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Eigenvalues and convergence of Krylov subspace methods

The convergence of Krylov subspace methods for linear systems

Ax = b, A ∈ C
n×n, b ∈ C

n

with a normal matrix A is sometimes said to be governed by eigenvalues:
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Eigenvalues and convergence of Krylov subspace methods

The convergence of Krylov subspace methods for linear systems

Ax = b, A ∈ C
n×n, b ∈ C

n

with a normal matrix A is sometimes said to be governed by eigenvalues:

the eigenvalue distribution decides about the possibly worst rate of
convergence,

eigenvalues close to zero hamper convergence,

clustering of eigenvalues stimulates convergence.
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For instance, in the MINRES method, residual norms satisfy the
minimization property

‖rk‖ = min
p∈πk

‖p(A)b‖, πk the degree k polynomials with πk(0) = 1.

Plugging in the spectral decomposition A = W ΛW ∗,

‖rk‖ = min
p∈πk

‖p(A)b‖ = min
p ∈πk

‖p (Λ)W ∗b‖.

Thus residual norms are fully determined by two quantities:

1. eigenvalues,

2. components of the right-hand side in the eigenvector basis.
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Eigenvalues and convergence of Krylov subspace methods

The equality
‖rk‖ = min

p ∈πk

‖p (Λ)W ∗b‖

leads to well-known bounds like

‖rk‖

‖b‖
≤ min

p∈πk

max
i=1,...,n

|pk(λi)|,

which is sharp (for every k separately), and

‖x − xk‖A

‖x − x0‖A

≤ 2

(

√

κ(A) − 1
√

κ(A) + 1

)k

for the CG method.
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Eigenvalues and convergence of Krylov subspace methods

The solution of the minimization problem

‖rk‖2 = min
p ∈πk

‖p (Λ)W ∗b‖2

can be expressed in closed-form [Bellalij and Sadok, 2011], [DT, Meurant, Sadok

and Strakoš, 2014]:
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The solution of the minimization problem

‖rk‖2 = min
p ∈πk

‖p (Λ)W ∗b‖2

can be expressed in closed-form [Bellalij and Sadok, 2011], [DT, Meurant, Sadok

and Strakoš, 2014]:

‖rk‖2 =

∑

Ik+1

[

∏k+1
j=1 γij

]

∏

i1≤iℓ<ij ≤ik+1

iℓ,ij∈Ik+1

|λij
− λiℓ

|2

∑

Ik

[

∏k
j=1 γij

|λij
|2
]

∏

i1≤iℓ<ij ≤ik

iℓ,ij∈Ik

|λij
− λiℓ

|2
,

where γij
= |eT

ij
c| 2, c = W ∗b and

∑

Ik
denote summation over all

possible sets Ik of k indices i1, i2, . . . , ik such that 1 ≤ i1 < · · · < ik ≤ n.
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Eigenvalues and convergence of Krylov subspace methods

With non-normal matrices A, convergence need not be governed by
eigenvalues, the probably most convincing evidence being

Theorem [Greenbaum, Pták & Strakoš, 1996]. Let

‖b‖2 = f0 ≥ f1 ≥ f2 · · · ≥ fn−1 > 0

be any non-increasing sequence of real positive values and let

λ1, . . . , λn

be any set of nonzero complex numbers. Then there exists a class of

matrices A ∈ Cn×n and right-hand sides b ∈ Cn such that the residual

vectors rk generated by the GMRES method applied to A and b satisfy

‖rk‖2 = fk, 0 ≤ k ≤ n, and eig(A) = {λ1, . . . , λn}.
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A = V (U−1CU)V ∗, b = V e1.
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Let
A = V (U−1CU)V ∗, b = V e1.

To force GMRES residual norms f(0) ≥ · · · ≥ f(n − 1) > 0, the
first row gT of U can be chosen as

g1 =
1

f(0)
, gk =

√

1

f(k − 1)2
−

1

f(k − 2)2
, k = 2, . . . , n.
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Eigenvalues and convergence of Krylov subspace methods

Let
A = V (U−1CU)V ∗, b = V e1.

To force GMRES residual norms f(0) ≥ · · · ≥ f(n − 1) > 0, the
first row gT of U can be chosen as

g1 =
1

f(0)
, gk =

√

1

f(k − 1)2
−

1

f(k − 2)2
, k = 2, . . . , n.

Summarizing,

A = V

[

gT

0 T

]−1

C

[

gT

0 T

]

V ∗, b = V e1,

for some non-singular, upper triangular matrix T ∈ C(n−1)×(n−1).
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Eigenvalues and convergence of Krylov subspace methods

Thus for assessing the quality of a preconditioner P when GMRES is
applied to

PAx = Pb, PA non-symmetric,

this means that analysis of the spectrum of PA alone is not enough.

For instance in constraint preconditioning, the fact that spec(PA) is, say,

spec (PA) = {1,
1

2
±

√

(5)

2
}

does not suffice to guarantee fast convergence of GMRES when PA is

non-symmetric. What is needed additionally, is the fact that the

eigenvalues have belong to Jordan blocks of small size.
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Eigenvalues and convergence of Krylov subspace methods

Not either need eigenvalues close to zero hamper convergence.

This somewhat undermines the theoretical foundations of deflation
methods, which aim at speeding up convergence by elimination of
eigenspaces corresponding to small (or other presumed unfavorable)
eigenvalues.

One may wonder whether counterintuitive examples are always of an
academic character? For instance, they may be far from normal and not
satisfy any sparsity pattern.

Practical examples with a tridiagonal matrix where it is hard to explain
GMRES convergence based on eigenvalue distribution are given by for
instance some convection-diffusion model problems that have been
studied by many authors, e.g. [Fischer, Ramage, Sylvester & Wathen, 1999],
[Ernst, 2000], [Elman & Ramage, 2001, 2002], [Liesen & Strakoš, 2005]:
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Eigenvalues and convergence of Krylov subspace methods

Consider the convection-diffusion equation

−ν∇2u + w · ∇u = 0 in Ω = (0, 1) × (0, 1),

u = g on ∂Ω,

where we use

ν = 0.01: scalar diffusion coefficient

w = [0, 1]T : velocity field (wind)

an N by N grid with spacing h = 1/(N + 1) where N = 16, i.e.
the system matrix has size 256.

bilinear finite element nodal basis functions φj , j = 1, 2, . . .

Raithby boundary conditions

With Streamline Upwind Petrov Galerkin discretization (SUPG) [Brooks &

Hughes, 1979], the coefficient matrix A is of the form

Ai,j = ν〈∇φj , ∇φi〉 + 〈w · ∇φj , φi〉 +
δ h

‖w‖
〈w · ∇φj , w · ∇φi〉,

where 0 < δ < 1 and 〈·, ·〉 denotes the L2 inner product on Ω.
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Figure : GMRES residual norms for the convection-diffusion problem with
SUPG stabilization parameters δ = 0.7 (blue) and δ = 0.2 (black).
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Figure : Spectra of system matrices for the convection-diffusion problem
with SUPG stabilization parameters δ = 0.7 (blue) and δ = 0.2 (black).
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A further aspect of eigenvalue dominance is the link between superlinear
convergence and Ritz value convergence:

In the CG method for Hermitian positive definite matrices, a
converged Ritz value often implies an accelerated phase of
convergence of the A-norm of the error, see, e.g., [van der Sluis & van

der Vorst, 1986].

An analogue result for the GMRES method suggests a similar
phenomenon provided A is close to normal - the involved bounds
contain κ(W ) [van der Vorst & Vuik, 1993].

For the higly non-normal case, let us consider the convection-diffusion
problem with SUPG stabilization parameter δ = 0.7.
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GMRES residual norms for the convection-diffusion problem with SUPG
stabilization parameters δ = 0.7.
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Eigenvalues and convergence of Krylov subspace methods

In the next section we address the following two questions:

What do we know about the relation between Ritz value
convergence and GMRES convergence for general non-normal
matrices ?

Do similar results exist for Krylov subspace methods for non-normal
matrices other than GMRES?
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Some recent results

An analogue of the Greenbaum, Pták, Strakoš theorem for the FOM
method is straightforward using the relation

1

‖rF OM
k ‖2

=
1

‖rGMRES
k ‖2

−
1

‖rGMRES
k−1 ‖2

:
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1

‖rGMRES
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−
1

‖rGMRES
k−1 ‖2

:

Choose a unitary matrix V and put b = V e1 and

A = V HV ∗, H upper Hessenberg.

To force the desired eigenvalues, H is of the form

H = U−1CU, U nonsingular upper triangular,

where C is the companion matrix for the prescribed spectrum.

To force FOM residual norms f(0), . . . , f(n − 1), f(i) > 0, the first
row gT of U can be chosen as

gk =
1

f(k − 1)
, k = 1, . . . , n.
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The similarity transformation matrix U in

H = U−1CU, U nonsingular upper triangular,

satisfies
U = [e1, He1, . . . , Hn−1e1]−1

and is the change of basis matrix in the transition from the Krylov matrix

K = [b, Ab, . . . , An−1b]

to the orthogonal basis V ,
KU = V.

In fact, even if V is not orthogonal, but in some Krylov subspace method
KU = V holds, the first row of U gives the residual norm of the Krylov
subspace method working with V . For example, when V is bi-orthogonal
to a basis for K(A∗, s), it gives Bi-CG residual norms:
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To force desired eigenvalues and Bi-CG residual norms we can

Choose a nonsingular matrix V with normalized columns and put
b = V e1 and

A = V T V −1, T tridiagonal.

Try to find a tridiagonal T allowing the decomposition

T = U−1CU, U nonsingular upper triangular,

where C is the companion matrix for the prescribed spectrum and
where the first row gT of U has entries

gk =
1

f(k − 1)
, k = 1, . . . , n,

if f(0), . . . , f(n − 1), f(i) > 0 are the prescribed Bi-CG residual
norms.
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,

any QMR convergence history is possible with any spectrum.

The same can be done for the OR/MR pair of methods
Hessenberg/CMRH based on Hessenberg LU factorization [Sadok, 1999],
[Heyouni & Sadok, 1998] .

In fact, it can be done for any Krylov subspace method for non-normal
matrices that is classified as a OR or MR-type method.
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A = V
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gT

0 T

]−1

C

[

gT

0 T

]

V ∗, b = V e1,

the non-singular, upper triangular matrix T ∈ C(n−1)×(n−1) is a free
parameter.
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[

gT

0 T

]−1

C

[

gT

0 T

]

V ∗, b = V e1,

the non-singular, upper triangular matrix T ∈ C(n−1)×(n−1) is a free
parameter.

In the GMRES and FOM methods it can be used to prescribe all Ritz
values:

To force at iteration k the Ritz values ρ
(k)
1 . . . ρ

(k)
k , k = 1, . . . , n − 1, the

entries ti,k in the kth column of T must satisfy

k
∏

i=1

(λ − ρ
(k)
i ) = gk+1 +

k
∑

i=1

ti,kλi.
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Any Ritz value behavior can be prescribed for the Arnoldi method,
in all its iterations

Any Ritz value behavior is possible with any GMRES/FOM residual
norm history.

Thus theoretical foundations of deflation methods using Ritz value
approximations are even weaker:

The used Ritz values need not approximate eigenvalues at all,

Even if they do approximate eigenvalues, these need not influence
GMRES residual norms.

But many deflation methods use instead harmonic Ritz values.

Let us illustrate with a small 1D convection-diffusion problem.
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GMRES residual norms for a 1D convection-diffusion problem.
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What do we know about the relation between harmonic Ritz value
convergence and GMRES convergence ?

Of course, harmonic Ritz values are the roots of GMRES polynomials:

If at the kth iteration, GMRES generates residual vector rk and harmonic

Ritz values θ
(k)
1 , . . . , θ

(k)
k , then

‖rk‖ = ‖pk(A)b‖,

where

pk(z) =

k
∏

i=1

(

1 −
z

θ
(k)
i

)

.
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What do we know about the relation between harmonic Ritz value
convergence and GMRES convergence ?

Of course, harmonic Ritz values are the roots of GMRES polynomials:

If at the kth iteration, GMRES generates residual vector rk and harmonic

Ritz values θ
(k)
1 , . . . , θ

(k)
k , then

‖rk‖ = ‖pk(A)b‖,

where

pk(z) =

k
∏

i=1

(

1 −
z

θ
(k)
i

)

.

Thus a close relation might be expected.
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First, we need to characterize admissible harmonic Ritz value sets.

Theorem ([Du, DT & Meurant, 2017?])

Let Θ(k) denote the k-tuple of the harmonic Ritz values at step k:

Θ(k) = (θ
(k)
1 , θ

(k)
2 , . . . , θ

(k)
k ).

If GMRES stagnates from step k + 1 to step k + m , i.e.,

‖rk‖ = ‖rk+1‖ = · · · = ‖rk+m‖,

then, for i = 1 : m, the (k + i)-tuple of the harmonic Ritz values at step

k + i is

Θ(k+i) = (θ
(k)
1 , θ

(k)
2 , . . . , θ

(k)
k , ∞, · · · , ∞).
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First, we need to characterize admissible harmonic Ritz value sets.

Theorem ([Du, DT & Meurant, 2017?])

Let Θ(k) denote the k-tuple of the harmonic Ritz values at step k:

Θ(k) = (θ
(k)
1 , θ

(k)
2 , . . . , θ

(k)
k ).

If GMRES stagnates from step k + 1 to step k + m , i.e.,

‖rk‖ = ‖rk+1‖ = · · · = ‖rk+m‖,

then, for i = 1 : m, the (k + i)-tuple of the harmonic Ritz values at step

k + i is

Θ(k+i) = (θ
(k)
1 , θ

(k)
2 , . . . , θ

(k)
k , ∞, · · · , ∞).

Proof: Follows from pk(z) = pk+1(z) = · · · = pk+m(z).

39



Harmonic Ritz values

If Hk is the kth leading principal submatrix of H , the harmonic Ritz
values are the eigenvalues of

Ĥk = Hk + h2
k+1,kH−∗

k ekeT
k .
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k ekeT
k .

Hk being upper Hessenberg, it can be decomposed as

Hk = U−1
k C(k)Uk,

where

C(k) is the companion matrix corresponding to the ordinary Ritz
values in the kth iteration of GMRES.

Uk is the kth leading principal submatrix of U in

H = U−1CU.
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Harmonic Ritz values

We have the following relation between the companion matrices for Hk

and Ĥk :

Theorem ([Du, DT & Meurant, 2017?])

Let Hk = U−1
k C(k)Uk be non-singular. The matrix

Ĥk = Hk + h2
k+1,kH−∗

k ekeT
k

whose eigenvalues are the harmonic Ritz values at step k can be written

as

U−1
k Ĉ(k)Uk,

where

Ĉ(k) = C(k) +
1

u2
k+1,k+1eT

1 C(k)ek

UkU∗

k e1eT
k .
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Theorem ([Du, DT & Meurant, 2017?])

Let Hk = U−1
k C(k)Uk be non-singular. The matrix

Ĥk = Hk + h2
k+1,kH−∗

k ekeT
k

whose eigenvalues are the harmonic Ritz values at step k can be written

as

U−1
k Ĉ(k)Uk,

where

Ĉ(k) = C(k) +
1

u2
k+1,k+1eT

1 C(k)ek

UkU∗

k e1eT
k .

Thus with Ĉ(k) prescribed, we can attempt to construct U (k) while

keeping the first row of U fixed.
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1 u1,1 = 1

2 If f(k) < f(k − 1), let θ
(k)
1 , . . . , θ

(k)
k be the roots of the polynomial

zk + βk−1zk−1 + · · · + β1z + β0.
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Given f(0) ≥ · · · ≥ f(n − 1) > 0 and an admissible harmonic Ritz value
set Θ = {Θ(1), Θ(2), . . . , Θ(n)},

1 u1,1 = 1

2 If f(k) < f(k − 1), let θ
(k)
1 , . . . , θ

(k)
k be the roots of the polynomial

zk + βk−1zk−1 + · · · + β1z + β0. Then put

u1,k+1 =
β0

|β0|

√

1/f(k)2 − 1/f(k − 1)2,

uk+1,k+1 =
1/f(k)2 − 1/f(k − 1)2 + eT

1 UkU∗

k e1

|β0|
√

1/f(k)2 − 1/f(k − 1)2
,

uj,k+1 = βj−1uk+1,k+1 −
eT

j UkU∗

k e1

ū1,k+1
, j = 2, . . . , k.
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(k)
k be the roots of the polynomial

zk + βk−1zk−1 + · · · + β1z + β0. Then put

u1,k+1 =
β0
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√
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uk+1,k+1 =
1/f(k)2 − 1/f(k − 1)2 + eT

1 UkU∗

k e1

|β0|
√

1/f(k)2 − 1/f(k − 1)2
,

uj,k+1 = βj−1uk+1,k+1 −
eT

j UkU∗

k e1

ū1,k+1
, j = 2, . . . , k.

3 If f(k) = f(k − 1), let u1,k+1 = 0, uk+1,k+1 > 0 and
uj,k+1, j = 2, . . . , k arbitrary complex.
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Conclusion: Any GMRES residual norm history is possible with any
admissible harmonic Ritz values.

Future work: Attempt to find theoretical reasons for the fact that
deflation methods work in spite of these results.
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Thank you for your attention.
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