Phase-preconditioned Rational Krylov Subspaces for model reduction of large-scale wave propagation

Jörn Zimmerling², V. Druskin¹, R.F. Remis², and M. Zaslavsky¹ 1 Schlumberger Doll Research, 2 Delft University of Technology

NL2A, CIRM Luminy

28 October 2016

イロト イポト イヨト イヨト 二日

Introduction Rational KS

Problem Definition

 Solving wave equation for multiple sources and receivers in a *frequency* range

$$\Delta u^{\ell} - \frac{s^2}{v^2} u^{\ell} = \delta(x - x_{\mathsf{S}}^{\ell})$$

 Transfer function from sources to receivers $f(x_{\rm R}, x_{\rm S}, s)$

Scaling of the problem in 3D:

N unknowns in one spatial direction

- **1** No of Frequency points: $\propto N$
- 2 Source/Receiver scaling: $\propto N^2$
- 3 Spatial scaling: $\propto N^3$

・ロト ・回ト ・ヨト

э

Introduction Projection Based ROM Rational KS

Problem Formulation

After finite difference discretization with PML

$$\mathsf{A}(s)\mathsf{u}^\ell - s^2\mathsf{u}^\ell = \mathsf{b}^\ell$$

- (Laplace) frequency dependent A(s) caused by PML
- Stepsizes in PML: $h_j = \alpha_j + \frac{\beta_j}{s}$
- Transfer function from sources to receivers

$$\mathsf{F}(\mathsf{R},\mathsf{B},s) = \mathsf{R}^{\mathsf{T}}\mathsf{W}(s)(\mathsf{A}(s) - s^{2}\mathsf{I})^{-1}\mathsf{B}$$

- W(s) a is diagonal weight matrix with FD-voxel weight
- Reduced order modeling of transfer function over frequency range
- Rational Krylov subspaces for ROM

Introduction Projection Based ROM Rational KS

Problem Formulation

• A(s) passive and causal

$$\begin{split} \mathcal{W}\left\{\mathsf{A}(s)\right\} &= \left\{s \in \mathbb{C}: \mathsf{x}^{H}\mathsf{A}(s)\mathsf{x} = \mathsf{0} \ \forall \mathsf{x} \in \mathbb{C}^{k} \backslash \mathsf{0}\right\} \\ & \Re \mathcal{W}\left\{\mathsf{A}(s) - s^{2}\mathsf{I}\right\} < \mathsf{0} \end{split}$$

• A is self-adjoint in W-bilinear form due to reciprocity

$$\mathsf{F}(\mathsf{R},\mathsf{B},s)=\mathsf{F}(\mathsf{B},\mathsf{R},s)\Rightarrow\mathsf{W}(s)\mathsf{A}(s)=\mathsf{A}^{\mathsf{T}}(s)\mathsf{W}(s)$$

- Schwartz reflection principle A(s) = Ā(s) (conjugation symmetry of spectrum)
- Preserve this structure during RKS

Motivation

- FD grid over discretized w.r.t. Nyquist
- approximation F(R, B, s) to noise level
- PML introduces losses
- limited I/O map

Introduction Projection Based ROM Rational KS

Reduced Order Modeling

- Projection based ROM $u = u_m + \epsilon_m$, with $u_m \in V_m$,
- Coefficients from the Galerkin condition $(A(s) s^2 I)\epsilon_m \perp_{W(s)} V_m$
- Reduced order solution after projection

$$u^{\ell} = (A(s) - s^{2}I)^{-1}b^{\ell}$$

$$\Rightarrow u^{\ell}_{m} = V_{m}(V^{H}_{m}A(s)V_{m} - s^{2}I)^{-1}V^{H}_{m}b^{\ell}$$

$$\Rightarrow F_{m} = R^{T}V_{m}(V^{H}_{m}A(s)V_{m} - s^{2}I)^{-1}V^{H}_{m}B$$

• Define Rational Krylov subspace with shifts $\kappa = [\kappa_1, \dots, \kappa_m]$

$$\mathcal{K}^{m}(\kappa) = \operatorname{span}\{(\mathsf{A}(\kappa_{1}) - \kappa_{1}^{2}\mathsf{I})^{-1}\mathsf{b}^{\ell}, \dots, (\mathsf{A}(\kappa_{m}) - \kappa_{m}^{2}\mathsf{I})^{-1}\mathsf{b}^{\ell}\}$$

Structure preserving rational Krylov subspace approach

• To preserve Schwarz-reflection principle we project onto the real space

$$\mathcal{K}^m_R(\kappa) = \operatorname{span}\{\Re \mathcal{K}^m(\kappa), \Im \mathcal{K}^m(\kappa)\}$$

 Reduced order model H_m(s) obtained by projection onto basis V_m in symmetry preserving from

$$\mathsf{H}_m(s) = \mathsf{V}_m^H \mathsf{W}(s) \mathsf{A}(s) \mathsf{V}_m$$

- Reduced order model $H_m(s)$
 - ROM tranferfunction interpolates on $\bar{\kappa} \cup \kappa$, (if R = B tangentially)
 - symmetric
 - passive
 - follows Schwarz-reflection principle
- (Nonlinear) numerical range of reduced operator lies in convex hull of the numerical range of full operator

Introduction Projection Based ROM Rational KS

RKS example: 100 x 100 dielectric box

(a) Wavespeed in the box configuration.

(b) Imaginary part transfer function.

1D Explanation Grid Coarsening Full MIMO algorithm

Problem of RKS

- In geophysical structures we typically have late arrivals
- Late arrival means oscillatory Frequency domain $(*\delta(t T) \xrightarrow{\mathcal{L}} \cdot \exp(-sT))$
- FD frequency domain sampling at Nyquist rate $\Delta s = i \pi / T_{
 m max}^{
 m arr}$

- Precondition the RKS by incorporating travel time information
- Eikonal Solution: $|\nabla T|^2 = \frac{1}{v^2}$
- Can we factor out main oscillations?

1D Explanation Grid Coarsening Full MIMO algorithm

Decomposition in 1D

- Consider a layered medium of 3 Layers
- Outgoing and incoming waves
- Decompose into $c_{out}(\kappa_j) \exp(-\kappa_j T_{eik})$, and $c_{in}(\kappa_j) \exp(\kappa_j T_{eik})$
- $\bullet\ c_{out/in}$ obtainable form one way wave equations

1D Explanation Grid Coarsening Full MIMO algorithm

Decomposition in 1D

. C

1D Explanation Grid Coarsening Full MIMO algorithm

Decomposition in 1D

After 3 iterations c_{out}(κ_j) exp(-sT_{eik}), and c_{in}(κ_j) exp(sT_{eik}) form a basis for ALL solutions (iff linear independent)

$$u(s) \in \operatorname{span}\{\mathsf{c}_{\mathsf{out}}(\kappa_1)\exp(-s\mathcal{T}_{eik}),\ldots,\mathsf{c}_{\mathsf{in}}(\kappa_1)\exp(s\mathcal{T}_{eik}),\ldots\}$$

 Required iterations are dependent on complexity of medium (layers) not on arrival time Reduced order modeling Phase-Preconditioning Examples Full MIMO algo

Summary of Phase preconditioning

Theorem - (analytical)

For a one-dimensional problem, with k homogenous layers and an arbitrarily located source, there exist $m \le k + 1$ non-coinciding interpolation points, such that the solution $u(s) \in \mathcal{K}^{2m}_{\mathsf{ElK};\mathsf{R}}(\kappa, s) \forall s$

 \bullet General: Correct amplitudes $c_{out/in}$ with asymptotic solution $s \to i\infty$ $\rm g_{asym}$ and project problem

$$\mathsf{u}_m(s) = \mathsf{g}_{\mathsf{asym}}(s\mathsf{T}_{\mathsf{eik}}) \sum_{j=1}^m a_j \mathsf{c}_{\mathsf{out}}(\kappa_j) + \bar{\mathsf{g}}_{\mathsf{asym}}(s\mathsf{T}_{\mathsf{eik}}) \sum_{j=1}^m d_j \mathsf{c}_{\mathsf{in}}(\kappa_j)$$

・ロン ・四 と ・ 日 と ・ 日 ・

1D Explanation Grid Coarsening Full MIMO algorithm

Summary of Phase preconditioning

 Can't precondition spectral problem unless you have exact pole zero cancelation

$$\mathsf{A}(s)\mathsf{u}^\ell - s^2\mathsf{u}^\ell = \mathsf{b}^\ell$$

- But if RKS-ROM is dominated by solving systems and not by evaluating projections ⇒ increase basis
- Enhance convergence by adding (asymptotically) meaningful vectors
- Frequency dependent basis can be seen as spectral weighting, deweight residues far from *s* (allows extrapolation)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Grid Coarsening

FD grid requirements

- ROM can extrapolate to high frequencies
- Spatially c_{out} and c_{in} are much smoother then u
- \bullet \Rightarrow We can compute a basis for $c_{in/out}$ on a much coarser grid then required for FDFD/FDTD method (Projection accurate Operator)
- Correct numerical dispersion by matching

$$\frac{\exp(2s\mathsf{T}^\ell_{\mathsf{eik}})}{s^2}|\nabla_h\cdot\exp(-s\mathsf{T}^\ell_{\mathsf{eik}})|^2=\frac{1}{v^2}$$

Scaling of the problem in 3D: Reduced order modeling

N unknowns in one spatial direction

- **1** No of Frequency points: $\propto N$: preconditioned ROM
- 2 Source/Receiver scaling: $\propto N^2$
- Spatial scaling: $\propto N^3$: Coarse grid c_{in/out} computation

1D Explanation Grid Coarsening Full MIMO algorithm

MIMO extension of algorithm

- Generalization to higher dimensions by decomposing into dimension specific asymptotic functions
- MIMO extension to block algorithm
- \bullet Compute $c^\ell_{\rm out/in}$ for every source location ℓ from block solution

$$(\mathsf{A}(\sigma_j) + \sigma_j^2 \mathsf{I})^{-1}\mathsf{B}$$
, with $\mathsf{B} = [\mathsf{b}^1, \dots, \mathsf{b}_{\mathsf{src}}^N]$

 \bullet Compress $c^\ell_{\mathrm{out/in}}$ basis with truncated SVD to reduce basis

$$\mathsf{u}_{\mathit{m}}^{\ell}(s) = \sum_{l=1}^{N_{\mathsf{src}}} \left(\mathsf{g}_{\mathsf{asym}}(s\mathsf{T}_{\mathsf{eik}}^{l}) \sum_{j=1}^{N_{\mathsf{SVD}}} a_{j;l} \mathsf{c}_{\mathsf{out}}^{\mathsf{SVD}} + \bar{\mathsf{g}}_{\mathsf{asym}}(s\mathsf{T}_{\mathsf{eik}}^{l}) \sum_{j=1}^{N_{\mathsf{SVD}}} d_{j;l} \mathsf{c}_{\mathsf{in}}^{\mathsf{SVD}} \right)$$

1D Explanation Grid Coarsening Full MIMO algorithm

MIMO extension of algorithm

- $\bullet~$ Important singular vectors $c_{out/in}^{SVD}$ weakly dependent on source location
- We don't have to solve $(A(\kappa_j) \kappa_j^2 I)^{-1} b^\ell$ for every ℓ
- $\bullet \Rightarrow \mathsf{source\ compression}/\mathsf{Compressions\ of\ right\ hand\ sides}$

Scaling of the problem in 3D: Reduced order modeling

N unknowns in one spatial direction

- **(**) No of Frequency points: \propto *N*: preconditioned ROM
- **②** Source/Receiver scaling: $\propto N^2$: Source compression
- **③** Spatial scaling: $\propto N^3$: Coarse grid c_{in/out} computation

1D Explanation Grid Coarsening Full MIMO algorithm

Algorithm Overview

- **(**) Compute T^{ℓ} via fast marching method
- 2 Solve shifted systems with a coarse operator $(A_{\text{coarse}}(\kappa_j) \kappa_j^2 I)^{-1} b^{\ell}$
- $\textcircled{O} Decompose into amplitudes c_{out/in}^{SVD} and apply SVD$
- Solutions real basis $V_m(s)$ spanning

$$\mathcal{K}_{\mathsf{EIK};\mathsf{R}}^{4m}(\kappa,s) = \operatorname{span}\left\{\Re\mathcal{K}_{\mathsf{EIK}}^{2m}(\kappa,s),\Im\mathcal{K}_{\mathsf{EIK}}^{2m}(\kappa,s)\right\}$$

$$\mathcal{K}^{2m}_{\mathsf{EIK}}(\kappa, s) = \operatorname{span}\{\mathsf{g}_{\mathsf{asym}}(s\mathsf{T}'_{\mathsf{eik}})\mathsf{c}^{\mathsf{SVD}}_{1,\mathsf{out}}, \dots, \bar{\mathsf{g}}_{\mathsf{asym}}(s\mathsf{T}'_{\mathsf{eik}})\mathsf{c}^{\mathsf{SVD}}_{1,\mathsf{in}}, \dots\}$$

$$\mathsf{F}_m(\mathsf{B},\mathsf{B},s) = \mathsf{B}^H \mathsf{V}_m(\mathsf{V}_m^H \mathsf{W}(s) \mathsf{A}_{\mathrm{fine}}(s) \mathsf{V}_m - s^2 \mathsf{I})^{-1} \mathsf{V}_m^H \mathsf{B}$$

1D Explanation Grid Coarsening Full MIMO algorithm

Algorithm Overview

Evaluation shots \cdot Frequencies $\gg \#$ interpolation shots \cdot Frequencies

Smooth Marmousi Examples Rough Marmousi Examples Conclusion

Smooth Layered medium

- Smooth layered medium
- Acoustic wave equation
- Travel time dominated
- 5 Sources and 5 Receivers
- No grid coarsening $\Delta x = 4m$

・ロン ・回 と ・ 回 と ・

. ⊒ . ⊳

Smooth Marmousi Examples Rough Marmousi Examples Conclusion

Smooth Layered medium

Convergence Smooth Layered medium

- RKS has double interpolation (2x better then Nyquist)
- $\bullet\,$ Phase preconditioning reduces the iteration count by a factor ≈ 4
- Equidistant shifts on imaginary line

Time Domain Error in dependence of iterations

Convergence Smooth Layered medium

- RKS has double interpolation (2x better then Nyquist)
- $\bullet\,$ Phase preconditioning reduces the iteration count by a factor ≈ 4
- Equidistant shifts on imaginary line

Time Domain Error in dependence of iterations

• \Rightarrow Let us introduce grid coarsening!

Smooth Marmousi Examples Rough Marmousi Examples Conclusion

Grid Coarsening

- Asymptotically corrected ROM can extrapolate
- \bullet Coarse Grid approach: solve amplitudes $c_{out/in}$ on coarse grid
- Galerkin and evaluation with finer operator
- Grid coarsening factor 4 (all directions) $\Delta x = 16m$
- Gaussian pulse (center: 5.5 ppw, cutoff 2.7 ppw).

・ロト ・回ト ・ヨト

≣⇒

Smooth Marmousi Examples Rough Marmousi Examples Conclusion

Frequency Domain Error

- From 100ppw-5ppw we use 40 equidistant shifts
- Truncate c_{in/out} SVD after 50 basis functions
- Average error of traces < 1%
- extrapolation error < 5%
- Gaussian pulse supported in interpolation and extrapolation part

・ロト ・回ト ・ヨト

23

 $\exists \rightarrow$

Smooth Marmousi Examples Rough Marmousi Examples Conclusion

Time Domain Comparison

Most distant source receiver pair well approximated. FDTD with 10000 steps has worth accuracy.

Smooth Marmousi Examples Rough Marmousi Examples Conclusion

Time Domain Comparison

- Clear advantage of ROM over Direct evaluation of the same grid
- Both cases are second order finite differences
- Comparison solution: 8 times finer Grid

・ロン ・回 と ・ 回 と ・

.≣⇒

25

Smooth Marmousi Examples Rough Marmousi Examples Conclusion

Time Domain Comparison

- Clear advantage of ROM over Direct evaluation of the same grid
- Both cases are second order finite differences
- Comparison solution: 8 times finer Grid

・ロン ・回 と ・ 回 と ・

• How about non smooth media?

.≣⇒

Smooth Marmousi Examples Rough Marmousi Examples Conclusion

Grid Coarsening: No smoothing

- Same setup without smoothing
- Asymptotic solutions loose validity
- Galerkin approach still valid

э

Smooth Marmousi Examples Rough Marmousi Examples Conclusion

Frequency Domain Error

- From 100ppw-5ppw we use 40 equidistant shifts
- Truncate c_{in/out} SVD after 75 basis functions
- Substantially larger error
- worse extrapolation

э

Smooth Marmousi Examples Rough Marmousi Examples Conclusion

Time Domain Comparison

Important features of TD signal still reproduced. Small amplitude shift.

・ロト・(日)・(日)・(日)・(日)・(日)

Conclusions

- Main cost is # of coarse frequency domain solves
 ⇒ easy to parallelize
- Compression of model can be used in inversion for efficient computation and storage of Jacobian
- Computational cost is dependent on model complexity, but only weakly on time interval (vs linear dependence of FDTD)
- Model order approach can reduce all 3 aspects of 3D problem
 - **(**) No of Frequency points: \propto *N*: preconditioned ROM
 - **2** Source/Receiver scaling: $\propto N^2$: Source compression
 - O Spatial scaling: $\propto N^3$: Coarse grid $c_{in/out}$ computation
- 2.7 ppw for smooth problem
- generalizable to other PDEs with asymptotic solutions

Phase-preconditioned Rational Krylov Subspaces for model reduction of large-scale wave propagation

Jörn Zimmerling², V. Druskin¹, R.F. Remis², and M. Zaslavsky¹ 1 Schlumberger Doll Research, 2 Delft University of Technology

NL2A, CIRM Luminy

28 October 2016

<ロ> (四) (四) (注) (注) (注) (三)

Smooth Marmousi Examples Rough Marmousi Examples Conclusion

Grid Coarsening: Complex medium

- Complex Marmousi model
- 18 Source Receiver pairs

Smooth Marmousi Examples Rough Marmousi Examples Conclusion

Eikonal Solutions

・ロ・・雪・・雨・・雨・ 「肉・ヘー・

Smooth Marmousi Examples Rough Marmousi Examples Conclusion

FD Domain Comparison

Well approximated until 4ppw. Less then 1ppw for first arrival.

TD Domain Comparison

Shifted Gaussian Wavelet applied to FD data with 3.5 ppw cut-off.

