O x uyu, - - - is the 3-expansion of a

real number in [0,1) iff for all k > 1, ugugsy -+ <jex dﬁ*(l).

Here d (1) denotes the lexicographically greatest w € A not
ending in 0“ such that valg(0 * w) = 1.



Example (8 = % the Golden ratio)

We have seen that the words v = 0% 001111--- and
v = 040101010 - - are both jS-representations of x = >_,-; 572",

We have dj(1) = (10)~.

Thanks to Parry’s theorem, the [-expansions of real numbers in
[0,1) are of the form 0 u, where u € {0,1}* does not contain 11
as a factor.

So v is the (B-expansion of x.



Representing negative numbers

In order to deal with negative numbers, 3@ denotes the integer —a
for all a € Z. Moreover we write

v=uv, uxv=uxv andu=u.

For x < 0, the (3-expansion of x is defined as

ds(x) = o ().

We let Ay = {0,1,...,[8] — 1} and A; = Ag U Az (with 0 = 0).



Multidimensional framework

Let 8 = 14

15

LtVs o 4 V/5). We have

Consider x = (x1, x2) = (=13
0 01 0O
1 01 01

O =

0 0 0 =
B)=1 0 1 &
where the first S-expansion is padded with some leading zeroes

With y = (x1,x) = (1+4‘/§, —%) we get

[l ]
o O

01
00

O =
= O

0 «x
ds(y) = o



3-recognizable subsets of RY

A set X C R? is B-recognizable if dg(X) is accepted by some Biichi
automaton.

Theorem
Let X CRY. The following are equivalent:

1. X is 3-recognizable.
2. 0%dg(X) is w-regular.
3. For some map m: x — N, {0™®)ds(x): x € X} is w-regular.



Parry numbers

A Parry number is a real number 8 > 1 for which dj(1) is
ultimately periodic.

Corollary (of Parry’s theorem)

If B is a Parry number then ds([0,1)?) is accepted by a
deterministic Biichi automaton.

Example (3 = 15 the Golden ratio)
The w-language d3([0,1)) is accepted by

0

—



First order theory for mixed real and (-integer variables

A real number x is a [S-integer if dg(x) is of the kind ux0“. The
set of B-integers is denoted by Zg.

A subset of RY is 3-definable if it is definable by a first-order
formula of
(R, +, <, Zg, X3),

where Xj; is the finite collection of binary predicates {Xj ,: a € Ag}
defined by X3 ,(x,y) iff y = ' for some i € Z, and

> either |x| <y and a=0,

» or [x| >y, i < kand x; = a.



0 and 1 are SB-definable

x = 0 is defined by x + x = x.
z =1 can be defined in (R, +, <,Zg, X3) by the formula

z€Zs N [(VX)((x€Zg A x>0) = x>2)]



The structure (R, +, <, 1, X3)

The property of being an integer power of (3 is definable in
(R,+,<,1, Xg) by the formula

x is a power of § <= (Jy)(Xg1(x,y) N x=y).

We can also define the properties of being a positive or negative
power of 3 by adding x > 1 or x < 1 respectively.

Let b be a power of 3. One can define the next (or the previous)
power of (3 as follows:

b'=pBb <= (b is a power of f3)
A (b > b)
A (Ve)((c is a power of 3 A ¢ > b) = c > b).

Consequently, any constant (positive or negative) power of /3 is
definable in (R, +, <, 1, X3).



The two structures (R, +, <, 1, X3) and (R, +, <, Z3, X3)
are equivalent.

The set Zg can be defined in (R, +, <, 1, X3) by the formula

z €Zg < (Vy)[(y is a negative power of 8) => Xz o(z,y)].



Multiplication (or division) by 3 is S-definable

y =Bx (Vb)[ N\ (Xsalx,b) = Xs.a(y,5b))].

BEA’L-}

Note that Xp ,(x, b) implies that b is an integer power of /.

Consequently, multiplication (or division) by a constant power of 3
is B-definable.



First order theory for mixed real and integer variables

Here we suppose that 5 = b € N.

Theorem (Boigelot-Rassart-Wolper 1998)
A subset of RY is b-recognizable iff it is b-definable.

As the emptiness of an w-regular language is decidable, we obtain

Corollary
The first order theory of (R, 4+, <,7Z, Xp) is decidable.



Deciding topological properties

The following properties of b-recognizable subsets X of RY are
decidable:

» X has a nonempty interior:

(IxeX)(Fe>0) (Vy) (x—yl<e = yeX).
» X is open:

(Vx e X) (Fe>0) (Vy) ([x—yl<e = yeX).

» X is closed: OK as RY\X is b-recognizable.

> ..



A Cobham theorem for real numbers

Theorem (Boigelot-Brusten-Bruyére-Jodogne-Leroux 2001,
2008, 2009)

Let b and b’ be multiplicatively independent integer bases.
A subset X C RY is simultaneously weakly b-recognizable and
b'-recognizable iff it is definable in (R, +, <, 7Z).

For d = 1, this result is equivalent to

Theorem (Adamczewski-Bell 2011)

Let b, b’ > 2 be multiplicatively independent integers. A compact
set X C [0, 1] is simultaneously b-self-similar and b'-self-similar iff it
is a finite union of closed intervals with rational endpoints.



b-self-similarity

Let b > 2 be an integer.
A compact set X C [0,1]9 is b-self-similar if its b-kernel
{(bkx—a)m[o,l]d: k>0, a=(a,...,a4) € Z°
(V)0 < a; < bk}

is finite.



Pascal’s triangle modulo 2 is 2-self-similar.

-
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Menger sponge is 3-self-similar.




Sets of integers definable in (R, +, <, Z)

A rational polyhedron is a region of RY delimited by a finite
number of hyperplanes whose equations have integer coefficients.

Any finite union of rational polyhedra is b-self-similar.

As it admits the elimination of quantifiers, a bounded subset
X C RY is definable in (R, +, <,Z) is a finite union of rational
polyhedra.

In particular, for d =1, a subset X C [0, 1] is definable in
(R, 4, <,Z) iff it is a finite union of closed intervals with rational
endpoints.



Linking b-self-similarity and b-recognizability

Theorem (C-Leroy-Rigo 2015)
A subset of [0,1]9 is b-self-similar iff it is weakly b-recognizable.

Corollary (simultaneously obtained by Chan-Hare 2014)

Let b, b’ > 2 be two multiplicatively independent integers.
A compact set X C [0,1]9 is simultaneously b-self-similar and
b'-self-similar iff it is a finite union of rational polyhedra.

In fact, we proved the above link in the more general case of a real
Pisot base /.



Characterizing [3-recognizable sets using logic

Theorem (C-Leroy-Rigo 2015)

» If 3 is Parry then every B-recognizable X C R? is 3-definable.
» If B is Pisot then every 3-definable X C RY is 3-recognizable.

Again, the proof of the second item is by induction on the length of
the formula defing X.

The induction step follows from the properties of w-regular
languages: they are stable under complementation, intersection,
union, and projection on components.

What we have to check that the atomic formulas are all
[-recognizable.



Lemma 1: If 5 is Parry then R is $-recognizable.

Example (8 = %)

The following Biichi automaton accepts the w-language
0*ds(x € R: x > 0}.

*

To handle negative numbers, we make the union of two such
automata.



Lemma 2: If 5 is Pisot then the addition is S-recognizable.

Let C C Z be finite. The normalization function is the function
Vg.C: CtxC¥— A5+ *Aﬁw

that maps any (-representation of a real number x onto dg(x).

Theorem (Frougny 1992)

Let B be a Pisot number and C C Z be finite. The normalization is
realizable by a (non-deterministic) letter-to-letter transducer T :
Vue C¥ 3yv € Ag” (u,v) € Ry. Further, dg(valg(0x u)) =0x v.

Corollary
If 8 is Pisot then the addition is 3-recognizable.



Lemma 3: If 8 is Parry then {(x,y) € R*: x < y} is
[-recognizable.

Proof.

It is recognized by the intersection of the Biichi automaton
accepting ds(R?) with

{(a.): a € AU {x}) (s x Ag) U{(x#)}

-8 8-

{(a,b)EANBXANBZ a<b}




Lemma 4: If 5 is Parry then Zg is S-recognizable.

Proof.

The Biichi automaton recognizing Zg is the intersection of the one

recognizing R with the one accepting A~5+ * 0%, O



Lemma 5: If 3 is Parry then X3 is 3-recognizable.

Proof. )
For each a € Ag, dg(Xp,,) is accepted by the intersection of the
Biichi automaton accepting ds(IR?) with

{(a,0): a € A} {(a,0): a € Az}

(a,1)

Y

(%, %)
(a,1)

) 4

{(a,0): a € Ag} {(2,0): a € As}



Decidability

As a consequence of this and the fact that emptiness of an
w-language is decidable, we obtain

Corollary
The first order theory of (R,+,<,Zg, Xg) is decidable.



