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Matrix functions, or Functions of Matrices

f:C— C, Ae C"™", \; eigenvalues of A, and v the minimal
polynomial of A

» If f is sufficiently differentiable on )\;, then there exists a unique
interpolating polynomial pr 4 of degree less than deg matching
derivatives of f on A\;. Then we define

f(A) = pf’A(A)

» If f has an integral representation, e.g., f Stieltjes and
f(z) = Jy° Z%rt dp(t), then we define

f(A) = /OOC(A+ t1)~ du(t)

Polynomial and integral definitions are equivalent when f is analytic
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» If f is sufficiently differentiable on )\;, then there exists a unique
interpolating polynomial pr 4 of degree less than deg matching
derivatives of f on A\;. Then we define

f(A) = pf’A(A)

» If f has an integral representation, e.g., f Stieltjes and
f(z) = Jy° Z%rt dp(t), then we define

f(A) = /OOC(A+ t1)~ du(t)

Polynomial and integral definitions are equivalent when f is analytic
We use the latter definition numerically with quadrature



Krylov subspace methods for Ax = b and for f(A)b

Given A € C"™" (not necessarily HPD) and b € C™*?
» Krylov subspace with respect to A and b:

Hm(A, b) = span{b, Ab, A°b, ..., A" 1b} = {p(A)b : p € P,,_1}
» Arnoldi (Lanczos if A HPD) relation:
AV = Vi Hp + hm+1,mvm+1e:1

» Full Orthogonalization Method (FOM) approximation for Ax = b
[Saad, 1981]:

Xm = VinH 2 Vib € (A, b),
with ry, := b — Axp, L (A, b)
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Given A € C"™" (not necessarily HPD) and b € C™*?

» Krylov subspace with respect to A and b:
Hm(A, b) = span{b, Ab, A°b, ..., A" 1b} = {p(A)b : p € P,,_1}
» Arnoldi (Lanczos if A HPD) relation:
AV = VioHp + hi1, mVmy1 €5,

» Full Orthogonalization Method (FOM) approximation for Ax = b
[Saad, 1981]:
Xm = VinH 2 Vib € (A, b),

with ry, := b — Axp, L (A, b)
» FOM approximation for f(A)b

X 1= Vinf(Hm) Vb € Hm(A, b),

We like to call this (FOM)2: FOM for functions of matrices
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Multiple vectors

The problem we want to study is
(ALY, i=1,... s, or

f(A)B, B € C"**

For example in QCD, s=12, f = sign

Of course we can use (FOM)? for each b)), i.e.,

fori=1,...,s, use (FOM)? to approximate the solution of f(A)b()
But we want to use blocks

Example: Loop interchange [Rashedi et al., 2016]

Do the b()’s in parallel and interchange “loop over s with “loop

over k"
= innermost loop exposes AV with V, = [v{V | ... | v{]



Why blocks?

AB vs. [AbO)] ... Ab®)]: only need to access A once
» Good if memory access is slow relative to other operations
» Good if A must be generated each time it is accessed

» In HPC, it is much cheaper to compute AB than s times Ab(")

Krylov spaces generated by B vs. a single b are “richer”



Examples of block Krylov spaces

H5(A,B)

m—1
{Z AkBCk G € (CSXS}

k=0
m—1
HC' (A B) = span{B,AB,...,A"" B} = {Z A*Bcy i ¢ € «:} :
k=0
where span is in the usual sense for the vector space C"**
HE(AB) = (A, b(l)) X oo X (A, b(s))

m—1
= {Z AXBDy : Dy € C5*% is diagonal}
k=0



Some references on block methods

Classical block methods for linear systems:

block CG: [O’Leary, 1980], [Saad, 1987], ...

block GMRES: [Simoncini and Gallopoulos, 1995, 1996], [Simoncini, 1996],
..., [Gutknecht, 2007], ...

block MINRES: ..., [Soodhalter, 2015]

Also [Langou, thesis 2003] and some talks on blok GCR.

Global (block) methods:

global GMRES and global FOM [Jbilou, Messouadi and Sadok, 1999] for
matrix equations,

[Heyouni and Essai, 2005], [Bouyouli, Jbilou, Sadaka, and Sadok, 2006],
[Elbouyahyaoui, Messouadi, and Sadok, ETNA, 2009], ... for linear systems

For Functions of Matrices:

Block methods:[Lopez and Simoncini, 2006], [Al-Mohy and N. Higham,
2011] for exp(A), [Benner et al., 2015] for log(A).

We also mention [Arrigo, Benzi, and Fenu, SIMAX, 2016]

for “generalized matrix functions” (yesterday’s talk)



Our Contributions

v

Block methods for general matrix functions

v

Comparison of execution times of the three variants
(classical, global, loop-interchange)
plus apply function to each vector one at a time.

v

Convergence theory: with and without restarts

(mostly for A HPD and Stieltjes functions)

Theory of bilinear forms encompassing all three examples of block
Krylov subspaces

v



A “block inner product”

Let S be a subalgebra of C***, i.e., a vector subspace closed under
matrix multiplication such that S* e Sforall S €S

Definition
A mapping (-, -))g from C™* x C"* to S is called a
block inner product onto S if for all X,Y,Z € C"*and S €S

we have the following conditions:
(i) S-linearity: (X +YS,Z)s = (X,Z)s+ (Y.Z)sS,
(ii) symmetry: (X, ¥)g=(Y,X)s,
(iii) definiteness: (X, X)) is positive definite whenever X has full
rank s.



A “block norm”

Definition
A mapping Ng : C"** — S is called a normalizing quotient onto S
if for every X € C"™*, X #£ 0, there exists Y € C"**

such that X = Y Ng(X) and (Y, Y)s = I.



A “block norm”

Definition

A mapping Ng : C"** — S is called a normalizing quotient onto S
if for every X € C"™*, X #£ 0, there exists Y € C"**

such that X = Y Ng(X) and (Y, Y)s = I.

Lemma
Ns(X) always exists via QR of X.

Giving the natural choice: Ns(X) = R where R is the (upper triangular)
matrix of the Cholesky factorization (X, X)) = R*R



Some examples!

> classical: (X,Y)S' = X*Y, and S = C**5. N'(X) = R, where
QR = X is an economical QR factorization

» global: (X, Y))g' = trace(X*Y)ls, and S is set of diagonal matrices
with constant entry on the diagonal.

NS'(X) = [ X[l s.

» loop-interchange: (X, Y>>gi = diag(X*Y), and S is the set of
diagonal matrices.

Il

. x|l
NE(X) = ?

%511

LFirst identified by Elbouyahyaoui, Messaoudi, and Sadok in their 2009 paper
“Algebraic properties of the block GMRES and block Arnoldi methods”



Block orthogonality, block normalization, and block span

v

X and Y are block orthogonal if (X, Y))s = 0
X is block normalized if Ns(X) = Is

A set of block vectors {Xi,..., X} is block orthonormal when
(Xi, Xi)g = 0jjls, forall i, j=1,...,m

Block span?:

v

v

v

spanS{Xl,...,Xm} = {ZXka Gy € S}

k=1

The mth block Krylov subspace with respect to A, B, and the block
inner-product ¢ as

HS(A,B) :=span®{B,AB,..., A" 1B} < C"™*¢

2Inspired by Gutknecht's 2007 paper “Block Krylov space methods for linear
systems with multiple right-hand sides: an introduction”



Matrix polynomials

m—1
H3(A B) =span®{B,AB,... A" 1B} = {Z ABC, : G € S}
k=0

Let P,,—1(S) denote the space of m — 1 degree polynomials with
coefficients in S. Three possibilities:

> [Gohberg et al., 2009]: P(A) = S0 AkCy, with A € Co*
> [Lancaster, 1966]: P(\) = 27 o AKCy, with A € C

> [Kent, 1989]: P(A)o B := 3.7 ) AKBC,



Matrix polynomials

m—1
H3(A B) =span®{B,AB,... A" 1B} = {Z ABC, : G € S}
k=0

Let P,,—1(S) denote the space of m — 1 degree polynomials with
coefficients in S. Three possibilities:

> [Gohberg et al., 2009]: P(A) = S0 AkCy, with A € Co*
> [Lancaster, 1966]: P(\) = 27 o AKCy, with A € C
> [Kent, 1989]: P(A)o B := 3.7 ) AKBC,

HE(A,B)={P(A)oB:PcP, 1(S)}



The block Arnoldi algorithm

Given: A, B, (-,-))s, Ns, m
1 Compute B = Ng(B) and V; such that V1B = B and (Vi, Vi)s = I
2 fork=1,....,mdo

3 Compute W = AV,

4 forj=1,...,kdo

5 Hji = (Vj, W)g

6 W =W - VjH,

7 | Compute Hiy1x = Ns(W) and Vi1 such that Vi1 Hipr o = W
and << Vk, Vk>>s = /5

8 Return B, V,, = [V4|...|Va], Hm = (I—Ij’k)J’-T”kzl, Vit and Hpi1om




The block Arnoldi relation

n ms (m+1)s ms

-0

A
N+ " |(m+1)s

AVm = vam + vm+1 Hm+1,mE:17

where
> EJ =€ ® Is, and € is the jth standard unit vector
> Vi =[Wi|...|Vm] € C"™™ and { Wi}, is an S-orthonormal basis
spanning J%,5(A, B)
> Hpm is block upper Hessenberg, with each H; x € S C C°**, and Hi1,«
upper triangular



Block Full Orthogonalization Methods (BFOM)

The m-th BFOM approximation to AX = B is the block vector
Xm € #5(A, B) is defined to satisfy the following Galerkin condition:

B—AXm Ly HS(A, B)

e

Let A be HPD and E,, := X, — X,;;,, where X, solves AX = B exactly.
Some new tools:
(X, ¥)g = trace((X, Y)s)

1
Xl = (X, X)¢

<X, Y>§_A = <X,AY>§



Block Full Orthogonalization Methods (BFOM)

-
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Theorem
For a Hermitian positive definite matrix A € C"" and block

right-hand-side vector B € C"**, the BFOM error E,, = X, — X, for
AX = B has the following bound:

1Emlls.a < &m[[Eolls.a-
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Theorem
For a Hermitian positive definite matrix A € C"" and block

right-hand-side vector B € C"**, the BFOM error E,, = X, — X, for
AX = B has the following bound:

|Emlls.a < &m [l Eolls.a -
For CIBFOM, GIBFOM, and LiBFOM, it is already well known that
”Em“A_F < fm HEOHA—Fa

where || X|| , ¢ = /trace(X*AX)



The B(FOM)? approximation

Block full orthogonalization method for functions of matrices: B(FOM)?

» For general f, we define the B(FOM)? approximation as follows:

Fro = Vf(Hm)ELB



The B(FOM)? approximation

Block full orthogonalization method for functions of matrices: B(FOM)?

» For general f, we define the B(FOM)? approximation as follows:
Frn = Vinf (Hm)E1B
> With restarts:
FI = FUD 1 VO AGI0) 0 B,

where the error function AE,If_l)(z) is such that

A

=
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5
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[
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w N

B(FOM)?(m) algorithm

Given: f, A, B, {(-,-)s, Ns, m, tol

Run Block Arnoldi with inputs A, B, (-,-)s, Ns, and m to obtain v,

H, Hr(:J)rl m' V:51+1v and B

Compute F) := VIO F (1Y) E, B
for k =2, 3, ..., until convergence do

m+1

obtain V¥ HE, H,(nJ)rl m and VrsykJZl
(k1) |

Compute DS = Pl A=) (’Hf,’; ) o E;, where ALY
evaluated via quadrature

Compute F,qu) = F,(,,k_l) + D(k b

Determine C (k= 1)( t) to define the new error function Al
Run Block Arnoldn with inputs A, VD () )e, Ns, and m to



Convergence of B(FOM)?(m)

Recall f is a Stieltjes function: f(z) = [~ - dpu(t)

0 z+t
o Amax(Attl K(t)—1 o 1 2
“(t) S W7 (t) \/7+1 6m(t) " cosh(mln c(t)) < cm+4c—m
Theorem

Let A be an HPD matrix, B € C"**°, and f a Stieltjes function. Let
to > 0 denote the minimum of the support of 1. Then the S-A norm of
the error of F,(nk) has the following bound:

Hf(A)B - Fn(f)HS S (1),

where v = || B||s v/ Amaxf (v AminAmax). In particular, B(FOM)?(m)
converges for all cycle lengths m as the restart index k — oc.



Comments on implementation

» Block Arnoldi algorithm
> One should implement block inner product in a “smart” way
> One must account for different kinds of break-downs for each block
inner product
» Error function
> An analytic form of the error function A% must be written a
priori coming from the integral representation of f.
» The quadrature rule (used to evaluate Ag,ffl)) and tolerance must be
chosen carefully

» Code written in Matlab and executed on a Dell desktop with a Linux
64-bit operating system, an Intel®Core™ i7-4770 CPU @ 3.40
GHz, and 32 GB of RAM



A discretized 2D Laplacian, f(z) = z71/?

Convergence history for A=1/2B, where A € C10,000x10,000 j5 the
discretized two-dimensional Laplacian, B € C10:000x10 5 rank deficient,
the cycle length is m = 25, and the error tolerance is 5e-6

2D Laplacian, Case 2: n = 10000, s = 10, m = 25

2
10\

100 L

Frobenius norm of error
=
o

. . . . .
0 10 20 30 40 50 60
cycle index



A discretized 2D Laplacian, f(z) = z71/?

Results for A=1/2B, where A € C10:000x10,000 s the discretized
two-dimensional Laplacian, B € C1%:000x10 js rank deficient, the cycle
length is m = 25, and the error tolerance is 5e-6

wall number true
time (s) | of cycles | error (||-||¢)
CIB(FOM)?Z(m) - - -
GIB(FOM)?(m) 10.31 53 4.41E-06
LiB(FOM)?(m) 93.53 53 4.37E-06
(FOM)2(m) 87.39 53 4.37E-06
CIB(FOM)?(m) with deflation 353 42 4.92E-06




Lattice Quantum Chromodynamics (QCD),
f(z) = sign(z) = (z?)7V/%z
Q € C49:152x49,152 represents a periodic nearest-neighbor coupling on the

lattice. Overlap Dirac operator requires sign(Q)B. B random, s = 12,
error tolerance set to 5e-6. Sparsity pattern of Q2 given below.

«10*
N

nz = 15236528 x10%



Lattice Quantum Chromodynamics (QCD),
f(z) = sign(z) = (z?)7V/%z

Q € C49:152x49,152 represents a periodic nearest-neighbor coupling on the
lattice. Overlap Dirac operator requires sign(Q)B. B random, error

tolerance set to 5e-6.

wall time (s)
N
3
8

20 40 60 80 100 120 140 160 20 40 60 80 100 120 140 160
m (cycle length) m (cycle length)

Figure: (left) Total time versus the cycle length. (right) Number of cycles
versus the cycle length.



Conclusions

> New theory of bilinear form amenable to build block
Arnoldi/Lanczos bases

» Formulation and convergence results for (restarted) BFOM for
functions of matrices (for A HPD and f Stieltjes)

> Multiple experiments showing that block global is either faster with
Block classical (or of comparable performance), and both much
faster than loop-interchange



Conclusions

> New theory of bilinear form amenable to build block
Arnoldi/Lanczos bases

» Formulation and convergence results for (restarted) BFOM for
functions of matrices (for A HPD and f Stieltjes)

> Multiple experiments showing that block global is either faster with
Block classical (or of comparable performance), and both much
faster than loop-interchange

Look for research report in a couple of weeks at
math.temple.edu/szyld
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