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Outline of the talk 



Given:  

 A: a diagonalizable matrix of order p 

 b:  a vector of order p  and  

 f : an analytic function defined on the spectrum of the matrix A  

 

Task:  

 Approximation of the action of f(A) on a vector b, i.e. f(A)b, 

without computing f(A). 

Introduction 



It is not necessary either to estimate the whole matrix f(A) or it is not 

feasible to compute f(A).  

 

 lattice quantum chromodynamics computations in chemistry and 

physics 

 numerical solution of stochastic differential equations 

 sampling from a Gaussian process distribution 

 

    Ref:  

• J. Chen, M. Anitescu, Y. Saad, Computing f(A)b via least squares polynomial 

approximations, SIAM, 33 (2011), 195-222. 

• P. I. Davies, N. J. Higham, Computing f(A)b for Matrix Functions f, Vol. 47 

(2005) of the series Lecture Notes in Computational Science and Engineering, 

Springer-Verlag, Berlin, 15-24. 

Applications 



 Eigendecomposition of  A: 

A = Q Λ Q-1  

where  

• Λ:  pxp diagonal matrix which contains the eigenvalues λi of  A   

and  

• Q:  pxp matrix which contains the corresponding linearly 

independent eigenvectors of  A.  
 

 We can write: 

f(A) = Q f(Λ) Q-1 =  𝑓 𝜆𝑖 𝑞𝑖𝑞 𝑖
𝑇𝑝

𝑖=1  

 

Vector estimates for f(A)b 

a 



 We define the vector-moments: 

dr = Ar b   and   df = f(A)b. 

 

 We can write:   

 

dr = Ar b =  𝜆𝑖
𝑟𝑞𝑖(𝑞 𝑖

𝑇𝑝
𝑖=1 , 𝑏) =  𝜆𝑖

𝑟𝑎𝑖𝑞𝑖
𝑝
𝑖=1   

and 

df = f(A) b =  𝑓(𝜆𝑖)𝑞𝑖(𝑞 𝑖
𝑇𝑝

𝑖=1 , 𝑏) =  𝑓(𝜆𝑖)𝑎𝑖𝑞𝑖
𝑝
𝑖=1  

 

where: 

 αi = (𝑞 𝑖
𝑇, 𝑏). 

  

 
 
 



d0 = A0 b ≈ α q 

d1 = A1 b ≈ l α q = l d0  

d2 = A2 b ≈ l2 α q = l2 d0  
 

 

Family of one-term vector estimates for  f(A)b:  

φN(i) = f (d0(i)
N(i)-1 d1(i)

1-2N(i) d2(i)
N(i)) d0(i),  N(i) ∈ ℂ, 

i = 1, 2 , … , p.  

  

One – term vector estimates 



Proposition  

The family of one-term vector estimates satisfies the relation  

φN(i) = f (ρ(i)N(i) 
𝑑

1
(𝑖)

𝑑
0
(𝑖)

 ) d0(i),   i = 1, 2 , … , p,  

where ρ(i) = 
𝑑

0
𝑖 𝑑

2
(𝑖)

𝑑
1
𝑖 2 . 

 

  



Lemma  

Let A ∈ ℝpxp be a diagonalizable matrix and f an invertible 

function. There exists a vector  Nopt ∈ ℂp which the i-th element 

is given by  

Nopt(i) = 
log (𝑓−1 𝑑

𝑓
(𝑖)

𝑑
0
(𝑖)

𝑑
0
(𝑖)

𝑑
1
(𝑖)

)

log (𝜌(𝑖))
,  ρ(𝑖) = 

𝑑
0
(𝑖)𝑑

2
(𝑖)

𝑑
1
(𝑖)2

 ≠ 1,  i = 1, 2 , … , p,  

such that φNopt
  gives the exact value of  f(A)b.  

 

  



Lemma 

Let A ∈ ℝpxp be a diagonalizable matrix and f an increasing 

function. If d0(i) > 0, d1(i) > 0 and ρ(i) > 1 then a bound for the 

optimal value Nopt(i) is  

Nopt(i) ≤  
log (𝑓−1(𝑘 𝑄 𝑓(𝜌 Α )

| 𝑏 |

𝑑
0
(𝑖)

)
𝑑

0
(𝑖)

𝑑
1
(𝑖)

)

log (𝜌(𝑖))
,   i=1, 2, …, p, 

where k(Q) is the condition number of the matrix of the 

eigenvectors Q and ρ(A) is the spectral radius of A.  

 

  



d0 ≈ α1 q1 + α2 q2  

d1 ≈ l1 α1 q1 + l2 α2 q2 

d2 ≈  l1
2 α1 q1 + l2

2 α2 q2 
 

 

The family of two-term vector estimates for  f(A)b satisfies the 

relation:  

𝜑 n,κ(i) = f (l1(i)) α1q1(i) + f (l2(i)) α2q2(i),   i = 1, 2 , … , p,  
 

where: 

Two – term vector estimates 



α1 q1(i) = 
1

𝑙
2
𝑖 −𝑙

1
𝑖
(l2(i) d0(i) − d1(i)),   l1(i) ≠ l2(i), 

α2 q2(i) = 
1

𝑙
2
𝑖 −𝑙

1
𝑖
(d1(i) − l1(i) d0(i) ),   l1(i) ≠ l2(i), 

l1,2(i) = 
𝑟(𝑖)± 𝑟 𝑖 2−4𝑞(𝑖)

2
 

r(i) = 
dn−1(i) dn+2+k(i) − dn+1(i) dn+k(i)
dn−1(i) dn+1+k(i) − dn(i) dn+k(i)

,   n, k ∈ ℤ 

q(i) = 
dn(i) dn+2+k(i) − dn+1(i) dn+1+k(i)
dn−1(i) dn+1+k(i) − dn(i) dn+k(i)

,   n, k ∈ ℤ. 

  

 
 
 



 Let A be a diagonalizable matrix of order p and x, y be 

vectors of order p. 

 Estimates for matrix functionals of the form:  

x*f(A)y 

 We define the moments:  

cr(x,y) = (x,Ary)   and   cf(x,y) = (x,f(A)y). 

 

 

Ref: P. Fika, M. Mitrouli, Estimation of the bilinear form y*f(A)x for 
Hermitian matrices, Linear Algebra Appl., 502, pp. 140-158, 2015.  

Estimates for matrix functionals 

a 



 Family of one-term estimates:  

eν = f (c0
ν-1 c1

1-2ν c2
ν) c0,  ν ∈ ℂ.  

 

 The optimal value of  ν  is given by the type 

νopt = 
log (𝑓−1 𝑐

𝑓

𝑐
0

𝑐
0

𝑐
1

)

log (𝜌)
, ρ = 

𝑐
0
𝑐
2

𝑐
1
2  ≠ 1. 

 

  



 Family of  two-term estimates  

𝑒 n,κ = f (l1) α1q1 + f (l2) α2q2  
 

where: 

α1 q1 = 
1

𝑙
2
−𝑙

1

(l2 c0 − c1),   l1 ≠ l2, 

α2 q2 = 
1

𝑙
2
−𝑙

1

(c1 − l1 c0),   l1 ≠ l2, 

l1,2 = 
𝑟± 𝑟2−4𝑞

2
 

r = 
cn−1 cn+2+k − cn+1 cn+k

cn−1 cn+1+k − cn cn+k
,   q = 

cn cn+2+k − cn+1 cn+1+k

cn−1 cn+1+k − cn cn+k
,  n, k ∈ ℤ 

 

  



Connection between f(A)b and xTf(A)y 
 

 We have   x = ei   and   y = b.  
 

 Moments:  

cr(x,y) = (dr)i   and   cf(x,y) = (df)i,   i = 1, 2 , … , p.  

 We can write f(A)b = 

< 𝑒1, 𝑓 𝐴 𝑏 >

< 𝑒2, 𝑓 𝐴 𝑏 >
⋮

< 𝑒𝑝, 𝑓 𝐴 𝑏 >

.  

 

  

 
 
 



We estimate the quantity f(A)b, for various functions f, matrices A 

and vectors b.  

 

Complexity: O(sp2),    s ≤ 8 

 

Ref:  

• The University of Florida Sparse Matrix Collection, 

http://www.cise.ufl.edu/research/sparse/matrices/.  

• The Matlab gallery, http://www.mathworks.com/help/matlab/ref/gallery.html. 

 

Numerical examples 



 Example 1:  Diagonalizable matrices 

 

We test the matrix A = dw256B of order p = 512. 

  diagonalizable with positive eigenvalues  

  well conditioned  (k(A) = 3.7328)  

 

We estimate the quantity A1/2b with  

• b is drawn from the uniform distribution  

• b is drawn from the normal distribution.  

 

  

a 



 

 

 

 

 

 

 

 

 

Estimating A1/2b by using the family of two-term estimates 
for various values of the parameters n and k.  

 

  

(n,k) relative error  

[b = rand(p,1)] 

relative error 

[b = randn(p,1)] 

(1,0) 9.9679e-4 7.7755e-4 

(1,1) 1.9075e-3 1.1618e-3 

(1,3) 3.6696e-3 1.3892e-3 

(1,-2) 3.6671e-4 8.3626e-4 

(0,4) 3.5097e-3 4.4683e-3 



 Estimating  f(A)b for various A, b, f.  

    Two-term vector estimates with n=1 and k=0.  

 

 

 

 

 

 

 

 

Estimating  f(A)b by using the family of two-term estimates with 

n=1 and k=0.  

  

matrix   

A 

vector   

b 

function  

f(A) 

relative error  

ex1   (p=216) randn(216,1) A1/2  3.6759e-2 

ex1   (p=216) rand(216,1) exp(A) 9.8744e-7 

parter (p=800) bi = cos(i) exp(A)  4.0454e-2 

parter (p=800) e5 A1/2  4.6376e-2 

rand(300)/100 randn(300,1) exp(A) 5.2986e-3 



Example 2:  Symmetric positive definite matrices  

 

We consider the Covariance matrix:  

• symmetric positive definite 

• entries: αij =  
1 + 𝑖,  𝑖 = 𝑗

1

|𝑖−𝑗|5
,  𝑖 ≠ 𝑗

    

• order p=700 

 

    Estimating  log(A)b with: 

• b = randn(700,1) and  

• bi = cot(i),  i = 1, 2, …, 700.  

 

  



 
 
  
 
 
 
 
 

 
 
 
 
Estimating log(A)b for various values of the parameters n and k.  

  

vector b  (n,k) relative error 

randn(700,1) (1,0) 1.8048e-4 

(1,3) 8.1004e-4 

(1,5) 8.6469e-4 

bi = cot(i) (1,0) 6.1381e-7 

(3,5) 6.7791e-5 

(-4,1) 3.1369e-5 



  Families of vector estimates for f(A)b were produced with 

complexity of order O(p2).  

 

  The presented numerical results show the satisfactory  

     behavior of the two-term vector estimates.  

     In applications where a high accuracy is not required, the  

     derived estimates are efficient and easily applicable.  

Concluding remarks 
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2014.  
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Computation, SIAM, 2008.  
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