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Introduction

Objectives of this talk. . .

I Define the Domino problem (DP).
I Show the two main techniques to prove undecidability of DP on Z2
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Outline of the talk.

1 Definitions

2 Undecidability of DP on Z2, proof I

3 Undecidability of DP on Z2, proof II
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Configurations and Subshifts (I)

I Let A be a finite alphabet, G be a finitely generated group.
I Colorings x : G → A are called configurations.
I Endowed with the prodiscrete topology AG is a compact and

metrizable set.
I Cylinders form a clopen basis

[a]g =
{
x ∈ AG | xg = a

}
.

I A pattern is a finite intersection of cylinders, or equivalently a finite
configuration p : S → A

I A metric for the cylinder topology is

d(x , y) = 2− inf{|g | | g∈G : xg 6=yg},

where |g | is the length of the shortest path from 1G to g in Γ(G , S).
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Configurations and Subshifts (II)

The shift action σ : G × AG → AG is given by

(σg (x))h = xg -1h.

The dynamical system (AG , σ) is called the G -fullshift over A.

Definition

A G -subshift is a closed and σ-invariant subset X ⊂ AG .

A pattern p ∈ AS appears in a configuration x ∈ AG if (σg (x))S = p for
some g ∈ G .

Proposition

X is a G -subshift iff there exists a set F of forbidden patterns s.t.

X = XF :=
{
x ∈ AG | no pattern of F appears in x

}
.
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Subshifts of finite type

A G -subshift X is of finite type (G -SFT) if there exists a finite set of
forbidden patterns F that defines it: X = XF .

Example:
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SFTs and Wang tiles

Fix G a f.g. group and S a generating set for G . Wang tiles ≈ polygons
with colored 2|S | edges.

Neighbourhood rule

X ×

Xτ set of valid tilings by τ

SFT ≈ Xτ

→
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The Domino problem on groups

Fix G a f.g. group and S a generating set for G .

Domino problem on G

Input: A finite set of Wang tiles τ on S
Output: Yes if there exists a valid tiling by τ , No otherwise.

Question
Which f.g. groups have decidable Domino Problem ?

→ group property, quasi-isometry invariant.
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Sketch of the proof

Idea: encode Turing machines inside Wang tiles.

I Undecidability of the Halting problem of Turing machines.
I Reduction from the Halting problem of Turing machines.
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Turing machines

δ(q, x)
Symbol x

a b ‖ ]
St
at
e

q
q0 ⊥ ⊥ ⊥ (qb+ , a,→)

qa+ ⊥ (qb++ , a,→) ⊥ ⊥
qb+ ⊥ ⊥ ⊥ (q‖, b,→)

qb++ ⊥ (qb++ , b,→) (qb+ , b,→) ⊥
q‖ (qa+ , a,→) (q‖, b,←) (q‖, ‖,←) (q‖, ‖, ·)

] ] ] ] ] ] ] ] ] ]

q0
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Theorem (Turing, 1936)

The Halting problem (to know whether a Turing machineM halts on
input w or not) is undecidable.

Theorem

The Blank tape Halting problem (to know whether a Turing machineM
halts on the empty input) is undecidable.
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Turing machines and Wang tiles

Encode Turing machine computations inside Wang tiles:
I no computation head
I initial configuration (∞]∞, q0)

I δ(q, a) = (q′, a′, .)
I δ(r , a) = (r ′, a′,→)

I δ(s, a) = (s ′, a′,←)

a

a

∗ .

(q, a)

(q′, a′)

∗ .

(r , a)

a′

∗ (r , a)

b

(r ′, b)

(r , a) .

?

⊥

? ⊥

?

?

? ?

⊥

(q0, ])

` 0

b

(s ′, b)

∗ (s, a)

(s, a)

a′

(s, a) .

⊥

]

0 0

?

⊥

⊥ ⊥

⊥

⊥

? `
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We want: τ admits a tiling iff M does not halt on the empty input.
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Which tilings ?
We forbid tiles with an halting state qf .

IfM does not halt on the empty input, we have a tiling.
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The Origin Constrained Domino problem

What we have not proven:

Not-Yet-Theorem

The Domino problem is undecidable on Z2.

What we have proven:

Theorem (Kahr, Moore & Wang 1962, Büchi 1962)

The Origin Constrained Domino problem is undecidable on Z2.

where

Origin Constrained Domino problem

Input: A finite set of Wang tiles τ , a tile t ∈ τ
Output: Yes if there exists a valid tiling by τ with t at the origin, No
otherwise.
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How to initialize computations ?

Build one infinite in time and space computation zone?
I Compactness ⇒ we cannot force one given tile to appear exactly

once in every valid tiling

Build arbitrarily big computation zones?
I Compactness ⇒ if we have arbitrarily big rectangles in our tilings,

then we also have a tiling with no rectangle.

One solution: hierarchy of computation zones (thus arbritrarily big zones)
that intersect a lot.



Definitions Undecidability of DP on Z2, proof I Undecidability of DP on Z2, proof II

How to initialize computations ?

Build one infinite in time and space computation zone?
I Compactness ⇒ we cannot force one given tile to appear exactly

once in every valid tiling

Build arbitrarily big computation zones?
I Compactness ⇒ if we have arbitrarily big rectangles in our tilings,

then we also have a tiling with no rectangle.

One solution: hierarchy of computation zones (thus arbritrarily big zones)
that intersect a lot.



Definitions Undecidability of DP on Z2, proof I Undecidability of DP on Z2, proof II

How to initialize computations ?

Build one infinite in time and space computation zone?
I Compactness ⇒ we cannot force one given tile to appear exactly

once in every valid tiling

Build arbitrarily big computation zones?
I Compactness ⇒ if we have arbitrarily big rectangles in our tilings,

then we also have a tiling with no rectangle.

One solution: hierarchy of computation zones (thus arbritrarily big zones)
that intersect a lot.



Definitions Undecidability of DP on Z2, proof I Undecidability of DP on Z2, proof II

Robinson tileset

The Robinson tileset, where tiles can be rotated and reflected.



Definitions Undecidability of DP on Z2, proof I Undecidability of DP on Z2, proof II

Robinson tileset

The Robinson tileset, where tiles can be rotated and reflected.



Definitions Undecidability of DP on Z2, proof I Undecidability of DP on Z2, proof II

Existence of a valid tiling

Proposition

Robinson’s tileset admits at least one valid tiling.

Proof:
We can build arbitrarily large patterns (called macro-tiles) with the
same structure.
We thus conclude by compactness.
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From macro-tiles of level n to macro-tiles of level n + 1

⇒
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About Robinson’s tiling structure

Hierarchy of squares: squares of level n are gathered by 4 to form a
square of level n + 1

Proposition

The only valid tilings by the Robinson tileset form a hierarchy of squares.
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square of level n + 1

Proposition

The only valid tilings by the Robinson tileset form a hierarchy of squares.
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Valid tilings (I)

The two forms in Robinson tileset, cross (bumpy corners) and arms
(dented corners).

Obviously, two crosses cannot be in contact (neither through an edge nor
a vertex) thus a cross must be surrounded by eight arms.
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The only possibilities are thus
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Valid tilings (II)
You cannot have things like

The only possibilities are thus
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Valid tilings (III)

So each is part of a macro tile of level 1

that behaves like a big , and so on. . .
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Undecidability of the Domino Problem (II)

Solution
Embed Turing machine computations inside the hierarchy of squares
given by Robinson’s tiling.
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Undecidability of the Domino Problem (II)

Solution
Embed Turing machine computations inside the hierarchy of squares
given by Robinson’s tiling.

Theorem (Berger 1966, Robinson 1971)

The Domino Problem is undecidable on Z2.
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Outline of the talk.

1 Definitions

2 Undecidability of DP on Z2, proof I

3 Undecidability of DP on Z2, proof II



Definitions Undecidability of DP on Z2, proof I Undecidability of DP on Z2, proof II

Sketch of the proof

Idea: encode piecewise affine maps inside Wang tiles.

I Undecidability of the Mortality problem of Turing machines.
I Undecidability of the Mortality problem of piecewise affine maps.
I Reduction from the Mortality problem of piecewise affine maps.
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Mortality problem of Turing machines

TakeM a deterministic Turing machine with an halting state qf .

!! configurations of M do not have finite support !!

A configuration (x , q) is a non-halting configuration if it never evolves
into the halting state.

Mortality problem of Turing machines

Input: a deterministic Turing machineM with an halting state.
Output: Yes ifM has a non-halting configuration, No otherwise.

Theorem (Hooper, 1966)

The Mortality problem of Turing machines is undecidable.

Proof: very technical, uses Minsky 2-counters machines.
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Rational piecewise affine maps in R2

Take fi : Ui → R2 for i ∈ [1; n] some rational affine maps, with
U1,U2, . . . ,Un disjoint unit squares with integer corners.

Define f : R2 → R2 with domain U = ∪n
i=1Ui by

−→x 7→ fi (−→x ) if −→x ∈ Ui .

A point −→x ∈ R2 is an immortal starting point for (fi )i=1...n if for every
n ∈ N, the point f n(−→x ) lies inside the domain U.

Mortality problem of piecewise affine maps

Input: a system of rational affine maps f1, f2, . . . , fn with disjoint unit
squares U1,U2, . . . ,Un with integer corners.
Output: Yes the system has an immortal starting point, No otherwise.
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Rational piecewise affine maps and Turing machines (I)

We use the moving tape Turing machines model.

Assume thatM has alphabet A = {0, 1, . . . , a− 1} and states
Q = {0, 1, . . . , b − 1}.

GivenM a Turing machine, we construct a system f1, f2, . . . , fn of
piecewise affine maps s.t.

I A configuration ofM is coded by two real numbers.
I A transition ofM is coded by one fi .
I f1, f2, . . . , fn has an immortal starting point if and only ifM has an

immortal configuration.
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Rational piecewise affine maps and Turing machines (II)

Configuration (x , q) is coded by (`, r) ∈ R2 where

` =
−∞∑
i=−1

M ixi

and

r = Mq +
∞∑
i=0

M−ixi ,

where M is an integer s.t. M > a and M > b.

The transition δ(q, a) = (q′, a′,→) is coded by the affine transformation(
`
r

)
7→
( 1

M 0
0 M

)(
`
r

)
+

(
a′

M(q′ − a−Mq)

)
with domain [0, 1]× [Mq,Mq + 1].
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Rational piecewise affine maps and Turing machines (II)

I A Turing machineM is transformed into a system f1, . . . , fn of
rational piecewise affine maps.

I M has an immortal starting point iff f1, . . . , fn has.

Theorem
The Mortality problem of piecewise affine maps is undecidable.
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Rational affine maps inside Wang tiles (I)

Consider f : R2 → R2 a rational affine map as before. The tile
−→n

−→s

−→w −→e

is said to compute the function f if

f (−→n ) +−→w = −→s +−→e .

And on a row:

−→w = −→w 1

−→n 1

−→s 1

−→n 2

−→s 2

. . .

−→n k−1

−→s k−1

−→n k

−→s k

−→e k = −→e

f
(−→n 1 + · · ·+−→n k

k

)
+

1
k
−→w =

−→s 1 + · · ·+−→s k

k
+

1
k
−→e
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Rational affine maps inside Wang tiles (II)

For x ∈ R, a representation of x is a sequence of integers (xk)k∈Z s.t.
∀k ∈ Z, xk ∈ {bxc, bxc+ 1};
∀k ∈ Z,

lim
n→∞

xk−n + · · ·+ xk+n

2n + 1
= x .

Define Bk(x) = bkxc − b(k − 1)xc for every k ∈ Z. Then

B(x) = (Bk(x))k∈Z

is the balanced representation of x .

For −→x ∈ R2 and k ∈ Z, define Bk(−→x ) coordinate by coordinate.

If −→x is in Ui = [n, n + 1]× [m,m + 1], then
Bk(−→x ) ∈ {(n,m), (n,m + 1), (n + 1,m), (n + 1,m + 1)} for every k ∈ Z.
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Rational affine maps inside Wang tiles (III)

The tile set corresponding to fi (−→x ) = M−→x +
−→
b consists of tiles

Bk(−→x )

Bk(fi (−→x ))

fi (Ak−1(−→x ))− Ak−1(fi (−→x ))

+(k − 1)
−→
b

fi (Ak(−→x ))− Ak(fi (−→x ))

+k
−→
b

for every k ∈ Z and −→x ∈ Ui .

Since Ui is bounded and fi rational, there are finitely many tiles !
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Rational affine maps inside Wang tiles (III)
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Rational affine maps inside Wang tiles (IV)

I A system of rational affine maps f1, f2, . . . , fn defined on
U1,U2, . . . ,Un with integer corners.

I Each fi  a finite set of tiles Ti

I Set of tiles T = ∪Ti with additional markings (every row tiled by a
single Ti )

I T admits a tiling of the plane iff f1, f2, . . . , fn has an immortal point.

Theorem (Kari, 2007)

The Domino problem is undecidable on Z2.
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Rational affine maps inside Wang tiles (IV)

I A system of rational affine maps f1, f2, . . . , fn defined on
U1,U2, . . . ,Un with integer corners.

I Each fi  a finite set of tiles Ti

I Set of tiles T = ∪Ti with additional markings (every row tiled by a
single Ti )

I T admits a tiling of the plane iff f1, f2, . . . , fn has an immortal point.

Theorem (Kari, 2007)

The Domino problem is undecidable on Z2.
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Conclusion

I Two proofs of the undecidability of DP on Z2.
I Encode a small computational model inside Wang tiles.
I What about f.g. groups ?

Thank you for your attention !!
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