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Polynomial eigenvalue problems

I Polynomial matrices with m × n matrix coefficients Pi

P(λ) = λdPd + λd−1Pd−1 + · · ·+ λP1 + P0

I Want to compute the complete eigenstructure
I Finite elementary divisors
I Infinite elementary divisors
I Left and right null space structure

I Many application areas:
I Vibrating systems
I Electrical circuits
I Dynamical systems
I Differential algebraic equations



What I’ll talk about

I Companion and Fiedler matrices

I Block-Kronecker pencils (Fiedler-like)

I A new and simple proof

I Dual minimal bases

I Structure preserving backward stability

I Conclusions and extensions



Companion and Fiedler matrices

I The eigenvalues of a companion matrix

λId − C ; C =:


−pd−1 . . . −p1 −p0

1 0
. . .

. . .

1 0


are the roots of the monic polynomial (Frobenius)

p(λ) = λd + λd−1pd−1 + . . .+ λp1 + p0

I Fiedler extended this to a new family of matrices with the
same elements, but rearranged in a strange way
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Companion matrix proof

Since

λId − C =


λ+ pd−1 . . . p1 p0

−1 λ
. . .

. . .

−1 λ


we also have

(λId − C )
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...
λ
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p(λ)

0
...
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from which it follows that p(λ) = det(λId − C )
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Companion and Fiedler matrices

I The so-called Fiedler matrices can be constructed from
products of elementary factors of the type

Ak =

 Id−k−1

Ck

Ik−1

 , Ck =

[
−pk −1

1 0

]
.

I and typically contain a staircase of elements pk , e.g. (d = 4):

λI4 − F :=


λ+ p3 −1 0 0
p2 λ p1 p0

−1 0 λ 0
0 0 −1 λ

 .

I but the derivation is tedious (show that F and C are similar)
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Permuted Fiedler matrices

I If we permute the staircase to the top left corner, and scale
we can obtain the following block anti-triangular form

λB + A :=


λ+ p3 0 1
p2 p1 p0 −λ
1 −λ 0 0
0 1 −λ 0

 ,

I where the anti-diagonal blocks look like Kronecker blocks

I We will show that the identity

det(λB + A) = p(λ)

easily follows from this permuted form

I Moreover, it extends to general non-monic matrix polynomials
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Block Kronecker pencils

I We start from the definitions

Lk(λ) =

 1 −λ
. . .

. . .

1 −λ


 k , Πk(λ) =


λk

...
λ
1


 k+1

and the equation Lk(λ)Πk(λ) = 0, implying that
the rows of Lk(λ) are dual to the columns of Πk(λ).

I A general block Kronecker pencil with d = ε+ η + 1 is then is
of the form

λB + A =

[
λM1 + M0 LTη (λ)⊗ Im
Lε(λ)⊗ In 0

] }
(η+1)m

} εn︸ ︷︷ ︸
(ε+1)n

︸ ︷︷ ︸
ηm
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A simple transformation

I Lk(λ) can be embedded in a unimodular matrix

Uk(λ) :=


1 −λ

. . .
. . .

1 −λ
1


 k + 1

I with unimodular inverse Vk(λ) whose last column is Πk(λ)

U−1
k (λ)ek+1 = Vk(λ)ek+1 = Πk(λ)

I and compresses the columns of Lk(λ) to a simple form

Lk(λ)Vk(λ) = [ Ik | 0 ] .
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A simple transformation

Now apply this to λB + A (scalar case for simplicity):[
V T
η (λ)⊗ Im

0 Iεn

][
λM1 + M0 LTη (λ)⊗ Im
Lε(λ)⊗ In 0
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.
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∑
i+j=d−k+2

[M1]i,j+
∑

i+j=d−k+1

[M0]i,j = Pk , k ∈ 0 : d , i ∈ 1 : ε+1, j ∈ 1 : η+1



A simple transformation

Now apply this to λB + A (scalar case for simplicity):[
V T
η (λ)⊗ Im

0 Iεn

][
λM1 + M0 LTη (λ)⊗ Im
Lε(λ)⊗ In 0

][
Vε(λ)⊗ In

0 Iηm

]

=

 X (λ) Y (λ) Iηm
Z (λ) P(λ) 0
Iεn 0 0


where P(λ) = (ΠT

η (λ)⊗ Im)(λM1 + M0)(Πε(λ)⊗ In) provided

λM1 + M0 =


λPd . .

.
. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

P0

 ,

∑
i+j=d−k+2

[M1]i,j+
∑

i+j=d−k+1

[M0]i,j = Pk , k ∈ 0 : d , i ∈ 1 : ε+1, j ∈ 1 : η+1



Since

Πη(λ)ΠT
ε (λ) =



λε+η · · · · · · · · · λη

...
...

... . .
.

λ2

... . .
.

λ2 λ
λε · · · λ2 λ 1


λM1 + M0 must have a particular block structure

λM1 + M0 =


λPd . .

.
. .
.

. .
.

. .
.
. .
.

. .
.

. .
.

P0

 ,

∑
i+j=d−k+2

[M1]i,j+
∑

i+j=d−k+1

[M0]i,j = Pk , k ∈ 0 : d , i ∈ 1 : ε+1, j ∈ 1 : η+1



Since

Πη(λ)ΠT
ε (λ) =



λε+η · · · · · · · · · λη

...
...

... . .
.

λ2

... . .
.

λ2 λ
λε · · · λ2 λ 1


λM1 + M0 must have a particular block structure

λM1 + M0 =


λPd . .

.
. .
.

. .
.

. .
.
. .
.

. .
.

. .
.

P0

 ,

∑
i+j=d−k+2

[M1]i,j+
∑

i+j=d−k+1

[M0]i,j = Pk , k ∈ 0 : d , i ∈ 1 : ε+1, j ∈ 1 : η+1



Example (matrix case)

Two possible linearizations for the quartic polynomial matrix

P(λ) = λ4P4 + λ3P3 + λ2P2 + λP1 + P0

λB + A =


λP4 λP3 + P2 0 Im

0 P1 P0 −λIm
In −λIn 0 0
0 In −λIn 0

 ,

λB + A =


λP4 + P3 0 0 Im

0 λP2 + P1 P0 −λIm
In −λIn 0 0
0 In −λIn 0


Degrees of freedom can be used to enforce ”symmetries”
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Strong linearizations

I Results also hold for ”reversed” polynomial since the reversed
minimal bases satisfy similar equations

[
M1 + λM0 LTrev ,η(λ)⊗ Im

Lrev ,ε(λ)⊗ In 0

]
≈

 Prev (λ) Zrev (λ) 0
Yrev (λ) Xrev (λ) Iηm

0 Iεn 0


Therefore, we can prove

I Theorem
Let P(λ) be a m × n polynomial matrix of degree d. Then the
block-Kronecker pencils are all strong linearizations of P(λ) and
they have the same left and right null space dimensions, provided∑

i+j=d−k+2 [M1]i ,j +
∑

i+j=d−k+1 [M0]i ,j = Pk , 0 ≤ k ≤ d .
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Polynomial backward stability

I We will assume that the matrices were scaled such that

‖(A,B)‖ := max (‖A‖2, ‖B‖2) ≈ 1 , ‖P(·)‖ := max
i

(‖Pi‖2) ≈ 1

I The QZ algorithm applied to a block-Kronecker pencil λB + A
perturbs the pencil as follows ‖(∆A,∆B)‖ ≈ ε ;

I then there exists an equivalent ‖δP(·)‖ = O(ε) such that

M∆(λ) [(λB + A) + (λ∆B + ∆A)]N∆(λ) =

[
P(λ) + δP(λ) 0

0 I

]
This shows that the Kronecker pencil approach is structurally

backward stable (whenever P(λ) was scaled s.t. ‖P(·)‖ ≈ 1)
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Polynomial backward stability

We show backward stability to a nearby polynomial matrix
P(λ) + δP(λ) provided we scaled the coefficient matrix to 1 :

First we restore the anti-triangular structure by strict equivalence

[
I(η+1)m 0

C Iεn

]([
λM1 + M0 LTη (λ)⊗ Im
Lε(λ)⊗ In 0

]
+[

λ∆B11 + ∆A11 λ∆B12 + ∆A12

λ∆B21 + ∆A21 λ∆B22 + ∆A22

])[
I(ε+1)n D

0 Iηm

]
=[

λM1 + M0 LTη (λ)⊗ Im
Lε(λ)⊗ In 0

]
+

[
λ∆B11 + ∆A11 λ∆B̃12 + ∆Ã12

λ∆B̃21 + ∆Ã21 0

]

This is a nonlinear system of equations (C ,D) = f (A,B,∆A,∆B),
but has a solution of norm ‖(C ,D)‖ = O(ε).
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Polynomial backward stability

Second, we construct the perturbed dual minimal bases(
Lε(λ)⊗ In + λB̃21 + ∆Ã21

)(
Πε(λ)⊗ In + δRε(λ)

)
= 0(

Lη(λ)⊗ Im + λB̃T
12 + ∆ÃT

12

)(
Πη(λ)⊗ Im + δRT

η (λ)
)

= 0

By bounding ‖(C ,D)‖, ‖δRε(·)‖ and ‖δRη(·)‖, we can then prove

Theorem
Let λB + A be a regular block Kronecker linearization of a regular
polynomial matrix P(λ) and let λ∆A + ∆B be the backward error
induced by the QZ algorithm. Then the corresponding backward
error δP(·) has a norm satisfying

‖δP(·)‖ ≤ d2‖(∆A,∆B)‖ ≈ d2ε
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Conclusions

I We have shown how to construct strong linearizations of
block Kronecker form

I A simple proof is provided based on dual minimal bases

I We can prove ”polynomial backward stability” for the QZ
algorithm

I This extends to the singular case with the staircase algorithm

I We can sometimes preserve certain symmetries of P(λ)

I We can extend this to degree ` block Kronecker polynomial
matrices

I This can be extended to other bases (see Robol, Vandebril,
Dopico, Noferini, Mackey, ...)

I Dual minimal bases play also a role in other problems ...
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Block-Kronecker `-ifications

For ` = 2 we can obtain ”quadratifications” of an even polynomial
matrix as follows

P(λ) = λ6P6 + λ5P5 + λ4P4 + λ3P3 + λ2P2 + λP1 + P0 .

λ2C+λB+A =

 λ2P6 + λP5 + P4 λP3/2 Im
λP3/2 λ2P2 + λP1 + P0 −λ2Im
In −λ2In 0

 .
This is also a symmetric ”quadratification” if P(λ) is symmetric

Proof is very analogous (but not for backward errors...)

Similar developments also exist for other basis functions
(Chebyshev, Lagrange, barycentric ...)
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For ` = 2 we can obtain ”quadratifications” of an even polynomial
matrix as follows

P(λ) = λ6P6 + λ5P5 + λ4P4 + λ3P3 + λ2P2 + λP1 + P0 .

λ2C+λB+A =

 λ2P6 + λP5 + P4 λP3/2 Im
λP3/2 λ2P2 + λP1 + P0 −λ2Im
In −λ2In 0

 .
This is also a symmetric ”quadratification” if P(λ) is symmetric

Proof is very analogous (but not for backward errors...)

Similar developments also exist for other basis functions
(Chebyshev, Lagrange, barycentric ...)


