Automatic sequences, generalised polynomials, and nilmanifolds

> Jakub Byszewski (joint work with Jakub Konieczny)

> > Jagiellonian University, Kraków

Luminy, 29 November 2016

A simple result of Allouche–Shallit

▶ 4 3

Allouche-Shallit

Let α, β be real numbers. Then the sequence

$$f(n) = \lfloor \alpha n + \beta \rfloor$$

is k-regular if and only if $\alpha \in \mathbb{Q}$.

Allouche-Shallit

Let α, β be real numbers. Then the sequence

$$f(n) = \lfloor \alpha n + \beta \rfloor$$

is k-regular if and only if $\alpha \in \mathbb{Q}$.

Sketch of a proof: We prove that the sequence

$$f(n) = \lfloor \alpha n + \beta \rfloor \mod m, \quad m \ge 2,$$

is not k-automatic if $\alpha \in \mathbb{R} \setminus \mathbb{Q}$. The rotation by $2\pi\alpha$ on the unit circle is ergodic if $\alpha \in \mathbb{R} \setminus \mathbb{Q}$. This gives a contradiction.

Generalised Polynomials

Jakub Byszewski Automatic sequences, GPs, and nilmanifolds

Generalised Polynomials

Generalised polynomials are functions given by polynomial-like expressions involving the (possibly iterated) use of the floor function. Example:

$$f(n) = n\lfloor \sqrt{2}n^2 + 3\lfloor \sqrt{3}n \rfloor^2 \rfloor.$$

The class of generalised polynomials is closed under the operations:

- $f(n) \mod 1 = f(n) \lfloor f(n) \rfloor$.
- $\langle (f(n)) \rangle = \lfloor f(n) + 1/2 \rfloor$, the nearest integer to f(n).

Generalised Polynomials

Generalised polynomials are functions given by polynomial-like expressions involving the (possibly iterated) use of the floor function. Example:

$$f(n) = n\lfloor \sqrt{2}n^2 + 3\lfloor \sqrt{3}n \rfloor^2 \rfloor.$$

The class of generalised polynomials is closed under the operations:

- $f(n) \mod 1 = f(n) \lfloor f(n) \rfloor$.
- $\langle (f(n)) \rangle = \lfloor f(n) + 1/2 \rfloor$, the nearest integer to f(n).

We call a set $E \subset \mathbb{N}$ generalised polynomial if its characteristic function is generalised polynomial.

(1) マン・ション・

Distribution of generalised polynomials has been widely studied.

→ Ξ →

Distribution of generalised polynomials has been widely studied.

Weyl Equidistribution Theorem, 1914

If f(x) is a real polynomial with at least one coefficient other than the constant term irrational, then $f(x) \mod 1$ is uniformly distributed in [0, 1].

Distribution of generalised polynomials has been widely studied.

Weyl Equidistribution Theorem, 1914

If f(x) is a real polynomial with at least one coefficient other than the constant term irrational, then $f(x) \mod 1$ is uniformly distributed in [0, 1].

Distribution of generalised polynomials II

Examples (Bergelson-Leibman):

• If α, β are \mathbb{Q} -independent irrational numbers, then

 $(\alpha n \mod 1)(\beta n \mod 1)$

is uniformly distributed on [0,1] with respect to the measure $-\log x$ dx.

Distribution of generalised polynomials II

Examples (Bergelson-Leibman):

• If α, β are \mathbb{Q} -independent irrational numbers, then

$$(\alpha n \mod 1)(\beta n \mod 1)$$

is uniformly distributed on [0,1] with respect to the measure $-\log x \ \mathrm{d} x.$

• The sequence

$$(-\sqrt{2}n\lfloor\sqrt{2}n\rfloor \mod 1)$$

is uniformly distributed on [0, 1] with respect to the measure $\frac{dx}{2\sqrt{2x}}$ on [0, 1/2] and $\frac{dx}{2\sqrt{2x-1}}$ on [1/2, 1].

There are general equidistribution results. However, we are interested in sparse general polynomials that take value 1 on a set of density zero. Not much is known about those. There are general equidistribution results. However, we are interested in sparse general polynomials that take value 1 on a set of density zero. Not much is known about those. There are non-trivial examples:

• The set of Fibonacci numbers is generalised polynomial.

There are general equidistribution results. However, we are interested in sparse general polynomials that take value 1 on a set of density zero. Not much is known about those. There are non-trivial examples:

- The set of Fibonacci numbers is generalised polynomial.
- We conjecture that the set of powers of 2 is not generalised polynomial.

A nilmanifold is a homogenous space $X = G/\Gamma$, where G is a nilpotent Lie group and Γ is a discrete cocompact subgroup, together with the action of G on X via left translations.

A nilmanifold is a homogenous space $X = G/\Gamma$, where G is a nilpotent Lie group and Γ is a discrete cocompact subgroup, together with the action of G on X via left translations. Examples:

•
$$G = \mathbb{R}^d$$
, $\Gamma = \mathbb{Z}^d$, $X = \mathbb{T}^d$, the d-dimensional torus.

A B M A B M

A nilmanifold is a homogenous space $X = G/\Gamma$, where G is a nilpotent Lie group and Γ is a discrete cocompact subgroup, together with the action of G on X via left translations. Examples:

- $\bullet~\mathrm{G}=\mathbb{R}^d,\, \mathsf{\Gamma}=\mathbb{Z}^d,\, \mathrm{X}=\mathbb{T}^d,$ the d-dimensional torus.
- G consists of upper diagonal matrices with unit diagonal,
 Γ consists of matrices in G with integer coefficients.

A nilmanifold is a homogenous space $X = G/\Gamma$, where G is a nilpotent Lie group and Γ is a discrete cocompact subgroup, together with the action of G on X via left translations. Examples:

- $\bullet~\mathrm{G}=\mathbb{R}^d,\, \Gamma=\mathbb{Z}^d,\, \mathrm{X}=\mathbb{T}^d,$ the d-dimensional torus.
- G consists of upper diagonal matrices with unit diagonal,
 Γ consists of matrices in G with integer coefficients.

We consider nilmanifolds as dynamical systems under left translation by $\mathbf{g}\in\mathbf{G}.$

Generalised polynomials are intimately related to dynamics on nilmanifolds.

글 에 에 글 어

э

Generalised polynomials are intimately related to dynamics on nilmanifolds.

Theorem (Bergelson–Leibman, 2006)

If X = G/Γ is a nilmanifold, g ∈ G acts on X by left translations, p: X → ℝ is a piecewise polynomial map, and x ∈ X, then u: Z → ℝ given by u(n) = p(gⁿx) is a bounded generalised polynomial.

Generalised polynomials are intimately related to dynamics on nilmanifolds.

Theorem (Bergelson–Leibman, 2006)

- If X = G/Γ is a nilmanifold, g ∈ G acts on X by left translations, p: X → ℝ is a piecewise polynomial map, and x ∈ X, then u: Z → ℝ given by u(n) = p(gⁿx) is a bounded generalised polynomial.
- ② If u: Z → R is a bounded generalised polynomial, then there exists a nilmanifold X = G/Γ, g ∈ G acting on X by left translations in such a way that the action is ergodic, a piecewise polynomial map p: X → R, and x ∈ X such that u(n) = p(gⁿx), n ∈ Z.

Bergelson-Leibman Theorem: Example

Let G =
$$\left\{ \begin{pmatrix} 1 & * & * & * \\ 0 & 1 & * & * \\ 0 & 0 & 1 & * \\ 0 & 0 & 0 & 1 \end{pmatrix} \right\}$$
 and g = $\begin{pmatrix} 1 & -a & 1 & 0 \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & ab \\ 0 & 0 & 0 & 1 \end{pmatrix}$.

Let $\Gamma = G \cap GL_4(\mathbb{Z})$, $X = G/\Gamma$.

A B F A B F

э

Bergelson-Leibman Theorem: Example

Let G =
$$\left\{ \begin{pmatrix} 1 & * & * & * \\ 0 & 1 & * & * \\ 0 & 0 & 1 & * \\ 0 & 0 & 0 & 1 \end{pmatrix} \right\}$$
 and g = $\begin{pmatrix} 1 & -a & 1 & 0 \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & ab \\ 0 & 0 & 0 & 1 \end{pmatrix}$

Let $\Gamma = G \cap GL_4(\mathbb{Z})$, $X = G/\Gamma$.

Then for a certain choice of a function $\mathbf{p}\colon \mathbf{X}\to\mathbb{R}$ we have

 $p(g^{n}\Gamma) = \langle\!\langle an\lfloor bn \rfloor \rangle\!\rangle.$

In fact, $p(g\Gamma)$ is the (4, 1)-coordinate of the unique representative of $g\Gamma$ with all the coordinates in [0, 1).

Bergelson-Leibman Theorem: Example II

$$\operatorname{Let} \, G = \left\{ \begin{pmatrix} 1 & * & * & \dots & * \\ 0 & 1 & * & \dots & * \\ 0 & 0 & 1 & \dots & * \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \right\} \text{ and } g = \begin{pmatrix} 1 & 1 & 0 & \dots & b_d \\ 0 & 1 & 1 & \dots & b_{d-1} \\ 0 & 0 & 1 & \dots & b_{d-2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$
$$\operatorname{Let} \, \Gamma = G \cap \operatorname{GL}_d(\mathbb{Z}), \, X = G/\Gamma.$$

▶ < E > < E > ...

크

Bergelson-Leibman Theorem: Example II

Let
$$G = \begin{cases} \begin{pmatrix} 1 & * & * & \dots & * \\ 0 & 1 & * & \dots & * \\ 0 & 0 & 1 & \dots & * \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$
 and $g = \begin{pmatrix} 1 & 1 & 0 & \dots & b_d \\ 0 & 1 & 1 & \dots & b_{d-1} \\ 0 & 0 & 1 & \dots & b_{d-2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$.
Let $\Gamma = G \cap \operatorname{GL}_d(\mathbb{Z}), X = G/\Gamma$.

Then the nilsystem (X, m_g) is isomorphic with the skew product map on a torus. For a polynomial $q \in \mathbb{R}[X]$, we can find find a function $p: X \to \mathbb{R}$ so that

$$p(g^{n}\Gamma) = \lfloor q(n) \rfloor.$$

IP sets and IPS sets

→

э

$$FS(n_i) = \{n_{i_1} + \ldots + n_{i_k} \mid i_1 < i_2 < \ldots < i_k\}.$$

for some increasing sequence of natural numbers $(n_i)_{i \in \mathbb{N}}$.

★ E ► < E ►</p>

$$FS(n_i) = \{n_{i_1} + \ldots + n_{i_k} \mid i_1 < i_2 < \ldots < i_k\}.$$

for some increasing sequence of natural numbers $(n_i)_{i \in \mathbb{N}}$. IP sets have an equivalent definition in terms of ultrafilters. One can regard the Čech-Stone compactification $\beta \mathbb{N}$ of \mathbb{N} as the space of ultrafilters. It has a natural structure of a (noncommutative) semigroup.

$$FS(n_i) = \{n_{i_1} + \ldots + n_{i_k} \mid i_1 < i_2 < \ldots < i_k\}.$$

for some increasing sequence of natural numbers $(n_i)_{i \in \mathbb{N}}$.

IP sets have an equivalent definition in terms of ultrafilters. One can regard the Čech-Stone compactification $\beta \mathbb{N}$ of \mathbb{N} as the space of ultrafilters. It has a natural structure of a (noncommutative) semigroup.

A set $E \subset \mathbb{N}$ is an IP set if it belongs to a certain idempotent ultrafilter $p \in \beta \mathbb{N}$, p + p = p.

$$FS(n_i) = \{n_{i_1} + \ldots + n_{i_k} \mid i_1 < i_2 < \ldots < i_k\}.$$

for some increasing sequence of natural numbers $(n_i)_{i \in \mathbb{N}}$.

IP sets have an equivalent definition in terms of ultrafilters. One can regard the Čech-Stone compactification $\beta \mathbb{N}$ of \mathbb{N} as the space of ultrafilters. It has a natural structure of a (noncommutative) semigroup.

A set $E \subset \mathbb{N}$ is an IP set if it belongs to a certain idempotent ultrafilter $p \in \beta \mathbb{N}$, p + p = p.

We consider a more general class of IPS sets. These are "shifted" IP sets. The can be described as sets belonging to ultrafilters of the form r + p with p idempotent.

A B M A B M

Sparse generalised polynomials and IPS sets

Theorem

Suppose that E is a sparse generalised polynomial set. Then E does not contain an IPS set.

Sparse generalised polynomials and IPS sets

Theorem

Suppose that E is a sparse generalised polynomial set. Then E does not contain an IPS set.

Theorem

The sequence of Fibonacci numbers is generalised polynomial.

Theorem

The sequence of Fibonacci numbers is generalised polynomial.

Let $\varphi = \frac{1+\sqrt{5}}{2}$ and let $E = \{n \in \mathbb{N} \mid ||n\varphi|| < 1/2n\} = \{n \in \mathbb{N} \mid \lfloor 2n ||n\varphi|| \rfloor = 0\},\$ where $||n\alpha|| = |\alpha - \langle\!\langle \alpha \rangle\!\rangle|$. Then E coincides with the set of

Fibonacci numbers (up to a finite set).

A B F A B F

Theorem

The sequence of Fibonacci numbers is generalised polynomial.

Let $\varphi = \frac{1+\sqrt{5}}{2}$ and let $E = \{n \in \mathbb{N} \mid ||n\varphi|| < 1/2n\} = \{n \in \mathbb{N} \mid \lfloor 2n ||n\varphi|| \rfloor = 0\},\$ where $||n\alpha|| = |\alpha - \langle\!\langle \alpha \rangle\!\rangle|$. Then E coincides with the set of Fibonacci numbers (up to a finite set).

This can be generalised to sets of the form

 $\mathbf{E} = \{ \langle\!\!\langle \boldsymbol{\beta}^{\mathrm{i}} \rangle\!\!\rangle \mid \mathrm{i} \in \mathbb{N} \},$

where β is a quadratic irrational of norm ±1.

通 と く ヨ と く ヨ と 二 ヨ

Jakub Byszewski Automatic sequences, GPs, and nilmanifolds

A B < A B </p>

Let a, b be integers such that either $(a \ge 0 \text{ and } 0 \le b \le a + 1)$ or $(a \ge 2 \text{ and } b = -1)$. Assume further that there is a unique real root β of the equation

$$\beta^3 = a\beta^2 + b\beta + 1$$

and that $\beta > 1$. Then the set $\{\langle\!\langle \beta^i \rangle\!\rangle \mid i \in \mathbb{N}\}$ is generalised polynomial.

Let a, b be integers such that either $(a \ge 0 \text{ and } 0 \le b \le a + 1)$ or $(a \ge 2 \text{ and } b = -1)$. Assume further that there is a unique real root β of the equation

$$\beta^3 = a\beta^2 + b\beta + 1$$

and that $\beta > 1$. Then the set $\{\langle\!\langle \beta^i \rangle\!\rangle \mid i \in \mathbb{N}\}$ is generalised polynomial.

The reason: the sequence of best approximations of the point $\theta = (\beta^{-1}, \beta^{-2}) \in \mathbb{R}^2$ satisfies the same linear recurrence as β^n .

Let a, b be integers such that either $(a \ge 0 \text{ and } 0 \le b \le a + 1)$ or $(a \ge 2 \text{ and } b = -1)$. Assume further that there is a unique real root β of the equation

$$\beta^3 = a\beta^2 + b\beta + 1$$

and that $\beta > 1$. Then the set $\{\langle\!\langle \beta^i \rangle\!\rangle \mid i \in \mathbb{N}\}$ is generalised polynomial.

The reason: the sequence of best approximations of the point $\theta = (\beta^{-1}, \beta^{-2}) \in \mathbb{R}^2$ satisfies the same linear recurrence as β^n .

Extremely sparse sets

Jakub Byszewski Automatic sequences, GPs, and nilmanifolds

The final result says that any sufficiently sparse set is generalised polynomial.

- ∢ ∃ >

The final result says that any sufficiently sparse set is generalised polynomial.

Theorem

There exists a constant C > 0 such that for any sequence $(n_i)_{i \ge 0}$ such that $n_0 \ge 2$ and $n_{i+1} \ge n_i^C$ for all $i \ge 0$, the set $E = \{n_i \mid i \in \mathbb{N}\}$ is generalised polynomial. The final result says that any sufficiently sparse set is generalised polynomial.

Theorem

There exists a constant C > 0 such that for any sequence $(n_i)_{i \ge 0}$ such that $n_0 \ge 2$ and $n_{i+1} \ge n_i^C$ for all $i \ge 0$, the set $E = \{n_i \mid i \in \mathbb{N}\}$ is generalised polynomial.

For this reason, it seems unlikely that a comprehensive understanding of sparse generalised polynomials is possible.

Automatic sequences

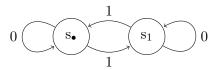
Jakub Byszewski Automatic sequences, GPs, and nilmanifolds

A finite-valued sequence $(a_n)_{n\geq 0}$ is k-automatic if, informally speaking, its values a_n are obtained via a finite procedure from the digits of base k expansion of an integer n. A finite-valued sequence $(a_n)_{n\geq 0}$ is k-automatic if, informally speaking, its values a_n are obtained via a finite procedure from the digits of base k expansion of an integer n.

Example (Thue-Morse): The sequence $(t_n)_{n\geq 0}$ is given by $t_n = 1$ if $s_2(n)$ is odd and $t_n = 0$ if $s_2(n)$ is even, where $s_2(n)$ is the sum of digits in base 2 expansion of n.)

A finite-valued sequence $(a_n)_{n\geq 0}$ is k-automatic if, informally speaking, its values a_n are obtained via a finite procedure from the digits of base k expansion of an integer n.

Example (Thue-Morse): The sequence $(t_n)_{n\geq 0}$ is given by $t_n = 1$ if $s_2(n)$ is odd and $t_n = 0$ if $s_2(n)$ is even, where $s_2(n)$ is the sum of digits in base 2 expansion of n.)



Jakub Byszewski Automatic sequences, GPs, and nilmanifolds

Automatic sequences can be alternatively described as:

 Images of fixed points of constant length substitutions, e.g. 0 → 01, 1 → 10.

Automatic sequences can be alternatively described as:

- Images of fixed points of constant length substitutions, e.g. 0 → 01, 1 → 10.
- Sequences $a = (a_n)_{n \ge 0}$ with finite kernel

 $N(a) = \{(a_{k^m n+l})_{n \ge 0} \mid m \ge 0, 0 \le l < k^m\}.$

Automatic sequences can be alternatively described as:

- Images of fixed points of constant length substitutions, e.g. 0 → 01, 1 → 10.
- Sequences $a = (a_n)_{n \ge 0}$ with finite kernel

$$N(a) = \{(a_{k^m n+l})_{n \ge 0} \mid m \ge 0, 0 \le l < k^m\}.$$

 If a_n ∈ F_p, then (a_n) is p-automatic if and only if the power series ∑_{n≥0} a_nXⁿ is algebraic over F_p(X).

Automatic sequences can be alternatively described as:

- Images of fixed points of constant length substitutions, e.g. 0 → 01, 1 → 10.
- Sequences $a = (a_n)_{n \ge 0}$ with finite kernel

 $N(a) = \{(a_{k^m n+l})_{n \ge 0} \mid m \ge 0, 0 \le l < k^m\}.$

 If a_n ∈ F_p, then (a_n) is p-automatic if and only if the power series ∑_{n≥0} a_nXⁿ is algebraic over F_p(X).

Automatic sequences have been generalised to a class of sequences admitting possibly infinitely many values (the so-called k-regular sequences of Allouche and Shallit).

A B F A B F

Conjecture

Suppose that a sequence is simultaneously automatic and generalised polynomial. Then it is ultimately periodic.

Conjecture

Suppose that a sequence is simultaneously automatic and generalised polynomial. Then it is ultimately periodic.

Theorem

Suppose that a sequence f is automatic and generalised polynomial. Then the sequence is periodic except possibly on a set of (upper Banach) density zero. In fact, we have a stronger bound on the growth of the set of possible exceptions Z:

$$|Z \cap [0, N - 1]| = O((\log N)^k), \quad k \ge 0.$$

Let $k \ge 2$ be an integer and let $(a_n)_n$ be a $\{0, 1\}$ -valued k-automatic sequence. Then one of the following statements holds:

• either the set $\{n \mid a_n = 1\}$ is an IPS set; or

Let $k \ge 2$ be an integer and let $(a_n)_n$ be a $\{0, 1\}$ -valued k-automatic sequence. Then one of the following statements holds:

- either the set $\{n \mid a_n = 1\}$ is an IPS set; or
- 2 the set $\{n \mid a_n = 1\}$ is a finite union of sets of the form

$$E = \left\{ [w_0 u_1^{l_1} w_1 u_2^{l_2} \dots u_r^{l_r} w_r]_k \ \middle| \ l_1, \dots, l_r \in \mathbb{N}_0 \right\}.$$

Main results for automatic generalised polynomials

Theorem

Let $k \ge 2$ be an integer. Then one of the following statements holds:

• either all sequences which are simultaneously k-automatic and generalised polynomial are ultimately periodic; or

Let $k\geq 2$ be an integer. Then one of the following statements holds:

- either all sequences which are simultaneously k-automatic and generalised polynomial are ultimately periodic; or
- **2** the characteristic sequence g_k of powers of k is generalised polynomial.

For which $\lambda > 1$ is the set $E_{\lambda} := \{ \langle\!\langle \lambda^t \rangle\!\rangle \mid t \in \mathbb{N} \}$ generalised polynomial?

A B M A B M

э

For which
$$\lambda > 1$$
 is the set $E_{\lambda} := \{ \langle \! \langle \lambda^t \rangle \! \rangle \mid t \in \mathbb{N} \}$ generalised polynomial?

Question

Let $\lambda > 1$ be a Pisot number. Assume the set $E_{\lambda} := \{ \langle\!\langle \lambda^t \rangle\!\rangle \mid t \in \mathbb{N} \}$ is generalised polynomial. Is it then true that the norm of λ is ± 1 ? Does the converse hold?

Assume that a sequence is both automatic and generalised polynomial. Is it then true that it is ultimately periodic?

(B)

Assume that a sequence is both automatic and generalised polynomial. Is it then true that it is ultimately periodic?

Question

Assume that a sequence is both regular and generalised polynomial. Is it then true that it is ultimately a quasi-polynomial?

- Jakub Byszewski and Jakub Konieczny. Automatic sequences, generalised polynomials and nilmanifolds, https://arxiv.org/pdf/1610.03900.pdf.
- Vitaly Bergelson and Alexander Leibman. Distribution of values of bounded generalized polynomials. Acta Mathematica, 198(2):155–230, 2007.
- P. Hubert and A. Messaoudi. Best simultaneous Diophantine approximations of Pisot numbers and Rauzy fractals. Acta Arith., 124(1):1–15, 2006.

• • = • • = •