Domino problem and periodicity	Block gluing SFTs on \mathbb{Z}^2	Strongly aperiodic subshifts	Lovász Local Lemma in Symbolic Dynamics
00	00	000	0000000

Lecture 3: Domino problem and (a)periodicity.

CANT 2016, CIRM (Marseille)

Nathalie Aubrun

LIP, ENS de Lyon, CNRS

2nd December 2016

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Domino problem and periodicity	Block gluing SFTs on \mathbb{Z}^2	Strongly aperiodic subshifts	Lovász Local Lemma in Symbolic Dynamic
00	00	000	0000000
Outline of the t	alk.		

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Domino problem and periodicity

- (2) Block gluing SFTs on \mathbb{Z}^2
- Strongly aperiodic subshifts
- 4 Lovász Local Lemma in Symbolic Dynamics

We can define two notions of **periodic** configuration:

• A configuration $x \in A^{\mathbb{Z}^2}$ is weakly periodic if its stabilizer is infinite.

 \Leftrightarrow x admits a non-trivial direction \overrightarrow{u} of periodicity.

A configuration x ∈ A^{Z²} is strongly periodic if its stabilizer is of finite index in Z²: [Z² : Stab(x)] < ∞.</p>

 \Leftrightarrow x admits two non-collinear directions \overrightarrow{u} , \overrightarrow{v} of periodicity.

We can define two notions of **periodic** configuration:

• A configuration $x \in A^{\mathbb{Z}^2}$ is weakly periodic if its stabilizer is infinite.

 \Leftrightarrow x admits a non-trivial direction \overrightarrow{u} of periodicity.

A configuration x ∈ A^{Z²} is strongly periodic if its stabilizer is of finite index in Z²: [Z² : Stab(x)] < ∞.</p>

 \Leftrightarrow x admits two non-collinear directions \overrightarrow{u} , \overrightarrow{v} of periodicity.

Proposition

On $\mathbb{Z}^2,$ if an SFT contains a weakly periodic configuration, then it contains a strongly periodic one.

Proof: on the blackboard.

Domino problem and periodicity on \mathbb{Z}^2 (II)

Wang's conjecture (1961)

If a set of Wang tiles can tile the plane, then they can always be arranged to do so periodically.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Wang's conjecture (1961)

A non-empty SFT contains a periodic configuration.

Domino problem and periodicity on \mathbb{Z}^2 (II)

Wang's conjecture (1961)

A non-empty SFT contains a periodic configuration.

Suppose Wang's conjecture is true. Then you can decide DP !

Semi-algorithm 1:

- gives a finite periodic pattern, if it exists
- loops otherwise

Semi-algorithm 2:

gives an integer n so that there is no [1; n] × [1; n] locally admissible pattern, if it exists

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

loops otherwise

Domino problem and periodicity on \mathbb{Z}^2 (II)

Wang's conjecture (1961)

A non-empty SFT contains a periodic configuration.

Suppose Wang's conjecture is true. Then you can decide DP !

Semi-algorithm 1:

- gives a finite periodic pattern, if it exists
- loops otherwise

Semi-algorithm 2:

- gives an integer n so that there is no [1; n] × [1; n] locally admissible pattern, if it exists
- loops otherwise

Consequence

The undecidability of **DP** implies existence of an aperiodic SFT.

Domino problem and periodicity	Block gluing SFTs on \mathbb{Z}^2	Strongly aperiodic subshifts	Lovász Local Lemma in Symbolic Dynamic
00	00	000	0000000
Outline of the t	alk.		

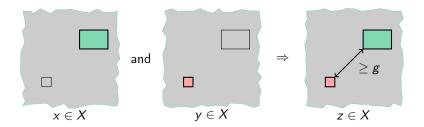
◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

Domino problem and periodicity

- **2** Block gluing SFTs on \mathbb{Z}^2
- Strongly aperiodic subshifts
- 4 Lovász Local Lemma in Symbolic Dynamics

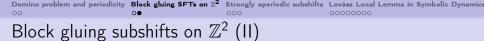
A subshift $X \subset A^{\mathbb{Z}^2}$ is **block-gluing** with gap $g \in \mathbb{N}$ if for any two finite supports $S_1, S_2 \subset \mathbb{Z}^2$ at distance at least g, and for any $x, y \in X$

there exists $z \in X$ s.t. $z_{|S_1} = x_{|S_1}$ and $z_{|S_2} = y_{|S_2}$.



◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

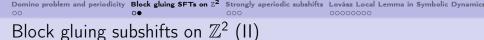
Remark: this is a **uniform** mixing condition.



Proposition (Folklore, written in Pavlov & Schraudner 2015)

A non-empty block-gluing SFT has a periodic configuration.

Proof: on the blackboard.



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proposition (Folklore, written in Pavlov & Schraudner 2015)

A non-empty block-gluing SFT has a periodic configuration.

Proof: on the blackboard.

Consequence

The Domino problem is decidable for block-gluing SFTs.

Domino problem and periodicity Block gluing SFTs on Z² Strongly aperiodic subshifts Lovász Local Lemma in Symbolic Dynamics 00
Block gluing subshifts on Z² (II)

Proposition (Folklore, written in Pavlov & Schraudner 2015)

A non-empty block-gluing SFT has a periodic configuration.

Proof: on the blackboard.

Consequence

The Domino problem is decidable for block-gluing SFTs.

Remark: Actually we prove something stronger: we can decide whether a locally admissible pattern is globally admissible (the language is decidable).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Domino problem and periodicity	Block gluing SFTs on \mathbb{Z}^2	Strongly aperiodic subshifts	Lovász Local Lemma in Symbolic Dynamic
00	00	000	0000000
Outline of the t	alk		

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

1 Domino problem and periodicity

(2) Block gluing SFTs on \mathbb{Z}^2

Strongly aperiodic subshifts

4 Lovász Local Lemma in Symbolic Dynamics

Domino problem and periodicity Block gluing SFTs on Z² Strongly aperiodic subshifts Lovász Local Lemma in Symbolic Dynamics 00
Strongly aperiodic subshifts (I)

A subshift $X \subset A^G$ is **strongly aperiodic** if all its configurations have trivial stabilizer

$$\forall x \in X, \forall g \in G, \ \sigma^g(x) = x \Rightarrow g = 1_G.$$

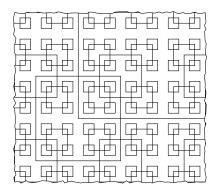
(ロ)、

Domino problem and periodicity Block gluing SFTs on Z² Strongly aperiodic subshifts Lovász Local Lemma in Symbolic Dynamice 00
Strongly aperiodic subshifts (I)

A subshift $X \subset A^G$ is **strongly aperiodic** if all its configurations have trivial stabilizer

$$\forall x \in X, \forall g \in G, \ \sigma^g(x) = x \Rightarrow g = 1_G.$$

Example: Robinson's SFT is strongly aperiodic



Domino problem and periodicity	Block gluing SFTs on \mathbb{Z}^2	Strongly aperiodic subshifts	Lovász Local Lemma in Symbolic Dynamic
00	00	000	0000000
Strongly aperio	dic subshifts	(11)	

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Question

Which f.g. groups admit strongly aperiodic SFTs?

Domino problem and periodicity	Block gluing SFTs on \mathbb{Z}^2	Strongly aperiodic subshifts	Lovász Local Lemma in Symbolic Dynamic
00	00	000	0000000
Strongly aperio	dic subshifts	(11)	

Which f.g. groups admit strongly aperiodic SFTs?

▶ If G is r.p. with a strongly aperiodic SFT, then G has decidable WP (Jeandel, 2015).

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Domino problem and periodicity	Block gluing SFTs on Z ² 00	Strongly aperiodic subshifts ○●○	Lovász Local Lemma in Symbolic Dynamic
Strongly aperio	dic subshifts	(11)	

Which f.g. groups admit strongly aperiodic SFTs?

▶ If G is r.p. with a strongly aperiodic SFT, then G has decidable WP(Jeandel, 2015).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

▶ If G has at least two ends, then it has no strongly aperiodic SFTs (Cohen, 2015)

Domino problem and periodicity	Block gluing SFTs on Z ² 00	Strongly aperiodic subshifts ○●○	Lovász Local Lemma in Symbolic Dynamic
Strongly aperio	dic subshifts	(11)	

Which f.g. groups admit strongly aperiodic SFTs?

▶ If G is r.p. with a strongly aperiodic SFT, then G has decidable **WP** (Jeandel, 2015).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- ▶ If G has at least two ends, then it has no strongly aperiodic SFTs (Cohen, 2015)
- ▶ Polycyclic groups with $h(G) \ge 2$ (Jeandel, 2015).

Domino problem and periodicity	Block gluing SFTs on \mathbb{Z}^2 00	Strongly aperiodic subshifts ○●○	Lovász Local Lemma in Symbolic Dynamic
Strongly aperio	dic subshifts	(11)	

Which f.g. groups admit strongly aperiodic SFTs?

- ▶ If G is r.p. with a strongly aperiodic SFT, then G has decidable **WP** (Jeandel, 2015).
- ▶ If *G* has at least two ends, then it has no strongly aperiodic SFTs (Cohen, 2015)
- ▶ Polycyclic groups with $h(G) \ge 2$ (Jeandel, 2015).
- Generalization of Kari's construction to some $G \times \mathbb{Z}$ (Jeandel, 2015).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Domino problem and periodicity	Block gluing SFTs on \mathbb{Z}^2	Strongly aperiodic subshifts	Lovász Local Lemma in Symbolic Dynamic
00	00	000	0000000
Strongly aperio	dic subshifts	(Π)	

Which f.g. groups admit strongly aperiodic SFTs?

- ▶ If G is r.p. with a strongly aperiodic SFT, then G has decidable **WP** (Jeandel, 2015).
- ▶ If *G* has at least two ends, then it has no strongly aperiodic SFTs (Cohen, 2015)
- ▶ Polycyclic groups with $h(G) \ge 2$ (Jeandel, 2015).
- Generalization of Kari's construction to some $G \times \mathbb{Z}$ (Jeandel, 2015).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

 \triangleright \mathbb{Z}^n , Heisenberg group (Sahin, Schraudner & Ugarcovici, 2015).

Domino problem and periodicity	Block gluing SFTs on \mathbb{Z}^2	Strongly aperiodic subshifts	Lovász Local Lemma in Symbolic Dynami
00	00	000	0000000
Strongly aperio	dic subshifts	(11)	

Which f.g. groups admit strongly aperiodic SFTs?

- ▶ If G is r.p. with a strongly aperiodic SFT, then G has decidable **WP** (Jeandel, 2015).
- ▶ If *G* has at least two ends, then it has no strongly aperiodic SFTs (Cohen, 2015)
- ▶ Polycyclic groups with $h(G) \ge 2$ (Jeandel, 2015).
- Generalization of Kari's construction to some $G \times \mathbb{Z}$ (Jeandel, 2015).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- $\triangleright \mathbb{Z}^n$, Heisenberg group (Sahin, Schraudner & Ugarcovici, 2015).
- ▶ Surface groups (Cohen & Goodman-Strauss, 2015).

Domino problem and periodicity	Block gluing SFTs on \mathbb{Z}^2	Strongly aperiodic subshifts	Lovász Local Lemma in Symbolic Dynami
00	00	000	0000000
Strongly aperio	dic subshifts	(11)	

Which f.g. groups admit strongly aperiodic SFTs?

- ▶ If G is r.p. with a strongly aperiodic SFT, then G has decidable WP (Jeandel, 2015).
- ▶ If *G* has at least two ends, then it has no strongly aperiodic SFTs (Cohen, 2015)
- ▶ Polycyclic groups with $h(G) \ge 2$ (Jeandel, 2015).
- Generalization of Kari's construction to some $G \times \mathbb{Z}$ (Jeandel, 2015).
- ▶ ℤⁿ, Heisenberg group (Sahin, Schraudner & Ugarcovici, 2015).
- ▶ Surface groups (Cohen & Goodman-Strauss, 2015).
- groups $\mathbb{Z}^2 \rtimes H$ where H has decidable **WP** (Barbieri & Sablik, 2016).

ション ふゆ く 山 マ チャット しょうくしゃ

Domino problem and periodicity	Block gluing SFTs on \mathbb{Z}^2	Strongly aperiodic subshifts	Lovász Local Lemma in Symbolic Dynami
00	00	000	0000000
Strongly aperio	dic subshifts	(Π)	

Which f.g. groups admit strongly aperiodic SFTs?

- ▶ If G is r.p. with a strongly aperiodic SFT, then G has decidable WP (Jeandel, 2015).
- ▶ If *G* has at least two ends, then it has no strongly aperiodic SFTs (Cohen, 2015)
- ▶ Polycyclic groups with $h(G) \ge 2$ (Jeandel, 2015).
- Generalization of Kari's construction to some $G \times \mathbb{Z}$ (Jeandel, 2015).
- ▶ ℤⁿ, Heisenberg group (Sahin, Schraudner & Ugarcovici, 2015).
- ▶ Surface groups (Cohen & Goodman-Strauss, 2015).
- groups $\mathbb{Z}^2 \rtimes H$ where H has decidable **WP** (Barbieri & Sablik, 2016).

Question (simpler)

Does every f.g. group admit strongly aperiodic subshifts?

Domino problem and periodicity	Block gluing SFTs on \mathbb{Z}^2	Strongly aperiodic subshifts	Lovász Local Lemma in Symbolic Dynamic
00	00	000	0000000
Strongly aperio	dic subshifts	(111)	

Theorem (Gao, Jackson & Seward, 2009)

Every f.g. group G has a strongly aperiodic subshift on alphabet $\{0,1\}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Domino problem and periodicity	Block gluing SFTs on \mathbb{Z}^2	Strongly aperiodic subshifts	Lovász Local Lemma in Symbolic Dynamic
00	00	000	0000000
Strongly aperio	dic subshifts	(111)	

Theorem (Gao, Jackson & Seward, 2009)

Every f.g. group G has a strongly aperiodic subshift on alphabet $\{0,1\}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proof: ???

Domino problem and periodicity	Block gluing SFTs on \mathbb{Z}^2	Strongly aperiodic subshifts	Lovász Local Lemma in Symbolic Dynamic
00	00	000	0000000
Strongly aperio	dic subshifts	(111)	

Theorem (Gao, Jackson & Seward, 2009)

Every f.g. group G has a strongly aperiodic subshift on alphabet $\{0, 1\}$.

Proof: ???

Theorem (A. Barbieri & Thomassé, 2015)

Every f.g. group G has a strongly aperiodic subshift on alphabet $\{0, 1\}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

	Domino problem and periodicity	Block gluing SFTs on \mathbb{Z}^2	Strongly aperiodic subshifts	Lovász Local Lemma in Symbolic Dynamic
	00	00	000	0000000
Outline of the talk.				

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Domino problem and periodicity
- (2) Block gluing SFTs on \mathbb{Z}^2
- 3 Strongly aperiodic subshifts
- 4 Lovász Local Lemma in Symbolic Dynamics

Domino problem and periodicity 00	Block gluing SFTs on \mathbb{Z}^2	Strongly aperiodic subshifts	Lovász Local Lemma in Symbolic Dynamics
Lovász Local Lo	emma		

(see Anton Chaplygin's talk yesterday)

 $(A_i)_{i=1...n}$ mutually independent Each A_i can be avoided $\} \Rightarrow A_1, \ldots, A_n$ can be avoided.

Proposition

If events A_1, \ldots, A_n are mutually independent, then

$$Pr\left(\bigcap_{i=1}^{n}\bar{A}_{i}\right)=\prod_{i=1}^{n}\left(1-Pr(A_{i})\right).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

What about the dependent case ?

Domino problem and periodicity	Block gluing SFTs on \mathbb{Z}^2	Strongly aperiodic subshifts	Lovász Local Lemma in Symbolic Dynamics
00	00	000	●0000000

Lovász Local Lemma

(see Anton Chaplygin's talk yesterday)

 $\{A_i\}_{i=1...n} \text{ not very dependent} \\ \text{Each } A_i \text{ can be avoided} \} \Rightarrow A_1, \ldots, A_n \text{ can be avoided}.$

Lovász Local Lemma (1975)

Let $\mathcal{A} = \{A_1, A_2, \dots, A_n\}$. For $A_i \in \mathcal{A}$, let $\Gamma(A_i)$ be the subset of \mathcal{A} such that A_i is independent of the collection $\mathcal{A} \setminus (\{A_i\} \cup \Gamma(A_i))$. Suppose there are x_i, \dots, x_n such that $0 \le x_i < 1$ and:

$$\forall A_i \in \mathcal{A} : Pr(A_i) \leq x_i \prod_{A_i \in \Gamma(\mathcal{A})} (1-x_j)$$

then the probability of avoiding A_1, A_2, \ldots, A_n is positive.

Lovász Local Lemma in Symbolic Dynamics (I)

How to use LLL in Symbolic Dynamics?

Suppose you want to prove that the subshift X is non-empty.

- ▶ Uniform Bernoulli measure on configurations space.
- Bad events \approx forbidden patterns.
- Compactness + LLL (if applicable) show the non-emptiness of the subshift.

 Domino problem and periodicity
 Block gluing SFTs on 2°
 Strongly aperiodic subshifts
 Lovász Local Lemma in Symbolic Dynamics

 00
 00
 000
 00000000

Lovász Local Lemma in Symbolic Dynamics (II)

Let G be a f.g. group, A a finite alphabet and μ the uniform Bernoulli probability measure on A^{G} .

A sufficient condition for being non-empty

Let $X \subset A^G$ be a subshift defined by $\mathcal{F} = \bigcup_{n \ge 1} \mathcal{F}_n$, where $\mathcal{F}_n \subset A^{\mathcal{B}_n}$. Suppose that there exists a function $x : \mathbb{N} \times G \to (0, 1)$ such that:

$$\forall n \in \mathbb{N}, g \in G, \ \mu(A_{n,g}) \leq x(n,g) \prod_{\substack{g S_n \cap h S_k \neq \emptyset \\ (k,h) \neq (n,g)}} (1 - x(k,h)),$$

where $A_{n,g} = \{x \in A^{G} : x|_{gS_n} \in \mathcal{F}_n\}$. Then the subshift X is non-empty.

ション ふゆ く 山 マ チャット しょうくしゃ

Strong aperiodicity vs. the distinct neighborhood property

A subshift $X \subset A^G$ is **strongly aperiodic** if all its configurations have trivial stabilizer

$$\forall x \in X, \forall g \in G, \ \sigma^g(x) = x \Rightarrow g = 1_G.$$

Fix $A = \{0, 1\}$.

A configuration $x \in \{0,1\}^G$ has the **distinct neighborhood property** if for every $h \in G \setminus \{1_G\}$, there exists a finite $T \subset G$ s.t.

 $\forall g \in G, x_{|ghT} \neq x_{|gT}.$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Strong aperiodicity vs. the distinct neighborhood property

A subshift $X \subset A^G$ is **strongly aperiodic** if all its configurations have trivial stabilizer

$$\forall x \in X, \forall g \in G, \ \sigma^g(x) = x \Rightarrow g = 1_G.$$

Fix $A = \{0, 1\}$.

A configuration $x \in \{0,1\}^G$ has the **distinct neighborhood property** if for every $h \in G \setminus \{1_G\}$, there exists a finite $T \subset G$ s.t.

$$\forall g \in G, \ x_{|ghT} \neq x_{|gT}.$$

Proposition

If $x \in \{0,1\}^G$ has the distinct neighborhood property, then the subshift $Orb_{\sigma}(x)$ is strongly aperiodic.

Proof: on the blackboard.

 Domino problem and periodicity
 Block gluing SFTs on Z²
 Strongly aperiodic subshifts
 Lovász Local Lemma in Symbolic Dynamic

 00
 00
 000
 00000000

Distinct neighborhood property with LL

Proposition

Every infinite f.g. group G has a configuration $x \in \{0,1\}^G$ with the distinct neighborhood property.

Proof:

- ▶ Take $(s_i)_{i \in \mathbb{N}}$ an enumeration of *G* with $s_0 = 1_G$.
- Choose $(T_i)_{i \in \mathbb{N}}$ a sequence of finite sets of G s.t.

 $T_i \cap s_i T_i = \emptyset$ and $|T_i| = Ci$ for some constant C.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

►
$$A_{n,g} = \{x \in \{0,1\}^G \mid x_{|gT_n} = x_{|gs_nT_n}\}.$$

► $x(n,g) = 2^{-\frac{Cn}{2}}.$

 Domino problem and periodicity
 Block gluing SFTs on Z²
 Strongly aperiodic subshifts
 Lovász Local Lemma in Symbolic Dynamic

 00
 00
 000
 00000000

Distinct neighborhood property with LL

Proposition

Every infinite f.g. group G has a configuration $x \in \{0,1\}^G$ with the distinct neighborhood property.

Proof:

- ▶ Take $(s_i)_{i \in \mathbb{N}}$ an enumeration of *G* with $s_0 = 1_G$.
- Choose $(T_i)_{i \in \mathbb{N}}$ a sequence of finite sets of G s.t.

 $T_i \cap s_i T_i = \emptyset$ and $|T_i| = Ci$ for some constant C.

Theorem

Every f.g. group G has a strongly aperiodic subshift on alphabet $\{0,1\}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

An effectively closed strongly aperiodic subshift (I)

A subshift is *G*-effectively closed if it can be defined by a set of forbidden patterns recognizable by a Turing machine with oracle WP(G).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

 Domino problem and periodicity
 Block gluing SFTs on Z²
 Strongly aperiodic subshifts
 Lovász Local Lemma in Symbolic Dynamics

 00
 00
 000
 0000000

An effectively closed strongly aperiodic subshift (I)

A subshift is *G*-effectively closed if it can be defined by a set of forbidden patterns recognizable by a Turing machine with oracle WP(G).

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Theorem (Alon, Grytczuk, Haluszczak & Riordan, 2002)

Every finite graph with degree $\leq \Delta$ has a square-free coloring with $2e^{16}\Delta^2$ colors.

 Domino problem and periodicity
 Block gluing SFTs on Z²
 Strongly aperiodic subshifts
 Lovász Local Lemma in Symbolic Dynamics

 00
 00
 000
 0000000

An effectively closed strongly aperiodic subshift (I)

A subshift is *G*-effectively closed if it can be defined by a set of forbidden patterns recognizable by a Turing machine with oracle WP(G).

Theorem (Alon, Grytczuk, Haluszczak & Riordan, 2002)

Every finite graph with degree $\leq \Delta$ has a square-free coloring with $2e^{16}\Delta^2$ colors.

Proposition

Let G a f.g. group and S a generating set. Then $\Gamma(G, S)$ has a square-free coloring with $2^{19}|S|^2$ colors.

ション ふゆ く 山 マ チャット しょうくしゃ

 Domino problem and periodicity
 Block gluing SFTs on Z²
 Strongly aperiodic subshifts
 Lovász Local Lemma in Symbolic Dynamics

 00
 00
 00000000
 00000000

An effectively closed strongly aperiodic subshift (II)

Theorem (A. Barbieri & Thomassé, 2015)

Every f.g. group G has a G-effectively closed strongly aperiodic subshift.

Sketch of the proof:

- Fix S and take $X \subset A^G$ be the subshift such that every square in $\Gamma(G, S)$ is forbidden.
- Let $g \in G$ such that $\sigma^g(x) = x$ for some $x \in X$.
- Factorize g as unv with $u = v^{-1}$ and |w| minimal (as a word on $(S \cup S^{-1})^*$). If |w| = 0, then $g = 1_G$.

(ロ) (型) (E) (E) (E) (O)

 Domino problem and periodicity
 Block gluing SFTs on 2²
 Strongly aperiodic subshifts
 Lovász Local Lemma in Symbolic Dynamics

 00
 00
 000
 00000000

An effectively closed strongly aperiodic subshift (II)

Theorem (A. Barbieri & Thomassé, 2015)

Every f.g. group G has a G-effectively closed strongly aperiodic subshift.

Sketch of the proof:

- Fix S and take $X \subset A^G$ be the subshift such that every square in $\Gamma(G, S)$ is forbidden.
- Let $g \in G$ such that $\sigma^g(x) = x$ for some $x \in X$.
- Factorize g as uwv with $u = v^{-1}$ and |w| minimal (as a word on $(S \cup S^{-1})^*$). If |w| = 0, then $g = 1_G$.
- If not, let $w = w_1 \dots w_n$ and consider the odd length walk $\pi = v_0 v_1 \dots v_{2n-1}$ on $\Gamma(G, S)$ defined by:

$$v_{i} = \begin{cases} 1_{G} & \text{if } i = 0\\ w_{1} \dots w_{i} & \text{if } i \in \{1, \dots, n\}\\ ww_{1} \dots w_{i-n} & \text{if } i \in \{n+1, \dots, 2n-1\} \end{cases}$$

(ロ) (型) (E) (E) (E) (O)

 Domino problem and periodicity
 Block gluing SFTs on 2²
 Strongly aperiodic subshifts
 Lovász Local Lemma in Symbolic Dynamics

 00
 00
 000
 00000000

An effectively closed strongly aperiodic subshift (II)

Theorem (A. Barbieri & Thomassé, 2015)

Every f.g. group G has a G-effectively closed strongly aperiodic subshift.

Sketch of the proof:

- Fix S and take $X \subset A^G$ be the subshift such that every square in $\Gamma(G, S)$ is forbidden.
- Let $g \in G$ such that $\sigma^g(x) = x$ for some $x \in X$.
- Factorize g as uwv with $u = v^{-1}$ and |w| minimal (as a word on $(S \cup S^{-1})^*$). If |w| = 0, then $g = 1_G$.
- If not, let $w = w_1 \dots w_n$ and consider the odd length walk $\pi = v_0 v_1 \dots v_{2n-1}$ on $\Gamma(G, S)$ defined by:

$$v_{i} = \begin{cases} 1_{G} & \text{if } i = 0\\ w_{1} \dots w_{i} & \text{if } i \in \{1, \dots, n\}\\ ww_{1} \dots w_{i-n} & \text{if } i \in \{n+1, \dots, 2n-1\} \end{cases}$$

• π is a path, and $x_{v_i} = x_{v_{i+n}} \Rightarrow g = 1_G$.

Domino problem and periodicity	Block gluing SFTs on \mathbb{Z}^2	Strongly aperiodic subshifts	Lovász Local Lemma in Symbolic Dynamics
00	00	000	0000000
Conclusion			

- ► Every one-ended f.g. group with decidable **WP** has strongly aperiodic SFTs?
- ▶ Does there exist G with decidable **DP** and strongly aperiodic SFTs?
- ► Does there exist *G* with undecidable **DP** and no strongly aperiodic SFT?

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Domino problem and periodicity	Block gluing SFTs on \mathbb{Z}^2	Strongly aperiodic subshifts	Lovász Local Lemma in Symbolic Dynamics
00	00	000	0000000
Conclusion			

- ► Every one-ended f.g. group with decidable **WP** has strongly aperiodic SFTs?
- ▶ Does there exist *G* with decidable **DP** and strongly aperiodic SFTs?
- ► Does there exist *G* with undecidable **DP** and no strongly aperiodic SFT?

Thank you for your attention !!

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@