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Matrix polynomial eigenvalue problem

Given a matrix polynomial P(z) ∈ C[z ]s×s , the matrix polynomial
eigenvalue problem looks for scalars 𝜆 and corresponding nonzero
vectors v :

P(𝜆)v = 0

where 𝜆 ∈ C (eigenvalue) and v ∈ Cm (eigenvector), v ̸= 0.

Solution methods:

▶ linearization −→ generalized eigenvalue problem

▶ contour integration
[Asakura, Sakurai, Tadano, Ikegami, Kimura 2010]
[Beyn 2012] [VB, Kravanja 2016] [VB 2016]

▶ Ehrlich-Aberth iteration, . . .
[Bini, Noferini 2013]
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Large difference in magnitude of eigenvalues

▶ Problem: large difference in the order of magnitude of the
eigenvalues.
Using block companion linearization −→ inaccurate results.

▶ Solution: tropical scaling of block companion linearization
[Gaubert, Sharify 2009] [Noferini, Sharify, Tisseur 2015]

P(z) has degree d ⇒ d tropical roots 𝜏i

For each of the different tropical roots 𝜏i : scaled block
companion linearization:

𝛾iP(𝜏iz).

Disadvantage: For a degree d polynomial matrix P(z), it can
be necessary to use d different scaled linearizations.

▶ Question: can we obtain the same accuracy using only one
linearization? Hence, by solving only one GEVP?
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Solution: Tropical scaling of a Lagrange-type linearization

▶ For certain structured matrix pencils, (modified) QZ
algorithm computes the (well-conditioned) eigenvalues with a
high relative precision even when these eigenvalues have a very
large difference in magnitude.

▶ Linearize the polynomial eigenvalue problem into a matrix
pencil having this structure:

▶ Lagrange-type linearization parametrized by the choice of the
interpolation points 𝜎i : P(𝜎i )

▶ Choosing these interpolation points 𝜎i as well-separated
tropical roots ⇒ desired matrix pencil
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Structured matrix pencil - QZ algorithm

Consider the matrix pencil A− zB with

▶ order of the magnitude of the nonzero elements of A is 100

▶ the matrix B a block diagonal matrix

▶ the first block can be the zero matrix (implying trivial
eigenvalues at infinity for the matrix pencil)

▶ the other diagonal blocks are themselves diagonal matrices or
dense s × s matrices

▶ the nonzero elements from different diagonal blocks in B can
be very different in magnitude.

The large difference in magnitude in the elements of B leads
generically to a large difference in magnitude for the generalized
eigenvalues of the matrix pencil.
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Structured matrix pencil - QZ algorithm

▶ If the first block of matrix B is zero, deflate the trivial infinite
eigenvalues based on the first block column.

▶ Reduce the matrix pencil to generalized Hessenberg form.

▶ Compute the generalized Schur form using zhgeqz.f.

Numerical example 1: matrix pencil A− zB, 2× 2 blocks

▶ ai ,j = x + iy with x and y pseudorandomly chosen from the
standard normal distribution and i =

√
−1

▶ a first zero block on the diagonal of matrix B

▶ the other 16 diagonal blocks are dense where the elements are
chosen as for matrix A but scaled with factors
10−5, 10−4, . . . , 1010 and permuted

▶ 100 samples
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Structured matrix pencil - QZ algorithm
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Figure: Relative error of computed eigenvalues of a structured matrix
pencil using the unaltered QZ LAPACK implementation

6



Structured matrix pencil - QZ algorithm

▶ the eigenvalues have magnitudes of the order 10−10 up to 105

▶ for a lot of samples accurate eigenvalues over the whole scale

▶ there are samples such that only the smallest eigenvalues are
relatively accurate while the accuracy decreases in the same
degree as the magnitude increases

▶ at least one of the larger eigenvalues has been approximated
by an eigenvalue at infinity

▶ unadapted version decides too fast that the corresponding
computed eigenvalues are infinite

Modification of the LAPACK routine zhgeqz.f

▶ except for explicit infinite eigenvalues only finite eigenvalues
are generated

▶ at two places in the fortran code, value of BTOL is replaced by
the smallest positive nonzero floating point number
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Structured matrix pencil - QZ algorithm
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Figure: Relative error of computed eigenvalues of a structured matrix
pencil using our adaptation of the QZ LAPACK implementation
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Lagrange-type linearization

[Amiraslani, Corless, Lancaster 2009] Let P be of degree d .

Take d points 𝜎i ∈ C, i = 1, 2, . . . , d with corresponding
barycentric weights 𝛽i = (

∏︀
j ̸=i(𝜎i − 𝜎j))

−1.

Let the highest degree coefficient of P be denoted as Pd .⎡⎢⎢⎢⎢⎢⎣
Pd 𝛽1P(𝜎1) 𝛽2P(𝜎2) · · · 𝛽dP(𝜎d)

−Is (z − 𝜎1)Is
−Is (z − 𝜎2)Is
...

. . .
−Is (z − 𝜎d)Is

⎤⎥⎥⎥⎥⎥⎦
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Lagrange-type linearization

Proof:

⎡⎢⎢⎢⎢⎣
Pd 𝛽1P(𝜎1) 𝛽2P(𝜎2) · · · 𝛽dP(𝜎d)

−Is (z − 𝜎1)Is
−Is (z − 𝜎2)Is
...

. . .
−Is (z − 𝜎d)Is

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
ℓ(z)Is
ℓ1(z)Is
ℓ2(z)Is

...
ℓd(z)Is

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
P(z)

0
0
...
0

⎤⎥⎥⎥⎥⎦
with ℓ(z) =

∏︀d
i=1(z − 𝜎i) and ℓi(z) = ℓ(z)/(z − 𝜎i).
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Lagrange-type linearization

Dividing the second block column by 𝜎1, the third block column by
𝜎2, . . . : matrix pencil zB − A⎡⎢⎢⎢⎢⎣

Pd 𝛽1P(𝜎1)/𝜎1 𝛽2P(𝜎2)/𝜎2 · · · 𝛽dP(𝜎d)/𝜎d

−Is (z/𝜎1 − 1)Is
−Is (z/𝜎2 − 1)Is
...

. . .
−Is (z/𝜎d − 1)Is

⎤⎥⎥⎥⎥⎦

▶ Except for the first block row A has nonzero elements equal
to one.

▶ The matrix B is a (block-)diagonal matrix with diagonal
nonzero blocks: 𝜎−1

i Is .

▶ Idea: choose 𝜎i such that also the first block row of A
contains elements whose magnitude is of order 1.
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Tropical roots

Suppose we have information on the magnitude of the modulus of
the eigenvalues of the PEP via tropical roots.
Note that this information comes in “blocks” of s eigenvalues

tropical root 𝜏l with multiplicity 𝜇l ←→ 𝜇ls eigenvalues

Choice of the points 𝜎i based on the knowledge of the tropical
roots 𝜏l and their “multiplicity” 𝜇l :

{𝜎i}i=i ′,...,i ′+(𝜇l−1) = {𝜇l roots of unity multiplied by 𝜏l}

𝜏1 < 𝜏2 < · · · < 𝜏t
𝜇1 𝜇2 · · · 𝜇t

𝜎1, 𝜎2, . . . 𝜎𝜇1 𝜎𝜇1+1, . . . , 𝜎𝜇1+𝜇2 · · · 𝜎d−𝜇t+1, . . . , 𝜎d
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Tropical roots

Using this choice of the interpolation points 𝜎i gives us a matrix
pencil zB − A with top block row of A:[︂

−Pd −
𝛽1P(𝜎1)

𝜎1
−
𝛽2P(𝜎2)

𝜎2
· · · −

𝛽dP(𝜎d)

𝜎d

]︂
where the magnitude of the ith block is determined by the
corresponding tropical root 𝜏l

‖P(𝜎i)‖|𝛽i |
|𝜎i |

≤
(d + 1)
𝜇lΓl

‖Pd‖

with separation parameter 𝛾 < 1

𝛾 = min { 𝛾 | 𝜏l ≤ 𝛾𝜏l+1, l = 1, 2, . . . , t − 1}

Γl =

t∏︁
j=1,j ̸=l

(1− 𝛾|l−j |)𝜇j
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Well-separated tropical roots

▶ Put an upper bound on the separation parameter 𝛾 < 1:
𝜏l ≤ 𝛾𝜏l+1, e.g., 𝛾 should be less than 1/5.

▶ Hence, Γl becomes closer to one.

Γl =

t∏︁
j=1,j ̸=l

(1− 𝛾|l−j |)𝜇j

▶ The smaller value for 𝛾 has to be compensated by a relaxation
in the condition for the tropical roots measured by a
relaxation parameter 𝜌:

‖P(𝜎i)‖|𝛽i |
|𝜎i |

≤
𝜌(d + 1)
𝜇lΓl

‖Pd‖
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Well-separated tropical roots

▶ notation 𝜇i ,j =
∑︀j

l=i 𝜇l .

▶ 𝜏𝜇l
l =

‖P𝜇1,l−1‖
‖P𝜇1,l ‖

, l = 1, 2, . . . , t

▶ For a chosen value of the separation parameter 𝛾 < 1

𝜏l ≤ 𝛾𝜏l+1, l = 1, 2, . . . , t − 1

▶ With 𝜌 ≥ 1 the relaxation parameter

𝜏
𝜇1,l−1
l ‖P𝜇1,l−1‖ = 𝜏

𝜇1,l
l ‖P𝜇1,l‖

≥ 𝜌−1𝜏 j
l ‖Pj‖, j /∈ {𝜇1,l−1, 𝜇1,l}

▶ The well-known algorithm to compute the classical tropical
roots based on the convex hull of the points (k , log(‖Pk‖)),
k = 0, 1, . . . , d can be extended to compute well-separated
tropical roots 𝜏l .
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Scaling and balancing strategy

▶ Compute well-separated tropical roots 𝜏l such that

‖P(𝜎i)‖|𝛽i |
|𝜎i |

≤
𝜌(d + 1)
𝜇lΓl

‖Pd‖ = 𝒪(1)‖Pd‖.

▶ Scale the polynomial matrix 𝛽P(z) such that the norm of the
highest degree coefficient is equal to one.

▶ Construct the Lagrange-type linearization zB −A with the top
block row of A equal to[︂
−Pd −

𝛽1P(𝜎1)

𝜎1
−
𝛽2P(𝜎2)

𝜎2
· · · −

𝛽dP(𝜎d)

𝜎d

]︂
▶ (Refine the balancing/scaling, e.g., using the balancing

strategy of [Lemonnier, Van Dooren 2006].)

▶ Apply the modified QZ algorithm excluding nontrivial roots at
infinity.
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Scaling and balancing strategy

After scaling/balancing, the norms of the blocks in the two
matrices A and B of the matrix pencil A− 𝜆B have orders of
magnitude:

A =

⎡⎢⎢⎢⎢⎢⎣
100 100 100 · · · 100

100 100

100 100

...
. . .

100 100

⎤⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎢⎣
𝜎−1

1
𝜎−1

2
. . .

𝜎−1
d

⎤⎥⎥⎥⎥⎥⎦
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Backward error

▶ We know that the QZ algorithm for solving the generalized
eigenvalue problem is backward stable, that is, it solves a
nearby problem 𝜆(B +ΔB)− (A +ΔA) with

‖ΔA‖2 ≤ pA(n)𝜖mach‖A‖2, ‖ΔB‖2 ≤ pB(n)𝜖mach‖B‖2,

where 𝜖mach is the machine precision and pA(n), pB(n) are
polynomial in n.

▶ Because ‖B‖2 is of the order 𝜎−1
1 , when the backward error

‖ΔB‖2 would not be structured, this error would change the
diagonal elements 𝜎−1

i significantly when 𝜎−1
i ≪ 𝜎−1

1 .

▶ However, the backward error ΔB on B is structured and
follows the graded structure of the inverse of the 𝜎i .

▶ This allows to compute the (well-conditioned) eigenvalues
(eigenvectors) with high relative precision, even when they
differ several orders of magnitude.
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Exp. 01: Classical versus well-separated tropical roots

Upper-bound for ‖P(𝜎i)‖|𝛽i |/|𝜎i |

‖P(𝜎i)‖|𝛽i |
|𝜎i |

≤
𝜌(d + 1)
𝜇lΓl

‖Pd‖.

For well-separated roots ‖P(𝜎i)‖|𝛽i |/|𝜎i | ≲ 2.

▶ Take as tropical roots 𝜏l = 102(l−1), l = 1, 2, . . . , 10 having
multiplicity 𝜇l = 1.

▶ The polynomial matrix coefficients are chosen as scaled
random unitary matrices having such a norm that we obtain
the corresponding tropical roots.

▶ The values ‖P(𝜎i)‖|𝛽i |/|𝜎i | for 100 samples for P(z).
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Exp. 01: Classical versus well-separated tropical roots
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Figure: The values ‖P(𝜎i )‖|𝛽i |/|𝜎i |, i = 1, 2, . . . , d for well-separated
tropical roots
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Exp. 02: Classical versus well-separated tropical roots

In this case, we choose the tropical roots not well-separated, e.g.,
𝜏l = (1.5)l−1, l = 1, 2, . . . , 20. Note that 1.519 ≈ 2.2 · 103.
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Figure: The values ‖P(𝜎i )‖|𝛽i |/|𝜎i |, i = 1, 2, . . . , d for not
well-separated tropical roots
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Exp. 02: Classical versus well-separated tropical roots

Using well-separated tropical values with a separation parameter
𝛾 = 5−1.
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Figure: The values ‖P(𝜎i )‖|𝛽i |/|𝜎i |, i = 1, 2, . . . , d for well-separated
tropical roots
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Exp. 03: Classical versus well-separated tropical roots

Example 4 of [Gaubert, Sharify 2009]: Matlab-code:

s = 8; d = 10;
scaling = [-5,-2,-3,-4,2,0,3,-3,4,2,5];
for i = 1:d+1

P{i} = randn(s) * 10^scaling(i);
end

The backward error is computed as [Tisseur 2000]:

‖P(𝜆̃)−1‖−1
2∑︀d

i=0 |𝜆̃|i‖Pi‖2
=
𝜎min(P(𝜆̃))∑︀d
i=0 |𝜆̃|i‖Pi‖2

.

The maximum backward error is plotted for 100 samples using the
two types of tropical roots.
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Exp. 03: Classical versus well-separated tropical roots
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Figure: Backward error for 100 samples of Experiment 3 using classical
tropical roots and well-separated tropical roots
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Exp. 03: Classical versus well-separated tropical roots
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Figure: Convex hull of the points (i , log ‖Pi‖), i = 0, 1, . . . , d and
approximation of this convex hull
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Exp. 04: Polynomial eigenvalue problems from NLEVP

For all square problems from NLEVP having size s less than or
equal to 300, apply the following five algorithms:

1. tropical scaling for the Lagrange linearization using the
classical tropical roots;

2. tropical scaling for the Lagrange linearization using
well-separated tropical roots;

3. polyeig of MATLAB;

4. quadeig (if the degree is equal to 2);

5. tropical scaling for the block companion linearization using the
classical tropical roots.
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Exp. 04: Polynomial eigenvalue problems from NLEVP
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Figure: Backward error for algorithms 1, 4 and 5
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Exp. 04: Polynomial eigenvalue problems from NLEVP
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Figure: Backward error for algorithms 1, 2 and 3
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Exp. 05: PEVPs with a large variation in magnitude of the eigenvalues
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Figure: Backward error for algorithms 1, 4 and 5
29



Exp. 05: PEVPs with a large variation in magnitude of the eigenvalues
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Figure: Backward error for algorithms 1, 2 and 3
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