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Problem Definition

Solving wave equation for multiple
sources and receivers in a frequency
range

∆u` − s2

v2
u` = δ(x − x`S)

Transfer function from sources to
receivers f (xR, xS, s)

Scaling of the problem in 3D:

N unknowns in one spatial direction

1 No of Frequency points: ∝ N
2 Source/Receiver scaling: ∝ N2

3 Spatial scaling: ∝ N3

Explorational Geophysics
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Problem Formulation

After finite difference discretization with PML

A(s)u` − s2u` = b`

(Laplace) frequency dependent A(s) caused by PML

Stepsizes in PML: hj = αj +
βj
s

Transfer function from sources to receivers

F(R,B, s) = RTW(s)(A(s)− s2I)−1B

W(s) a is diagonal weight matrix with FD-voxel weight

Reduced order modeling of transfer function over frequency range

Rational Krylov subspaces for ROM
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Problem Formulation

A(s) passive and causal

W {A(s)} =
{
s ∈ C : xHA(s)x = 0∀x ∈ Ck\0

}
<W

{
A(s)− s2I

}
< 0

A is self-adjoint in W-bilinear form due to reciprocity

F(R,B, s) = F(B,R, s)⇒W(s)A(s) = AT (s)W(s)

Schwartz reflection principle A(s̄) = Ā(s)
(conjugation symmetry of spectrum)

Preserve this structure during RKS

Motivation
FD grid over discretized w.r.t. Nyquist
approximation F(R,B, s) to noise level

PML introduces losses
limited I/O map
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Reduced Order Modeling

Projection based ROM u = um + εm, with um ∈ Vm,

Coefficients from the Galerkin condition (A(s)− s2I)εm⊥W(s) Vm

Reduced order solution after projection

u` = (A(s)− s2I)−1b`

⇒u`m = Vm(VH
mA(s)Vm − s2I)−1VH

mb`

⇒Fm = RTVm(VH
mA(s)Vm − s2I)−1VH

mB

Define Rational Krylov subspace with shifts κ = [κ1, . . . , κm]

Km(κ) = span{(A(κ1)− κ21I)−1b`, . . . , (A(κm)− κ2mI)−1b`}
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Structure preserving rational Krylov subspace approach

To preserve Schwarz-reflection principle we project onto the real space

Km
R (κ) = span{<Km(κ),=Km(κ)}

Reduced order model Hm(s) obtained by projection onto basis Vm in
symmetry preserving from

Hm(s) = VH
mW(s)A(s)Vm

Reduced order model Hm(s)

ROM tranferfunction interpolates on κ̄ ∪ κ, (if R = B tangentially)
symmetric
passive
follows Schwarz-reflection principle

(Nonlinear) numerical range of reduced operator lies in convex hull of
the numerical range of full operator
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RKS example: 100 x 100 dielectric box
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(a) Wavespeed in the box configuration.
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(b) Imaginary part transfer function.
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Problem of RKS

In geophysical structures we typically
have late arrivals

Late arrival means oscillatory Frequency

domain (∗δ(t − T )
L−→ · exp(−sT ))

FD frequency domain sampling at
Nyquist rate ∆s = iπ/T arr

max
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Idea of phase-preconditioning

Precondition the RKS by incorporating travel time information

Eikonal Solution: |∇T |2 = 1
v2

Can we factor out main oscillations?
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Decomposition in 1D
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Consider a layered medium of 3 Layers

Outgoing and incoming waves

Decompose into cout(κj) exp(−κjTeik), and cin(κj) exp(κjTeik)

cout/in obtainable form one way wave equations
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Decomposition in 1D
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Decomposition in 1D
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After 3 iterations cout(κj) exp(−sTeik), and cin(κj) exp(sTeik) form a
basis for ALL solutions (iff linear independent)

u(s) ∈ span{cout(κ1) exp(−sTeik), . . . , cin(κ1) exp(sTeik), . . . }

Required iterations are dependent on complexity of medium (layers)
not on arrival time
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Summary of Phase preconditioning

Theorem - (analytical)

For a one-dimensional problem, with k homogenous layers and an
arbitrarily located source, there exist m ≤ k + 1 non-coinciding
interpolation points, such that the solution u(s) ∈ K2m

EIK;R(κ, s)∀s

K2m
EIK(κ, s) = span{ exp(−sTeik)cout(κ1), . . . , exp(−sTeik)cout(κm),

exp( sTeik)cin (κ1), . . . , exp( sTeik)cin (κm)}

General: Correct amplitudes cout/in with asymptotic solution s → i∞
gasym and project problem

um(s) = gasym(sTeik)
m∑
j=1

ajcout(κj) + ḡasym(sTeik)
m∑
j=1

djcin(κj)
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Summary of Phase preconditioning

Can’t precondition spectral problem unless you have exact pole zero
cancelation

A(s)u` − s2u` = b`

But if RKS-ROM is dominated by solving systems and not by
evaluating projections ⇒ increase basis

Enhance convergence by adding (asymptotically) meaningful vectors

Frequency dependent basis can be seen as spectral weighting,
deweight residues far from s (allows extrapolation)
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FD grid requirements

ROM can extrapolate to high frequencies

Spatially cout and cin are much smoother then u

⇒ We can compute a basis for cin/out on a much coarser grid then
required for FDFD/FDTD method (Projection accurate Operator)

Correct numerical dispersion by matching

exp(2sT`eik)

s2
|∇h · exp(−sT`eik)|2 =

1

v2

Scaling of the problem in 3D: Reduced order modeling

N unknowns in one spatial direction

1 No of Frequency points: ∝ N: preconditioned ROM

2 Source/Receiver scaling: ∝ N2

3 Spatial scaling: ∝ N3 : Coarse grid cin/out computation
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MIMO extension of algorithm

Generalization to higher dimensions by decomposing into dimension
specific asymptotic functions

MIMO extension to block algorithm

Compute c`out/in for every source location ` from block solution

(A(σj) + σ2j I)−1B, with B = [b1, . . . , bN
src]

Compress c`out/in basis with truncated SVD to reduce basis

u`m(s) =
Nsrc∑
l=1

gasym(sTl
eik)

NSVD∑
j=1

aj ;lc
SVD
out + ḡasym(sTl

eik)

NSVD∑
j=1

dj ;lc
SVD
in


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MIMO extension of algorithm

Important singular vectors cSVDout/in weakly dependent on source location

We don’t have to solve (A(κj)− κ2j I)−1b` for every `

⇒ source compression/Compressions of right hand sides

Scaling of the problem in 3D: Reduced order modeling

N unknowns in one spatial direction

1 No of Frequency points: ∝ N: preconditioned ROM
2 Source/Receiver scaling: ∝ N2: Source compression
3 Spatial scaling: ∝ N3 : Coarse grid cin/out computation
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Algorithm Overview

1 Compute T` via fast marching method

2 Solve shifted systems with a coarse operator (Acoarse(κj)− κ2j I)−1b`

3 Decompose into amplitudes cSVDout/in and apply SVD

4 Evaluate reduced order solutions real basis Vm(s) spanning

K4m
EIK;R(κ, s) = span

{
<K2m

EIK(κ, s),=K2m
EIK(κ, s)

}
K2m

EIK(κ, s) = span{gasym(sTl
eik)cSVD1,out, . . . , ḡasym(sTl

eik)cSVD1,in , . . . }

Fm(B,B, s) = BHVm(VH
mW(s)Afine(s)Vm − s2I)−1VH

mB
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Algorithm Overview

Main cost: solving coarse
wave problem single source
& frequency

Communication cost n · log n
with n processors

Main part of algorithm
embarrassingly parallelizable
(frequency and RHS)

Initialize Sim

Compute Teik

Solve single

shot/frequency

coarse Problem

Embarrassingly

Parallel

SVD of

C1 & C2

Evaluate

ROM Single

Frequency

Embarrassingly

Parallel

Compute

Fourier

Transform

# Evaluation shots · Frequencies � # interpolation shots · Frequencies
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Smooth Layered medium

Smooth layered medium

Acoustic wave equation

Travel time dominated

5 Sources and 5 Receivers

No grid coarsening ∆x = 4m
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Smooth Layered medium
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Contour plot of the eikonal
solution
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Frequency domain transfer function from the
left most source to the right most receiver

(Real Part)
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Convergence Smooth Layered medium

RKS has double interpolation (2x better then Nyquist)
Phase preconditioning reduces the iteration count by a factor ≈ 4
Equidistant shifts on imaginary line
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⇒ Let us introduce grid coarsening!
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Convergence Smooth Layered medium

RKS has double interpolation (2x better then Nyquist)
Phase preconditioning reduces the iteration count by a factor ≈ 4
Equidistant shifts on imaginary line
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⇒ Let us introduce grid coarsening! 21
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Grid Coarsening

Asymptotically corrected ROM can
extrapolate

Coarse Grid approach: solve amplitudes
cout/in on coarse grid

Galerkin and evaluation with finer
operator

Grid coarsening factor 4 (all directions)
∆x = 16m

Gaussian pulse (center: 5.5 ppw, cutoff
2.7 ppw).
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Frequency Domain Error

From 100ppw-5ppw we use 40
equidistant shifts

Truncate cin/out SVD after 50
basis functions

Average error of traces < 1%

extrapolation error < 5%

Gaussian pulse supported in
interpolation and extrapolation
part
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Time Domain Comparison

Most distant source receiver pair well approximated. FDTD with 10000
steps has worth accuracy.
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Time Domain Comparison

Clear advantage of ROM over
Direct evaluation of the same
grid

Both cases are second order
finite differences

Comparison solution: 8 times
finer Grid
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How about non smooth media?
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Grid Coarsening: No smoothing

Same setup without smoothing

Asymptotic solutions loose validity

Galerkin approach still valid
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Frequency Domain Error

From 100ppw-5ppw we use 40
equidistant shifts

Truncate cin/out SVD after 75
basis functions

Substantially larger error

worse extrapolation
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Time Domain Comparison

Important features of TD signal still reproduced. Small amplitude shift.
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Conclusions

Main cost is # of coarse frequency domain solves
⇒ easy to parallelize

Compression of model can be used in inversion for efficient
computation and storage of Jacobian

Computational cost is dependent on model complexity, but only
weakly on time interval (vs linear dependence of FDTD)

Model order approach can reduce all 3 aspects of 3D problem
1 No of Frequency points: ∝ N: preconditioned ROM
2 Source/Receiver scaling: ∝ N2: Source compression
3 Spatial scaling: ∝ N3 : Coarse grid cin/out computation

2.7 ppw for smooth problem

generalizable to other PDEs with asymptotic solutions
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Grid Coarsening: Complex medium

Complex Marmousi
model

18 Source Receiver pairs
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Eikonal Solutions
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FD Domain Comparison

Well approximated until 4ppw. Less then 1ppw for first arrival.
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TD Domain Comparison

Shifted Gaussian Wavelet applied to FD data with 3.5 ppw cut-off.
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