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Domino problem and periodicity on Z2 (I)

We can define two notions of periodic configuration:
I A configuration x ∈ AZ2

is weakly periodic if its stabilizer is infinite.

⇔ x admits a non-trivial direction −→u of periodicity.

I A configuration x ∈ AZ2
is strongly periodic if its stabilizer is of

finite index in Z2: [Z2 : Stab(x)] <∞.

⇔ x admits two non-collinear directions −→u ,−→v of periodicity.

Proposition

On Z2, if an SFT contains a weakly periodic configuration, then it
contains a strongly periodic one.

Proof: on the blackboard.
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Domino problem and periodicity on Z2 (II)

Wang’s conjecture (1961)

If a set of Wang tiles can tile the plane, then they can always be arranged
to do so periodically.
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Domino problem and periodicity on Z2 (II)

Wang’s conjecture (1961)

A non-empty SFT contains a periodic configuration.
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Domino problem and periodicity on Z2 (II)

Wang’s conjecture (1961)

A non-empty SFT contains a periodic configuration.

Suppose Wang’s conjecture is true. Then you can decide DP !

Semi-algorithm 1:
1 gives a finite periodic pattern, if it exists
2 loops otherwise

Semi-algorithm 2:
1 gives an integer n so that there is no [1; n]× [1; n] locally admissible

pattern, if it exists
2 loops otherwise
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Domino problem and periodicity on Z2 (II)

Wang’s conjecture (1961)

A non-empty SFT contains a periodic configuration.

Suppose Wang’s conjecture is true. Then you can decide DP !

Semi-algorithm 1:
1 gives a finite periodic pattern, if it exists
2 loops otherwise

Semi-algorithm 2:
1 gives an integer n so that there is no [1; n]× [1; n] locally admissible

pattern, if it exists
2 loops otherwise

Consequence

The undecidability of DP implies existence of an aperiodic SFT.
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Block gluing subshifts on Z2 (I)

A subshift X ⊂ AZ2
is block-gluing with gap g ∈ N if for any two finite

supports S1, S2 ⊂ Z2 at distance at least g , and for any x , y ∈ X

there exists z ∈ X s.t. z|S1 = x|S1 and z|S2 = y|S2 .

x ∈ X y ∈ X

≥ g

z ∈ X

and ⇒

Remark: this is a uniform mixing condition.
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Block gluing subshifts on Z2 (II)

Proposition (Folklore, written in Pavlov & Schraudner 2015)

A non-empty block-gluing SFT has a periodic configuration.

Proof: on the blackboard.

Consequence

The Domino problem is decidable for block-gluing SFTs.

Remark: Actually we prove something stronger: we can decide whether
a locally admissible pattern is globally admissible (the language is
decidable).
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Strongly aperiodic subshifts (I)

A subshift X ⊂ AG is strongly aperiodic if all its configurations have
trivial stabilizer

∀x ∈ X ,∀g ∈ G , σg (x) = x ⇒ g = 1G .

Example: Robinson’s SFT is strongly aperiodic
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Strongly aperiodic subshifts (II)

Question
Which f.g. groups admit strongly aperiodic SFTs?

I If G is r.p. with a strongly aperiodic SFT, then G has decidable WP
(Jeandel, 2015).

I If G has at least two ends, then it has no strongly aperiodic SFTs
(Cohen, 2015)

I Polycyclic groups with h(G ) ≥ 2 (Jeandel, 2015).
I Generalization of Kari’s construction to some G ×Z (Jeandel, 2015).
I Zn, Heisenberg group (Sahin, Schraudner & Ugarcovici, 2015).
I Surface groups (Cohen & Goodman-Strauss, 2015).
I groups Z2 oH where H has decidable WP (Barbieri & Sablik, 2016).

Question (simpler)

Does every f.g. group admit strongly aperiodic subshifts?
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Strongly aperiodic subshifts (III)

Theorem (Gao, Jackson & Seward, 2009)

Every f.g. group G has a strongly aperiodic subshift on alphabet {0, 1}.

Proof: ???

Theorem (A. Barbieri & Thomassé, 2015)

Every f.g. group G has a strongly aperiodic subshift on alphabet {0, 1}.
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Lovász Local Lemma

(see Anton Chaplygin’s talk yesterday)

(Ai )i=1...n mutually independent
Each Ai can be avoided

}
⇒ A1, . . . ,An can be avoided.

Proposition

If events A1, . . . ,An are mutually independent, then

Pr

(
n⋂

i=1

Āi

)
=

n∏
i=1

(1− Pr(Ai )) .

What about the dependent case ?
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Lovász Local Lemma

(see Anton Chaplygin’s talk yesterday)

(Ai )i=1...n not very dependent
Each Ai can be avoided

}
⇒ A1, . . . ,An can be avoided.

Lovász Local Lemma (1975)

Let A = {A1,A2, . . . ,An}. For Ai ∈ A, let Γ(Ai ) be the subset of A such
that Ai is independent of the collection A \ ({Ai} ∪ Γ(Ai )). Suppose
there are xi , . . . , xn such that 0 ≤ xi < 1 and:

∀Ai ∈ A : Pr(Ai ) ≤ xi

∏
Aj∈Γ(A)

(1− xj)

then the probability of avoiding A1,A2, . . . ,An is positive.
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Lovász Local Lemma in Symbolic Dynamics (I)

How to use LLL in Symbolic Dynamics?

Suppose you want to prove that the subshift X is non-empty.
I Uniform Bernoulli measure on configurations space.
I Bad events ≈ forbidden patterns.
I Compactness + LLL (if applicable) show the non-emptiness of the

subshift.
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Lovász Local Lemma in Symbolic Dynamics (II)

Let G be a f.g. group, A a finite alphabet and µ the uniform Bernoulli
probability measure on AG .

A sufficient condition for being non-empty

Let X ⊂ AG be a subshift defined by F =
⋃

n≥1 Fn, where Fn ⊂ ABn .
Suppose that there exists a function x : N× G → (0, 1) such that:

∀n ∈ N, g ∈ G , µ(An,g ) ≤ x(n, g)
∏

gSn∩hSk 6=∅
(k,h)6=(n,g)

(1− x(k, h)),

where An,g =
{
x ∈ AG : x |gSn ∈ Fn

}
. Then the subshift X is non-empty.
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Strong aperiodicity vs. the distinct neighborhood property

A subshift X ⊂ AG is strongly aperiodic if all its configurations have
trivial stabilizer

∀x ∈ X ,∀g ∈ G , σg (x) = x ⇒ g = 1G .

Fix A = {0, 1}.

A configuration x ∈ {0, 1}G has the distinct neighborhood property if
for every h ∈ G \ {1G}, there exists a finite T ⊂ G s.t.

∀g ∈ G , x|ghT 6= x|gT .

Proposition

If x ∈ {0, 1}G has the distinct neighborhood property, then the
subshift Orbσ(x) is strongly aperiodic.

Proof: on the blackboard.
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Distinct neighborhood property with LL

Proposition

Every infinite f.g. group G has a configuration x ∈ {0, 1}G with the
distinct neighborhood property.

Proof:
I Take (si )i∈N an enumeration of G with s0 = 1G .
I Choose (Ti )i∈N a sequence of finite sets of G s.t.

Ti ∩ siTi = ∅ and |Ti | = Ci for some constant C .

I An,g =
{
x ∈ {0, 1}G | x|gTn = x|gsnTn

}
.

I x(n, g) = 2−
Cn
2 .

Theorem

Every f.g. group G has a strongly aperiodic subshift on alphabet {0, 1}.
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An effectively closed strongly aperiodic subshift (I)

A subshift is G -effectively closed if it can be defined by a set of
forbidden patterns recognizable by a Turing machine with oracle WP(G ).

Theorem (Alon, Grytczuk, Haluszczak & Riordan, 2002)

Every finite graph with degree ≤ ∆ has a square-free coloring with
2e16∆2 colors.

Proposition

Let G a f.g. group and S a generating set. Then Γ(G , S) has a
square-free coloring with 219|S |2 colors.
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An effectively closed strongly aperiodic subshift (II)

Theorem (A. Barbieri & Thomassé, 2015)

Every f.g. group G has a G -effectively closed strongly aperiodic subshift.

Sketch of the proof:
Fix S and take X ⊂ AG be the subshift such that every square in
Γ(G , S) is forbidden.
Let g ∈ G such that σg (x) = x for some x ∈ X .
Factorize g as uwv with u = v−1 and |w | minimal (as a word on
(S ∪ S−1)∗). If |w | = 0, then g = 1G .

If not, let w = w1 . . .wn and consider the odd length walk
π = v0v1 . . . v2n−1 on Γ(G , S) defined by:

vi =


1G if i = 0
w1 . . .wi if i ∈ {1, . . . , n}
ww1 . . .wi−n if i ∈ {n + 1, . . . , 2n − 1}

π is a path, and xvi = xvi+n ⇒ g = 1G .
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Conclusion

I Every one-ended f.g. group with decidable WP has strongly
aperiodic SFTs?

I Does there exist G with decidable DP and strongly aperiodic SFTs?
I Does there exist G with undecidable DP and no strongly aperiodic

SFT?

Thank you for your attention !!
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