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Matrix functions, or Functions of Matrices

f : C→ C, A ∈ Cn×n, λi eigenvalues of A, and ψ the minimal
polynomial of A

I If f is sufficiently differentiable on λi , then there exists a unique
interpolating polynomial pf ,A of degree less than degψ matching
derivatives of f on λi . Then we define

f (A) := pf ,A(A)

I If f has an integral representation, e.g., f Stieltjes and
f (z) =

∫∞
0

1
z+t dµ(t), then we define

f (A) :=

∫ ∞
0

(A + tI )−1 dµ(t)

Polynomial and integral definitions are equivalent when f is analytic

We use the latter definition numerically with quadrature
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Krylov subspace methods for Ax = b and for f (A)b

Given A ∈ Cn×n (not necessarily HPD) and b ∈ Cn×1

I Krylov subspace with respect to A and b:

Km(A,b) = span{b,Ab,A2b, ...,Am−1b} = {p(A)b : p ∈ Pm−1}

I Arnoldi (Lanczos if A HPD) relation:

AVm = VmHm + hm+1,mvm+1e∗m

I Full Orthogonalization Method (FOM) approximation for Ax = b
[Saad, 1981]:

xm := VmH
−1
m V ∗mb ∈ Km(A,b),

with rm := b − Axm ⊥ Km(A,b)

I FOM approximation for f (A)b

xm := Vmf (Hm)V ∗mb ∈ Km(A,b),

We like to call this (FOM)2: FOM for functions of matrices
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Multiple vectors

The problem we want to study is

f (A)b(i), i = 1, . . . , s, or

f (A)B, B ∈ Cn×s

For example in QCD, s=12, f = sign

Of course we can use (FOM)2 for each b(i), i.e.,
for i = 1, . . . , s, use (FOM)2 to approximate the solution of f (A)b(i)

But we want to use blocks

Example: Loop interchange [Rashedi et al., 2016]

Do the b(i)’s in parallel and interchange “loop over s” with “loop
over k”
⇒ innermost loop exposes AVk with Vk = [v

(1)
k | . . . | v (s)

k ]



Multiple vectors

The problem we want to study is

f (A)b(i), i = 1, . . . , s, or

f (A)B, B ∈ Cn×s

For example in QCD, s=12, f = sign

Of course we can use (FOM)2 for each b(i), i.e.,
for i = 1, . . . , s, use (FOM)2 to approximate the solution of f (A)b(i)

But we want to use blocks

Example: Loop interchange [Rashedi et al., 2016]

Do the b(i)’s in parallel and interchange “loop over s” with “loop
over k”
⇒ innermost loop exposes AVk with Vk = [v

(1)
k | . . . | v (s)

k ]



Multiple vectors

The problem we want to study is

f (A)b(i), i = 1, . . . , s, or

f (A)B, B ∈ Cn×s

For example in QCD, s=12, f = sign

Of course we can use (FOM)2 for each b(i), i.e.,
for i = 1, . . . , s, use (FOM)2 to approximate the solution of f (A)b(i)

But we want to use blocks

Example: Loop interchange [Rashedi et al., 2016]

Do the b(i)’s in parallel and interchange “loop over s” with “loop
over k”
⇒ innermost loop exposes AVk with Vk = [v

(1)
k | . . . | v (s)

k ]



Multiple vectors

The problem we want to study is

f (A)b(i), i = 1, . . . , s, or

f (A)B, B ∈ Cn×s

For example in QCD, s=12, f = sign

Of course we can use (FOM)2 for each b(i), i.e.,
for i = 1, . . . , s, use (FOM)2 to approximate the solution of f (A)b(i)

But we want to use blocks

Example: Loop interchange [Rashedi et al., 2016]

Do the b(i)’s in parallel and interchange “loop over s” with “loop
over k”
⇒ innermost loop exposes AVk with Vk = [v

(1)
k | . . . | v (s)

k ]



Multiple vectors

The problem we want to study is

f (A)b(i), i = 1, . . . , s, or

f (A)B, B ∈ Cn×s

For example in QCD, s=12, f = sign

Of course we can use (FOM)2 for each b(i), i.e.,
for i = 1, . . . , s, use (FOM)2 to approximate the solution of f (A)b(i)

But we want to use blocks

Example: Loop interchange [Rashedi et al., 2016]

Do the b(i)’s in parallel and interchange “loop over s” with “loop
over k”
⇒ innermost loop exposes AVk with Vk = [v

(1)
k | . . . | v (s)

k ]



Why blocks?

AB vs. [Ab(1)| . . .Ab(s)]: only need to access A once

I Good if memory access is slow relative to other operations

I Good if A must be generated each time it is accessed

I In HPC, it is much cheaper to compute AB than s times Ab(i)

Krylov spaces generated by B vs. a single b are “richer”



Examples of block Krylov spaces

K Cl
m (A,B) =

{
m−1∑
k=0

AkBCk : Ck ∈ Cs×s

}

K Gl
m (A,B) = span{B,AB, . . . ,Am−1B} =

{
m−1∑
k=0

AkBck : ck ∈ C

}
,

where span is in the usual sense for the vector space Cn×s

K Li
m (A,B) = Km(A,b(1))× · · · ×Km(A,b(s))

=

{
m−1∑
k=0

AkBDk : Dk ∈ Cs×s is diagonal

}



Some references on block methods

Classical block methods for linear systems:
block CG: [O’Leary, 1980], [Saad, 1987], . . .

block GMRES: [Simoncini and Gallopoulos, 1995, 1996], [Simoncini, 1996],

. . . , [Gutknecht, 2007], . . .

block MINRES: . . . , [Soodhalter, 2015]

Also [Langou, thesis 2003] and some talks on blok GCR.

Global (block) methods:
global GMRES and global FOM [Jbilou, Messouadi and Sadok, 1999] for
matrix equations,
[Heyouni and Essai, 2005], [Bouyouli, Jbilou, Sadaka, and Sadok, 2006],

[Elbouyahyaoui, Messouadi, and Sadok, ETNA, 2009], . . . for linear systems

For Functions of Matrices:
Block methods:[Lopez and Simoncini, 2006], [Al-Mohy and N. Higham,

2011] for exp(A), [Benner et al., 2015] for log(A).
We also mention [Arrigo, Benzi, and Fenu, SIMAX, 2016]

for “generalized matrix functions” (yesterday’s talk)



Our Contributions

I Block methods for general matrix functions

I Comparison of execution times of the three variants
(classical, global, loop-interchange)
plus apply function to each vector one at a time.

I Convergence theory: with and without restarts
(mostly for A HPD and Stieltjes functions)

I Theory of bilinear forms encompassing all three examples of block
Krylov subspaces



A “block inner product”

Let S be a subalgebra of Cs×s , i.e., a vector subspace closed under
matrix multiplication such that S∗ ∈ S for all S ∈ S

Definition
A mapping 〈〈·, ·〉〉S from Cn×s × Cn×s to S is called a
block inner product onto S if for all X ,Y ,Z ∈ Cn×s and S ∈ S
we have the following conditions:

(i) S-linearity : 〈〈X + Y S ,Z 〉〉S = 〈〈X ,Z 〉〉S + 〈〈Y ,Z 〉〉SS ,

(ii) symmetry : 〈〈X ,Y 〉〉S = 〈〈Y ,X 〉〉∗S,

(iii) definiteness: 〈〈X ,X 〉〉S is positive definite whenever X has full
rank s.



A “block norm”

Definition
A mapping NS : Cn×s → S is called a normalizing quotient onto S
if for every X ∈ Cn×s , X 6= 0, there exists Y ∈ Cn×s

such that X = YNS(X ) and 〈〈Y ,Y 〉〉S = Is .

Lemma
NS(X ) always exists via QR of X .

Giving the natural choice: NS(X ) = R where R is the (upper triangular)
matrix of the Cholesky factorization 〈〈X ,X 〉〉 = R∗R
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Some examples1

I classical: 〈〈X ,Y 〉〉Cl
S = X ∗Y , and S = Cs×s . NCl

S (X ) = R, where
QR = X is an economical QR factorization

I global: 〈〈X ,Y 〉〉Gl
S = trace(X ∗Y )Is , and S is set of diagonal matrices

with constant entry on the diagonal.

NGl
S (X ) = ‖X‖F Is .

I loop-interchange: 〈〈X ,Y 〉〉Li
S = diag(X ∗Y ), and S is the set of

diagonal matrices.

NLi
S (X ) =


‖x1‖2

‖x2‖2
. . .

‖xs‖2

 .

1First identified by Elbouyahyaoui, Messaoudi, and Sadok in their 2009 paper
“Algebraic properties of the block GMRES and block Arnoldi methods”



Block orthogonality, block normalization, and block span

I X and Y are block orthogonal if 〈〈X ,Y 〉〉S = 0s

I X is block normalized if NS(X ) = Is
I A set of block vectors {X1, . . . ,Xm} is block orthonormal when
〈〈Xi ,Xj〉〉S = δij Is , for all i , j = 1, . . . ,m

I Block span2:

spanS{X1, . . . ,Xm} :=

{
m∑

k=1

XkCk : Ck ∈ S

}

The mth block Krylov subspace with respect to A, B, and the block
inner-product Φ as

K S
m (A,B) := spanS{B,AB, . . . ,Am−1B} ≤ Cn×s

2Inspired by Gutknecht’s 2007 paper “Block Krylov space methods for linear
systems with multiple right-hand sides: an introduction”



Matrix polynomials

K S
m (A,B) = spanS{B,AB, . . . ,Am−1B} =

{
m−1∑
k=0

AkBCk : Ck ∈ S

}

Let Pm−1(S) denote the space of m − 1 degree polynomials with
coefficients in S. Three possibilities:

I [Gohberg et al., 2009]: P(Λ) =
∑m−1

k=0 ΛkCk , with Λ ∈ Cs×s

I [Lancaster, 1966]: P(λ) =
∑m−1

k=0 λ
kCk , with λ ∈ C

I [Kent, 1989]: P(A) ◦ B :=
∑m−1

k=0 AkBCk

K S
m (A,B) = {P(A) ◦ B : P ∈ Pm−1(S)}
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The block Arnoldi algorithm

Given: A, B, 〈〈·, ·〉〉S, NS, m
1 Compute B = NS(B) and V1 such that V1B = B and 〈〈V1,V1〉〉S = Is
2 for k = 1, . . . ,m do
3 Compute W = AVk

4 for j = 1, . . . , k do
5 Hj,k = 〈〈Vj ,W 〉〉S
6 W = W − VjHj,k

7 Compute Hk+1,k = NS(W ) and Vk+1 such that Vk+1Hk+1,k = W
and 〈〈Vk ,Vk〉〉S = Is

8 Return B, Vm = [V1| . . . |Vm], Hm = (Hj,k)mj,k=1, Vm+1, and Hm+1,m



The block Arnoldi relation

n

n

ms (m+1)s ms

(m+1)s

AVm = VmHm + Vm+1Hm+1,mÊ∗m,

where

I Êj = êj ⊗ Is , and êj is the jth standard unit vector

I Vm = [V1| . . . |Vm] ∈ Cn×ms and {Vk}mk=1 is an S-orthonormal basis
spanning K S

m (A,B)

I Hm is block upper Hessenberg, with each Hj,k ∈ S ⊆ Cs×s , and Hk+1,k

upper triangular



Block Full Orthogonalization Methods (BFOM)

The m-th BFOM approximation to AX = B is the block vector
Xm ∈ K S

m (A,B) is defined to satisfy the following Galerkin condition:

B − AXm ⊥〈〈·,·〉〉S
K S

m (A,B)

Let A be HPD and Em := X∗ − Xm, where X∗ solves AX = B exactly.
Some new tools:

〈X ,Y 〉S := trace(〈〈X ,Y 〉〉S)

‖X‖S := 〈X ,X 〉
1
2

S

〈X ,Y 〉S-A := 〈X ,AY 〉S



Block Full Orthogonalization Methods (BFOM)

κ := λmax

λmin
c :=

√
κ−1√
κ+1

ξm := 1
cosh(m ln c) ≤

2
cm+c−m

Theorem
For a Hermitian positive definite matrix A ∈ Cn×n and block
right-hand-side vector B ∈ Cn×s , the BFOM error Em = X∗ − Xm for
AX = B has the following bound:

‖Em‖S-A ≤ ξm ‖E0‖S-A .

For ClBFOM, GlBFOM, and LiBFOM, it is already well known that

‖Em‖A-F ≤ ξm ‖E0‖A-F ,

where ‖X‖A-F =
√

trace(X ∗AX )
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The B(FOM)2 approximation

Block full orthogonalization method for functions of matrices: B(FOM)2

I For general f , we define the B(FOM)2 approximation as follows:

Fm := Vmf (Hm)Ê1B

I With restarts:

F (k)
m := F (k−1)

m + V(k)
m ∆(k−1)

m (H(k)
m ) ◦ Ê1,

where the error function ∆
(k−1)
m (z) is such that

∆(k−1)
m (A) ◦ B := f (A)B − F (k−1)

m
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B(FOM)2(m) algorithm

Given: f , A, B, 〈〈·, ·〉〉S, NS, m, tol

1 Run Block Arnoldi with inputs A, B, 〈〈·, ·〉〉S, NS, and m to obtain V(1)
m ,

H(1)
m , H

(1)
m+1,m, V (1)

m+1, and B

2 Compute F (1)
m := V(1)

m f
(
H(1)

m

)
Ê1B

3 for k = 2, 3, . . . , until convergence do

4 Determine C
(k−1)
m (t) to define the new error function ∆

(k−1)
m (z)

5 Run Block Arnoldi with inputs A, V (k−1)
m+1 , 〈〈·, ·〉〉S, NS, and m to

obtain V(k)
m , H(k)

m , H
(k)
m+1,m, and V (k)

m+1

6 Compute D̃(k−1)
m := V(k)

m ∆
(k−1)
m

(
H(k)

m

)
◦ Ê1, where ∆

(k−1)
m (z) is

evaluated via quadrature

7 Compute F (k)
m := F (k−1)

m + D̃(k−1)
m



Convergence of B(FOM)2(m)

Recall f is a Stieltjes function: f (z) =
∫∞

0
1

z+t dµ(t)

κ(t) := λmax(A+tI )
λmin(A+tI ) , c(t) :=

√
κ(t)−1√
κ(t)+1

, ξm(t) := 1
cosh(m ln c(t)) ≤

2
cm+c−m

Theorem
Let A be an HPD matrix, B ∈ Cn×s , and f a Stieltjes function. Let
t0 ≥ 0 denote the minimum of the support of µ. Then the S-A norm of

the error of F (k)
m has the following bound:∥∥∥f (A)B − F (k)

m

∥∥∥
S-A
≤ γξm(t0)k ,

where γ = ‖B‖S
√
λmaxf (

√
λminλmax). In particular, B(FOM)2(m)

converges for all cycle lengths m as the restart index k →∞.



Comments on implementation

I Block Arnoldi algorithm
I One should implement block inner product in a “smart” way
I One must account for different kinds of break-downs for each block

inner product

I Error function
I An analytic form of the error function ∆

(k−1)
m must be written a

priori coming from the integral representation of f .
I The quadrature rule (used to evaluate ∆

(k−1)
m ) and tolerance must be

chosen carefully

I Code written in Matlab and executed on a Dell desktop with a Linux
64-bit operating system, an Intel R©CoreTM i7-4770 CPU @ 3.40
GHz, and 32 GB of RAM



A discretized 2D Laplacian, f (z) = z−1/2

Convergence history for A−1/2B, where A ∈ C10,000×10,000 is the
discretized two-dimensional Laplacian, B ∈ C10,000×10 is rank deficient,
the cycle length is m = 25, and the error tolerance is 5e-6
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A discretized 2D Laplacian, f (z) = z−1/2

Results for A−1/2B, where A ∈ C10,000×10,000 is the discretized
two-dimensional Laplacian, B ∈ C10,000×10 is rank deficient, the cycle
length is m = 25, and the error tolerance is 5e-6

wall
time (s)

number
of cycles

true
error (‖·‖F)

ClB(FOM)2(m) – – –
GlB(FOM)2(m) 10.31 53 4.41E-06
LiB(FOM)2(m) 93.53 53 4.37E-06
(FOM)2(m) 87.39 53 4.37E-06
ClB(FOM)2(m) with deflation 353 42 4.92E-06



Lattice Quantum Chromodynamics (QCD),

f (z) = sign(z) = (z2)−1/2z

Q ∈ C49,152×49,152 represents a periodic nearest-neighbor coupling on the
lattice. Overlap Dirac operator requires sign(Q)B. B random, s = 12,
error tolerance set to 5e-6. Sparsity pattern of Q2 given below.
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Figure: (left) Total time versus the cycle length. (right) Number of cycles
versus the cycle length.



Conclusions

I New theory of bilinear form amenable to build block
Arnoldi/Lanczos bases

I Formulation and convergence results for (restarted) BFOM for
functions of matrices (for A HPD and f Stieltjes)

I Multiple experiments showing that block global is either faster with
Block classical (or of comparable performance), and both much
faster than loop-interchange

Look for research report in a couple of weeks at
math.temple.edu/szyld
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