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A simple result of Allouche–Shallit

Allouche–Shallit
Let α, β be real numbers. Then the sequence

f(n) = bαn + βc

is k-regular if and only if α ∈ Q.

Sketch of a proof: We prove that the sequence

f(n) = bαn + βc mod m, m ≥ 2,

is not k-automatic if α ∈ R \ Q. The rotation by 2πα on the unit
circle is ergodic if α ∈ R \ Q. This gives a contradiction.
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Generalised Polynomials

Generalised Polynomials

Generalised polynomials are functions given by polynomial-like
expressions involving the (possibly iterated) use of the floor
function. Example:

f(n) = nb
√

2n2 + 3b
√

3nc2c.

The class of generalised polynomials is closed under the
operations:

f(n) mod 1 = f(n) − bf(n)c.

〈〈f(n)〉〉 = bf(n) + 1/2c, the nearest integer to f(n).

We call a set E ⊂ N generalised polynomial if its characteristic
function is generalised polynomial.
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Distribution of generalised polynomials

Distribution of generalised polynomials has been widely
studied.

Weyl Equidistribution Theorem, 1914

If f(x) is a real polynomial with at least one coefficient other
than the constant term irrational, then f(x) mod 1 is uniformly
distributed in [0, 1].

Jakub Byszewski Automatic sequences, GPs, and nilmanifolds



Distribution of generalised polynomials

Distribution of generalised polynomials has been widely
studied.

Weyl Equidistribution Theorem, 1914

If f(x) is a real polynomial with at least one coefficient other
than the constant term irrational, then f(x) mod 1 is uniformly
distributed in [0, 1].

Jakub Byszewski Automatic sequences, GPs, and nilmanifolds



Distribution of generalised polynomials

Distribution of generalised polynomials has been widely
studied.

Weyl Equidistribution Theorem, 1914

If f(x) is a real polynomial with at least one coefficient other
than the constant term irrational, then f(x) mod 1 is uniformly
distributed in [0, 1].

Jakub Byszewski Automatic sequences, GPs, and nilmanifolds



Distribution of generalised polynomials II

Examples (Bergelson-Leibman):

If α, β are Q-independent irrational numbers, then

(αn mod 1)(βn mod 1)

is uniformly distributed on [0, 1] with respect to the
measure − log x dx.

The sequence
(−
√

2nb
√

2nc mod 1)

is uniformly distributed on [0, 1] with respect to the
measure dx

2
√
2x

on [0, 1/2] and dx
2
√
2x−1

on [1/2, 1].
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Distribution of generalised polynomials III

There are general equidistribution results. However, we are
interested in sparse general polynomials that take value 1 on a
set of density zero. Not much is known about those.

There are non-trivial examples:

The set of Fibonacci numbers is generalised polynomial.

We conjecture that the set of powers of 2 is not generalised
polynomial.
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Nilmanifolds

A nilmanifold is a homogenous space X = G/Γ, where G is a
nilpotent Lie group and Γ is a discrete cocompact subgroup,
together with the action of G on X via left translations.

Examples:

G = Rd, Γ = Zd, X = Td, the d-dimensional torus.

G consists of upper diagonal matrices with unit diagonal,
Γ consists of matrices in G with integer coefficients.

We consider nilmanifolds as dynamical systems under left
translation by g ∈ G.
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Bergelson-Leibman Theorem

Generalised polynomials are intimately related to dynamics on
nilmanifolds.

Theorem (Bergelson–Leibman, 2006)
1 If X = G/Γ is a nilmanifold, g ∈ G acts on X by left

translations, p : X→ R is a piecewise polynomial map, and
x ∈ X, then u : Z→ R given by u(n) = p(gnx) is a bounded
generalised polynomial.

2 If u : Z→ R is a bounded generalised polynomial, then
there exists a nilmanifold X = G/Γ, g ∈ G acting on X by
left translations in such a way that the action is ergodic, a
piecewise polynomial map p : X→ R, and x ∈ X such that
u(n) = p(gnx), n ∈ Z.
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Bergelson-Leibman Theorem: Example

Let G =



1 ∗ ∗ ∗

0 1 ∗ ∗

0 0 1 ∗

0 0 0 1


 and g =


1 −a 1 0
0 1 0 b
0 0 1 ab
0 0 0 1

.
Let Γ = G ∩GL4(Z), X = G/Γ.

Then for a certain choice of a function p : X→ R we have

p(gnΓ) = 〈〈anbbnc〉〉.

In fact, p(gΓ) is the (4, 1)-coordinate of the unique
representative of gΓ with all the coordinates in [0, 1).
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Bergelson-Leibman Theorem: Example II

Let G =
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

1 ∗ ∗ . . . ∗

0 1 ∗ . . . ∗

0 0 1 . . . ∗
...

...
...

...
...

0 0 0 0 1




and g =



1 1 0 . . . bd
0 1 1 . . . bd−1
0 0 1 . . . bd−2
...

...
...

...
...

0 0 0 0 1


.

Let Γ = G ∩GLd(Z), X = G/Γ.

Then the nilsystem (X,mg) is isomorphic with the skew product
map on a torus. For a polynomial q ∈ R[X], we can find find a
function p : X→ R so that

p(gnΓ) = bq(n)c.
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IP sets and IPS sets

A set E ⊂ N is called an IP set if it contains a set of the form

FS(ni) =
{
ni1 + . . . + nik

∣∣∣ i1 < i2 < . . . < ik
}
.

for some increasing sequence of natural numbers (ni)i∈N.

IP sets have an equivalent definition in terms of ultrafilters.
One can regard the Čech-Stone compactification βN of N as the
space of ultrafilters. It has a natural structure of a
(noncommutative) semigroup.
A set E ⊂ N is an IP set if it belongs to a certain idempotent
ultrafilter p ∈ βN, p + p = p.

We consider a more general class of IPS sets. These are
”shifted” IP sets. The can be described as sets belonging to
ultrafilters of the form r + p with p idempotent.

Jakub Byszewski Automatic sequences, GPs, and nilmanifolds



IP sets and IPS sets

A set E ⊂ N is called an IP set if it contains a set of the form

FS(ni) =
{
ni1 + . . . + nik

∣∣∣ i1 < i2 < . . . < ik
}
.

for some increasing sequence of natural numbers (ni)i∈N.

IP sets have an equivalent definition in terms of ultrafilters.
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Sparse generalised polynomials and IPS sets

Theorem
Suppose that E is a sparse generalised polynomial set. Then E
does not contain an IPS set.
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Fibonacci numbers

Theorem
The sequence of Fibonacci numbers is generalised polynomial.

Let ϕ = 1+
√
5
2 and let

E = {n ∈ N | ‖nϕ‖ < 1/2n} = {n ∈ N | b2n ‖nϕ‖c = 0} ,

where ‖nα‖ = |α − 〈〈α〉〉|. Then E coincides with the set of
Fibonacci numbers (up to a finite set).

This can be generalised to sets of the form

E = {〈〈βi〉〉 | i ∈ N},

where β is a quadratic irrational of norm ±1.
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Cubic linear recurrence sets

Theorem

Let a, b be integers such that either (a ≥ 0 and 0 ≤ b ≤ a + 1) or
(a ≥ 2 and b = −1). Assume further that there is a unique real
root β of the equation

β3 = aβ2 + bβ + 1

and that β > 1. Then the set {〈〈βi〉〉 | i ∈ N} is generalised
polynomial.

The reason: the sequence of best approximations of the point
θ = (β−1, β−2) ∈ R2 satisfies the same linear recurrence as βn.
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θ = (β−1, β−2) ∈ R2 satisfies the same linear recurrence as βn.
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Extremely sparse sets

The final result says that any sufficiently sparse set is
generalised polynomial.

Theorem

There exists a constant C > 0 such that for any sequence (ni)i≥0
such that n0 ≥ 2 and ni+1 ≥ nCi for all i ≥ 0, the set
E = {ni | i ∈ N} is generalised polynomial.

For this reason, it seems unlikely that a comprehensive
understanding of sparse generalised polynomials is possible.
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Automatic sequences

A finite-valued sequence (an)n≥0 is k-automatic if, informally
speaking, its values an are obtained via a finite procedure from
the digits of base k expansion of an integer n.

Example (Thue-Morse): The sequence (tn)n≥0 is given by tn = 1
if s2(n) is odd and tn = 0 if s2(n) is even, where s2(n) is the sum
of digits in base 2 expansion of n.)

s• s10

1

1

0
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Alternative interpretations of automatic sequences

Automatic sequences can be alternatively described as:

Images of fixed points of constant length substitutions, e.g.
0 7→ 01, 1 7→ 10.

Sequences a = (an)n≥0 with finite kernel

N(a) = {(akmn+l)n≥0 | m ≥ 0, 0 ≤ l < km}.

If an ∈ Fp, then (an) is p-automatic if and only if the power
series

∑
n≥0 anXn is algebraic over Fp(X).

Automatic sequences have been generalised to a class of
sequences admitting possibly infinitely many values (the
so-called k-regular sequences of Allouche and Shallit).
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Can automatic sequences be generalised polynomials?

Conjecture

Suppose that a sequence is simultaneously automatic and
generalised polynomial. Then it is ultimately periodic.

Theorem
Suppose that a sequence f is automatic and generalised
polynomial. Then the sequence is periodic except possibly on a
set of (upper Banach) density zero. In fact, we have a stronger
bound on the growth of the set of possible exceptions Z:

|Z ∩ [0,N − 1]| = O((log N)k), k ≥ 0.
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Main results for automatic generalised polynomials

Theorem

Let k ≥ 2 be an integer and let (an)n be a {0, 1}-valued
k-automatic sequence. Then one of the following statements
holds:
1 either the set {n | an = 1} is an IPS set; or

2 the set {n | an = 1} is a finite union of sets of the form

E =
{
[w0u

l1
1 w1u

l2
2 . . . u

lr
r wr]k

∣∣∣∣ l1, . . . , lr ∈ N0
}
.
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and generalised polynomial are ultimately periodic; or

2 the characteristic sequence gk of powers of k is generalised
polynomial.
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Questions

Question

For which λ > 1 is the set Eλ :=
{
〈〈λt〉〉

∣∣∣ t ∈ N
}

generalised
polynomial?

Question

Let λ > 1 be a Pisot number. Assume the set
Eλ :=

{
〈〈λt〉〉

∣∣∣ t ∈ N
}

is generalised polynomial. Is it then true
that the norm of λ is ±1? Does the converse hold?
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Questions II

Question

Assume that a sequence is both automatic and generalised
polynomial. Is it then true that it is ultimately periodic?

Question

Assume that a sequence is both regular and generalised
polynomial. Is it then true that it is ultimately a
quasi-polynomial?
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