A Fast Contour-Integral Eigensolver for Non-Hermitian Matrices and the Approximation Accuracy

Jianlin Xia

Department of Mathematics Purdue University, USA

Joint work:

Raymond H. Chan (CUHK)

James Vogel, Xin Ye (Purdue)

NL2A, CIRM, Oct 25, 2016

Overview

- Introduction
- Fast contour-integral eigenvalue solution for non-Hermitian matrices: filter function, eigenvalue count
- Eigenvalue accuracy subject to certain matrix approximations
- Superfast divide-and-conquer eigenvalue decomposition for structured Hermitian matrices
- Numerical tests

Eigenvalue solutions

 $Aq = \lambda q, \quad A: n \times n$

• Hermitian and non-Hermitian eigenvalue solutions

Power/inverse/subspace iterations, Jacobi's method, QR iterations, Rayleigh-ritz iterations, bisection and inverse iterations, divide-and-conquer,

- Major operations
 - Matrix transformations and reductions
 - Matrix factorizations
 - Matrix-matrix and matrix-vector multiplications
 - Linear system solutions
- Costs
 - \circ Typically $O(n^3)$ flops
 - $\circ \quad O(n^2) \text{ or even } O(n) \text{ possible}$

Structured eigenvalue problems

- Selected examples
 - Companion matrix (polynomial roots) & related ($O(n^2)$ cost) [Benner, Bini, Chandrasekaran, Eidelman, Gemignani, Gohberg, Gu, Kailath, Mastronardi, Olshevsky, Pan, Van Barel, Van Dooren, Vandebril, Watkins, Xia, et al.]
 - \circ Toeplitz ($\geq O(n^2) \cos$)
 - Rank-1 updated eigenproblem (since [Golub, 1973]), Hermitian tridiagonal (since [Cupen, 1981]), stablilization [Gu, Eisenstat] O(n) (eigenvalues only), $O(n^2)$ (eigendecomposition, O(n) possible)
- Our results
 - \circ $O(n^2)$ cost contour-integral eigensolver for non-Hermitian rank structured dense/sparse matrices
 - Nearly O(n) cost (superfast) eigendecomposition for Hermitian matrices with small off-diagonal ranks
 - $\circ O(n^{1.5})$ and $O(n^2)$ cost for 2D and 3D discretized sparse Hermitian A, resp.
 - Eigenvalue accuracy after structured approximations

Contour-integral based eigensolvers

- SS method [Sakurai, Sugiura] (generalized eigenvalue problem to Hankel eigenvalue problem), CIRR method [Sakurai, Tadano] (stable version)
- Hermitian FEAST [Polizzi]
- Non-Hermitian FEAST [Kestyn, Polizzi, Tang], [Yin, Chan, Yeung]

$$\phi(z) = \frac{1}{2\pi \mathbf{i}} \int_{\Gamma} \frac{1}{\mu - z} d\mu \qquad (z \notin \Gamma)$$

• Projector for eigenvalues $\{\lambda_1, \lambda_2, \dots, \lambda_s\}$ inside Γ

$$\Phi = \frac{1}{2\pi \mathbf{i}} \int_{\Gamma} (\mu I - A)^{-1} \mathrm{d}\mu = Q \left(\frac{1}{2\pi \mathbf{i}} \int_{\Gamma} (\mu I - \Lambda)^{-1} \mathrm{d}\nu \right) Q^{-1} = Q \begin{pmatrix} I_s \\ 0 \end{pmatrix} Q^{-1}$$

• Projected subspace iteration

$$\Phi Y \approx \tilde{\Phi} Y \equiv \frac{1}{2\pi \mathbf{i}} \Sigma_j w_j (\mu_j I - A)^{-1} Y \implies Q \implies Y$$

Remark: related – spectrum slicing with polynomial and rational filters [Saad, et al.]

Filter function and quadrature rules

With $\Gamma \equiv C_1(0)$ (unit circle),

$$\phi(z) = \frac{1}{2} \int_{-1}^{1} \frac{e^{i\pi t}}{e^{i\pi t} - z} dt \approx$$
$$\tilde{\phi}(z) = \frac{1}{2} \sum_{j=1}^{q} w_j \frac{e^{i\pi t_j}}{e^{i\pi t_j} - z} \equiv \frac{1}{2} \sum_{j=1}^{q} \frac{w_j z_j}{z_j - z} \equiv \frac{f(z)}{g(z)}$$

Theorem. With any interpolatory quadrature rule, for $z \in \mathbb{C}$,

- $\tilde{\phi}(0) = 1;$
- $|\tilde{\phi}(z)| > \frac{1}{2}$ when |z| < 1;
- $|\tilde{\phi}(z)| < \frac{1}{\delta}$ when $|z_j z| > \delta > 0, \ j = 1, 2, \dots, q.$

Proof. When |z| < 1, by $|z_j\overline{z} + \overline{z_j}z| \le 2|z| < 1 + |z|^2 < 2$,

$$\operatorname{Re}(\tilde{\phi}(z)) = \frac{1}{4} \sum_{j=1}^{q} \left(\frac{w_j z_j}{z_j - z} + \frac{w_j \overline{z_j}}{\overline{z_j} - \overline{z}} \right) = \frac{1}{4} \sum_{j=1}^{q} w_j \frac{2 - (z_j \overline{z} + \overline{z_j} z)}{1 + |z|^2 - (z_j \overline{z} + \overline{z_j} z)} > \frac{1}{2}$$

Filter function with optimal decay property

With $\Gamma \equiv C_1(0)$ (unit circle),

$$\phi(z) = \frac{1}{2} \int_{-1}^{1} \frac{e^{i\pi t}}{e^{i\pi t} - z} dt \approx$$
$$\tilde{\phi}(z) = \frac{1}{2} \sum_{j=1}^{q} w_j \frac{e^{i\pi t_j}}{e^{i\pi t_j} - z} \equiv \frac{1}{2} \sum_{j=1}^{q} \frac{w_j z_j}{z_j - z} \equiv \frac{f(z)}{g(z)}$$

On the decay property away from Γ , noticing $\deg f \geq 0$:

Theorem. f(z) in $\tilde{\phi}(z) = \frac{f(z)}{g(z)} = \frac{f(z)}{\prod_{j=1}^{q}(z-z_j)}$ satisfies

 $\left\{ \begin{array}{ll} \deg(f) = 0 \ (\text{in fact, } f = (-1)^{q+1}), & \text{with Trapezoidal rule} \\ \deg(f) \geq 1, & \text{with Gauss-Legendre rule} \end{array} \right.$

Remark. Optimization/least squares strategies for filter function design [Van Barel], [Xi, Saad]; numerical observations for the Trapezoidal filter [Tang, et al.]

Filter function with optimal decay property

Sketch of Proof. Trapezoidal rule:

$$g(z) = z^{q} - (-1)^{q}$$

$$f(z) = -\frac{1}{2} \sum_{j=1}^{q} w_{j} z_{j} \prod_{i \neq j} (z - z_{i}) \equiv \sum_{j=1}^{q} C_{q-k} z^{q-k}$$

$$C_{q-k} = \frac{k}{q} \Big[(-1)^{k} \sum_{1 \le i_{1} < i_{2} < \dots < i_{k} \le q} z_{i_{1}} z_{i_{2}} \cdots z_{i_{k}} \Big] = \begin{cases} 0, & 1 \le k \le q-1 \\ (-1)^{q+1}, & k = q \end{cases}$$

Gauss-Legendre rule, by contradiction:

$$S_{k} = \{(i_{1}, i_{2}, \dots, i_{k}) : 1 \leq i_{1} < i_{2} < \dots < i_{k} \leq q\}$$

$$C_{k} = \left((-1)^{q-k} \sum_{(i_{1}, i_{2}, \dots, i_{k}) \in \mathcal{S}_{k}} z_{i_{1}} z_{i_{2}} \cdots z_{i_{k}}\right) - (-1)^{q-2k} C_{q-k}$$

$$\prod_{i=1}^{q} z_{j} = 1, \sum_{(i_{1}, \dots, i_{k}) \in \mathcal{S}_{k}} z_{i_{1}} \cdots z_{i_{k}} = 0, \quad 1 \leq k \leq q-1 \implies z_{j}^{q} + (-1)^{q} = 0$$

Filter function with optimal decay property

8-point Trapezoidal

16-point Trapezoidal

8-point Gauss-Legendre

16-point Gauss-Legendre

Fast and superfast eigensolvers

Jianlin Xia (Purdue) - 7 / 21

Contour-integral eigenvalue solution with subspace iteration

$$\Phi \equiv \phi(A) = \frac{1}{2\pi \mathbf{i}} \int_{\Gamma} (\mu I - A)^{-1} d\mu$$

- Subspace iteration with projection (SS, FEAST)
 - \circ $\;$ Decide eigenvalue count $k=\#_\Lambda(A,\Gamma)$ inside a region enclosed by Γ
 - $\circ \quad Y \text{: random } n \times k$
 - Repeat until convergence
 - $\Phi Y \approx \sum_{j=1}^{q} c_j (z_j I A)^{-1} Y$ orthonormalized
 - Project and solve reduced eigenvalue problem
 - $Y \leftarrow$ recovered approximate eigenvectors
- Inexact eigenvalue count
 - Oversampling is suggested [Polizzi, Tang, et al.]
 - Randomized trace estimation $\frac{1}{m} \operatorname{trace}(\tilde{Y}^T \Phi \tilde{Y})$ [Hutchinson]
- Linear solutions for multiple shifts and multiple right-hand sides

Eigenvalue count after low-accuracy matrix approximation

Lemma. A: Hermitian. $\tilde{A} \approx A$ with accuracy δ . If s (shift) $\in [\lambda_{i+1}, \lambda_i]$, $\lambda_i - \lambda_{i+1} > 2\delta$, then

$$|n_{-}(A - sI) - n_{-}(\tilde{A} - sI)| = 0 \text{ or } 1$$

and it may be 1 only if $|\lambda_i - s| \leq \delta$ or $|\lambda_{i+1} - s| \leq \delta$

Theorem. A: Non-Hermitian. $\tilde{A} \approx A$ with accuracy τ , $\delta \equiv \max_i \kappa(\lambda_i)\tau < \rho$, $|\lambda_i(A)| < \rho$. For any $0 < \gamma < \rho$ and $z \in \mathbb{C}$, let

$$\mathcal{A}_{\gamma,\delta}(z) = \{\omega \in \mathbb{C} : \gamma - \delta < |\omega - z| < \gamma + \delta\}$$

1. If A has no eigenvalue inside $\mathcal{A}_{\gamma,\delta}(z)$, then

$$\#_{\Lambda}(A, \mathcal{C}_{\gamma}(z)) = \#_{\Lambda}(\tilde{A}, \mathcal{C}_{\gamma}(z))$$

2. If $|\#_{\Lambda}(A, C_{\gamma}(z)) - \#_{\Lambda}(\tilde{A}, C_{\gamma}(z))| \ge \alpha$ for an integer $\alpha > 0$, then there must be at least α eigenvalues of A inside $\mathcal{A}_{\gamma,\delta}(z)$

Probability estimates and approximation accuracy

$$\mathcal{A}_{\gamma,\delta}(z) = \{\omega \in \mathbb{C} : \gamma - \delta < |\omega - z| < \gamma + \delta\}$$

Lemma. (Randomly distributed eigenvalues) Let

$$\mathcal{D}_{\rho}(0) = \{z : |z| < \rho\}$$

Suppose the eigenvalues λ of A are uniformly i.i.d. in $\mathcal{D}_{\rho}(0)$. Then for any fixed $z \in \mathbb{C}$ and $\gamma, \delta \in (0, \rho)$, the probability for any λ to lie inside $\mathcal{A}_{\gamma,\delta}(z)$ is

$$\Pr\{\lambda \in \mathcal{A}_{\gamma,\delta}(z)\} \le \mathcal{P} \equiv \frac{4\delta \max(\gamma, \delta)}{\rho^2}$$

Lemma. (Randomly placed circles) Suppose λ is a fixed point in the complex plane, z is uniformly i.i.d. in $\mathcal{D}_{\rho}(0)$, γ is random and uniformly distributed on $(0, \rho)$, and z and γ are independent. Then for any $\delta \in (0, \rho)$,

$$\Pr\{\lambda \in \mathcal{A}_{\gamma,\delta}(z)\} < 2\frac{\delta}{\rho} + \frac{1}{3}\left(\frac{\delta}{\rho}\right)^3$$

Fast and superfast eigensolvers

Jianlin Xia (Purdue) - 10 / 21

Probability of miscounting eigenvalues with low-accuray matrix approximation

Theorem. Let

A: approximation with accuracy bounded by $\delta < \rho$ λ : uniformly i.i.d. in $\mathcal{D}_{\rho}(0)$; $\mathcal{P} \equiv \frac{4\delta \max(\gamma, \delta)}{\rho^2}$ Then for any integer $\alpha \ge n\mathcal{P}$ and fixed $z \in \mathbb{C}$ and $\alpha \in (0, \alpha)$

Then for any integer $\alpha \geq n\mathcal{P}$ and fixed $z \in \mathbb{C}$ and $\gamma \in (0, \rho)$,

$$\Pr\{|\#_{\Lambda}(A, \mathcal{C}_{\gamma}(z)) - \#_{\Lambda}(\tilde{A}, \mathcal{C}_{\gamma}(z))| \ge \alpha\}$$
$$\le \frac{(\alpha + 1)}{\alpha + 1 - (n + 1)\mathcal{P}} \binom{n}{\alpha} \mathcal{P}^{\alpha} (1 - \mathcal{P})^{n - \alpha + 1}$$

γ	δ	Bound for $\Pr\{ \#_{\Lambda}(A, \mathcal{C}_{\gamma}(z)) - \#_{\Lambda}(\tilde{A}, \mathcal{C}_{\gamma}(z)) \ge \alpha\}$						
		$\alpha = 1$	$\alpha = 2$	$\alpha = 3$	$\alpha = 4$	$\alpha = 5$		
	1e - 1	3.99e - 3	7.97e - 6	1.06e - 8	1.06e - 11	8.45e - 15		
100	1e - 2	4.00e - 4	7.99e - 8	1.06e - 11	1.06e - 15	8.48e - 20		
	1e - 3	4.00e - 5	7.99e - 10	1.06e - 14	1.06e - 19	8.48e - 25		
$\mathbf{A} = \mathbf{A} + $								

A Cauchy-like example with $n = 1600, \ \rho = 4000$

Fast eigenvalue decomposition for structured matrices

- Rank structured (HSS) matrices
 - Approximation accuracy conveniently controlled by off-diagonal compression
 - $\circ~$ Shifted ULV factorization update (saving: $40\% \sim 60\%$)

$$A = ULV^* \implies \mu I - A = \tilde{U}\tilde{L}\tilde{V}^*$$

- Quadsection/eigenvalue count stage
 - \circ ~~ Find $\tilde{A}\approx A$ with low-accuracy and pre-factorize \tilde{A}
 - Apply Trapezoidal rule $\tilde{Z} = \frac{1}{2\pi i} \sum_{j} w_j (\mu_j I \tilde{A})^{-1} Y$ (Y: skinny and random)
 - If $\#_{\Lambda}(A, \Gamma) \approx \frac{1}{m} \operatorname{trace}(Y^T \tilde{Z}) \ll K$ (threshold), quadsect and repeat; otherwise, mark as target subregion
- Eigenvalue solution stage via projected subspace iterations
 - Shifted factorization update
 - Deflation/locking

Proposition. For structured matrices with off-diag rank r, optimal threshold: K = O(r), complexity: $O(rn^2)$

Fast and superfast eigensolvers

Jianlin Xia (Purdue) – 12 / 21

Hermitian eigensolver: superfast HSS divide-and-conquer

$$D_{\mathbf{i}} = \begin{pmatrix} D_{\mathbf{c}_1} & \\ & D_{\mathbf{c}_2} \end{pmatrix} + \begin{pmatrix} U_{\mathbf{c}_1} & \\ & U_{\mathbf{c}_2} \end{pmatrix} \begin{pmatrix} B_{\mathbf{c}_1} & \\ B_{\mathbf{c}_1}^T & \end{pmatrix} \begin{pmatrix} U_{\mathbf{c}_1}^T & \\ & U_{\mathbf{c}_2}^T \end{pmatrix}$$

— rank-2r update

$$= \begin{pmatrix} D_{\mathbf{c}_1} - U_{\mathbf{c}_1} U_{\mathbf{c}_1}^T \\ D_{\mathbf{c}_2} - U_{\mathbf{c}_2} B_{\mathbf{c}_1}^T B_{\mathbf{c}_1} U_{\mathbf{c}_2}^T \end{pmatrix} + \begin{pmatrix} U_{\mathbf{c}_1} \\ U_{\mathbf{c}_2} B_{\mathbf{c}_1}^T \end{pmatrix} \begin{pmatrix} U_{\mathbf{c}_1} & U_{\mathbf{c}_2} B_{\mathbf{c}_1}^T \end{pmatrix} \\ \equiv \begin{pmatrix} \tilde{D}_{\mathbf{c}_1} \\ \tilde{D}_{\mathbf{c}_2} \end{pmatrix} + ZZ^T$$

- rank-r update

HSS form of $D_{\mathbf{c}_i}$: same off-diagonal basis (structure fully preserved)

Rank structured (HSS) divide-and-conquer – conquering

$$\begin{aligned} \operatorname{diag}(\tilde{D}_{\mathbf{c}_{1}}, \tilde{D}_{\mathbf{c}_{2}}) + ZZ^{T} \\ &= \begin{pmatrix} \tilde{Q}_{\mathbf{c}_{1}} \\ & \tilde{Q}_{\mathbf{c}_{2}} \end{pmatrix} (Q^{(1)} \cdots Q^{(i-1)}) \begin{pmatrix} \begin{pmatrix} \tilde{\Lambda}_{\mathbf{c}_{1}}^{(i-1)} \\ & \tilde{\Lambda}_{\mathbf{c}_{2}}^{(i-1)} \end{pmatrix} + \sum_{j=1}^{i} v^{(j)} (v^{(j)})^{T} \\ & \cdot (Q^{(1)} \cdots Q^{(i-1)})^{T} \begin{pmatrix} \tilde{Q}_{\mathbf{c}_{1}}^{T} \\ & \tilde{Q}_{\mathbf{c}_{2}}^{T} \end{pmatrix} = Q_{\mathbf{i}} \Lambda_{\mathbf{i}} Q_{\mathbf{i}}^{T} \end{aligned}$$

Fast and stable eigenvalue/eigenvector computations

- Modified Newton's method with the Middle Way [R.-C. Li], and fast multipole method (FMM) acceleration with kernel $\phi(x) = \frac{1}{x}$ or $\frac{1}{x^2}$ [Gu, Eisenstat]
- Stable computation of eigenvectors with Löwner's formula, and FMM acceleration with kernel $\phi(x) = \log x$ [Gu, Eisenstat]

Theorem. The off-diagonal numerical rank is bounded by $O(r \log^2 n)$:

$$Q: \{Q_1, \dots, Q_k\}, \quad Q_i = Q_i^{(1)} \cdots Q_i^{(r)}$$

Fast and superfast eigensolvers

Jianlin Xia (Purdue) - 14 / 21

 O_2

Complexity and generalizations

	General symmetric HSS	Banded (finite bw)	Toeplitz
Eigendecomposition	$O(r^2 n \log n) + O(r n \log^2 n)$	$O(n\log^2 n)$	$O(n\log^3 n)$
Eigenmatrix-vec	$O(rn\log n)$	$O(n\log n)$	$O(n\log^2 n)$
Storage	$O(rn\log n)$	$O(n\log n)$	$O(n\log^2 n)$

- General Hermitian discretized matrices (attractive for shifted factorization)
 - Sparse discretized matrices

50	\mathbf{x}_{i}	1			
100	X	1.1			2
150	×	¥ 18.			
200		1 A. C.			
250	19 A. 18	- C X	e		- e
300		1	×. ;		-12
350			X		1.1
400				×	1
450				<u> </u>	201
500	Sec. 1	2.18	25 14	<u>e 18</u>	
0	100	200 nz = 2	300 553	400	500

		Eigendecomposition	Eigenmatrix-vec	Storage
2	2D	$O(n^{3/2}\log^2 n)$	$O(n^{3/2}\log n)$	$O(n^{3/2}\log n)$
3	3D	$O(n^{5/3}\log^2 n)$	$O(n^{5/3}\log n)$	$O(n^{5/3}\log n)$

• Dense discretized matrices

3	/ 2/ / 7/	6 6

 	Eigendecomposition	Eigenmatrix-vec	Storage
2D	$O(n^2 \log n)$	$O(n^{3/2}\log n)$	$O(n^{3/2}\log n)$
3D	$O(n^{7/3}\log n)$	$O(n^{5/3}\log n)$	$O(n^{5/3}\log n)$

• Superfast SVD for non-Hermitian HSS, solution of separable PDEs

Eigenvalue accuracy after rank structured approximations

Theorem. *l*-level HSS approximation $\tilde{A} \approx A$ via off-diagonal truncation at each level: $A_{ij} = U_i B_i V_j^T + E \approx U_i B_i V_j^T, \quad ||E||_2 \leq \tau$

Then

$$\begin{split} ||A - \tilde{A} \text{ (HSS)}||_2 &\leq l\tau \text{ (attainable)} \\ |\lambda_i - \tilde{\lambda}_i| &\leq \begin{cases} l\tau, & A \text{: Hermitian} \\ \kappa(\lambda_i)l\tau + O((l\tau)^2), & \text{otherwise} \end{cases} \end{split}$$

Proof. Direct summation. To attain the error bound

$$\begin{split} E^{(l)} &\equiv \sum_{\tilde{l}=1}^{l} \operatorname{diag} \left(\begin{pmatrix} 0 & \tau I \\ \tau I & 0 \end{pmatrix}, \quad \mathbf{i:} \text{ all nodes at level } \tilde{l} \right) \\ \lambda(E^{(l)}) &= \begin{cases} \pm \tau, \pm 3\tau, \dots, \pm l\tau, & \text{if } l \text{ is odd} \\ 0, \pm 2\tau, \dots, \pm l\tau, & \text{otherwise} \end{cases} \end{split}$$

Remark. With hierarchial off-diagonal compression, the matrix approximation error bounds become $O(\tau \sqrt{rn} \log n)$ [Xi, Xia, et al.]

Fast and superfast eigensolvers

Jianlin Xia (Purdue) – 16 / 21

Bounds for selected eigenvalues

• Perturbation along certain eigenspace for well-separated eigenvalues **Corollary.** A: Hermitian. *l*-level HSS approximation $\tilde{A} \approx A$. If $|\lambda_i - \lambda_{i\pm 1}| > 2l\tau$, then

 $|\lambda_i - \tilde{\lambda}_i| \le ||Eq_i||_2$

(Based on [lpsen]. Related results in [R.-C. Li and C.-K. Li])

• Error isolation effect (based on [Paige]) A: Hermitian. If D_1 and D_2 have disjoint spectra, then to approximate eigenvalues originating from D_2 , low-accuracy structured approximations can be applied to D_1

• Perturbation in the direction of certain eigenvectors **Theorem.** [Ding, Zhou] A: non-Hermitian. If $Aq_1 = \lambda_1 q_1$, then $\lambda_i(A + q_1 v^T) = \lambda_1 + v^T q_1, \lambda_2, \dots, \lambda_n$

Fast and superfast eigensolvers

Jianlin Xia (Purdue) - 17 / 21

Eigenvalue count with low-accuracy structured approx.

			$ \#_{\Lambda}(A,$	$\mathcal{C}_{\gamma}(z)$) — #^	$\Lambda(ilde{A},\mathcal{C}_{\gamma})$	$_{\gamma}(z)) $
z	γ	$\#_{\Lambda}(A, \mathcal{C}_{\gamma}(z))$	$\tau = 10^{-1}$	10^{-2}	10^{-3}	10^{-4}	10^{-5}
			r = 4	7	9	11	14
976.8517 – 596.6716 i	109.5545	2	0	0	0	0	0
122.4701 + 395.7090i	221.7331	42	1	0	0	0	0
-250.9437 + 91.2499i	395.2032	147	1	0	0	0	0
-1029.6903 - 1599.1273i	986.0082	127	1	1	0	0	0
1646.1010 + 2850.7448i	1315.6815	10	0	0	0	0	0
$-493.2565 + 1022.0571\mathbf{i}$	1526.3885	865	0	0	0	0	0
115.6055 - 2472.7009i	2063.6158	400	2	0	0	0	0
-1014.5968 + 1995.9028i	3004.7346	1220	1	0	0	0	0
660.5523 + 507.5861i	3954.0531	1596	0	0	0	0	0

A: a 1600×1600 Cauchy-like matrix with $\rho\approx4000$

A non-Hermitian discretized matrix from Foldy-Lax formulation for studying scattering effects

n (matrix size)	800	1,600	3,200	6,400	12,800
$\max(\mathbf{e}_i)$	9.33e - 7	3.08e - 6	3.00e - 5	1.04e - 5	1.55e - 6
$\operatorname{mean}(\mathbf{e}_i)$	1.76e - 9	8.53e - 10	1.52e - 9	1.27e - 9	7.07e - 10
$\max(\mathbf{r}_i)$	8.24e - 6	3.88e - 6	4.45e - 5	6.65e - 6	1.88e - 6
$\operatorname{mean}(\mathbf{r}_i)$	8.55e - 9	6.39e - 9	1.37e - 8	1.60e - 8	1.28e - 8

Hermitian Toeplitz eigenvalue solution

Eigenvalue solution cost ξ

Structured eigenmatrix storage σ

	n	160	320	640	1280	2560
XXC14	e	2.40e - 10	1.02e - 10	5.80e - 11	4.39e - 11	3.84e - 11
	e	1.00e - 09	1.07e - 10	1.47e - 10	9.32e - 11	8.45e - 11
NEW	γ	3.49e - 09	1.49e - 09	7.38e - 10	2.53e - 10	9.99e - 11
$(au pprox 10^{-10})$	θ	1.79e - 16	3.69e - 16	7.94e - 16	6.56e - 16	8.53e - 16
	e	9.64e - 16	1.01e - 15	1.27e - 15	1.07e - 15	1.31e - 15
NEW	γ	4.14e - 15	4.40e - 15	6.69e - 15	7.62e - 15	6.26e - 15
$(\tau \approx 10^{-15})$	θ	4.25e - 16	5.33e - 16	7.24e - 16	9.37e - 16	7.18e - 16

Fast and superfast eigensolvers

Jianlin Xia (Purdue) - 20 / 21

Conclusions

Summary

- $O(n^2)$ complexity for non-Hermitian structured problems
- $\approx O(n)$ complexity eigendecomposition for Hermitian HSS matrices
- Accuracy analysis, flexible accuracy control, generalizations to PDE sol and SVD

Ongoing research directions

- Additional accuracy analysis for well-separated eigenvalues
- Eigenspace accuracy and preconditioning
- Multi-rank update Hermitian eigenvalue solution

References

- Z. Xin, J. Xia, et al., A fast contour-integral eigensolver for non-Hermitian matrices, *SIAM J. Matrix Anal. Appl.*, submitted, 2016.
- J. Vogel, J. Xia, et al., Superfast divide-and-conquer method and perturbation analysis for structured eigenvalue solutions, *SIAM J. Sci. Comput.*, 38 (2016), pp. A1358–A1382.
- J. Vogel, J. Xia, et al., Superfast divide-and-conquer eigenvalue decomposition revisited, preprint.
- Y. Xi, J. Xia, and R. Chan, A fast randomized eigensolver with structured LDL factorization update, *SIAM J. Matrix Anal. Appl.*, 35 (2014), pp. 974–996.

Fast and superfast eigensolvers

Jianlin Xia (Purdue) - 21 / 21