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Outline

Bounding the trace of a large implicitly defined matrix
e Application to the solution of ill-posed problems

e Application to network analysis



Example of an ill-posed problem:

Fredholm integral equation of the first kind,

/1 k(s Oz(t)dt = f(1), 0<s<l.

with a continuous kernel k.

By the Riemann-Lebesgue lemma, small perturbations in

f may correspond to large perturbations in x:

max
0<s<1

1
/ k(s. 1) cos(2mlt)dt
0

can be made “tiny” by choosing |/| large.



Computed example:

/7T exp(—st)x(t)dt = QSinh(S), 0

S

VAN
V)
VAN

e

Determine solution x(t) = sin(t).

Discretize integral by Galerkin method using piecewise
constant functions. Code baart from Regularization

Tools by Hansen.



This gives a linear system of equations
Az = bexacta A€ R200X2007 bexact < R2OO-

A is numerically singular.

Add “noise vector” e in b that models measurement
errors. Let e have e normally distributed entries with
mean zero and be scaled to correspond to 0.1% relative

error. Thus,
b := bexact - €.
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Tikhonov regularization

Solve the penalized least-squares problem
min{|[Az — b[|* + p*||z[|*}.

Here Ac R, be R™, x € R", and © > 0is a

regularization parameter.

e The minimization problem has a unique solution z,

for any p > 0.

e It is important to choose an appropriate value of
1> 0. A too small value gives large propagated error
n z,; a too large value gives an over-smoothed

approximate solution.



Choice of the regularization parameter u

Several ways to determine a suitable u-value are

described in the literature including
e Generalized Cross Validation (GCV),
e the L-curve criterion,

e the discrepancy principle (DP).

DP requires a fairly sharp bound for the error in b to be
known. We focus on GCV.



The GCV method

determines the minimizer p > 0 of the GCV function

| Az, — 0|
(trace(] — A(p)))?’

V(p) =

where
A(p) == A(ATA 4 p2 1)t AT
i1s the influence matrix and
x, = (A"A+p*1)~ AT,

Thus,
A(p)b = Ax,,.



The GCV function is easy to evaluate when the SVD of A
is available. We are interested in the situation when A is

too large to make the computation of its SVD attractive.

Let M € R™*™ be symmetric, f a function such that
f(M) is defined. Let e; = [0,...,0,1,0,...,0]" be “axis
vectors” and

E] — [e(j—l)k—l—la SRR 6min{jk,m}]7 .] — 17 ce ,ﬁl,

be “block axis vectors” with at most k£ columns,

~ m+k—1
— 7 .




We compute upper and lower bounds for
trace(E] f(M)E;), j=1,...,m

with the aid of Gauss quadrature. These bounds give

upper and lower bounds for

trace(f(M)) = Z trace(E; f(M)E;).



Bounding the trace

Define for pu > 0,

Then This follows from

fu(AAT) = p2(AAY + 1)~
= | — (AAT + 21 tAAT
= [ —AATA+ D)t AT
= I —A(p).



Introduce the spectral factorization
AAT = QAQT
with () orthogonal and

A=diagh, .., Am], 0< A <. < A,

Define for block vectors U, V' € R™** the inner product
(U, V) := trace(U"V)
and Frobenius norm

|Ullr = (U, U)"2.



Define the unit block vector

~—

W = [w;;] = Q"W/||[W]|s.
Then

Zf, = trace(W' f (AA"YW) = HWH%trace(WTfu(A)W)

and
TV f(A)We; = Zfﬂ @ = [ Lm0

where w; () is a nondecreasing step function with jumps

at the eigenvalues A;.



Theretfore
k @) @)
Th = IWIEYS [ SN0 = IWIE [ £,00da0)

with the step function
k
W(A) = ().
j=1

Using the fact that A — f,(\) is totally monotonic (all
even order derivatives are positive, all odd order
derivatives are negative) will allow us to determine upper

and lower bounds for Zf, for p > 0.



Global Golub—Kahan bidiagonalization (GGKB)

¢ steps of GGKB applied to A with initial unit block

vector U; gives the decompositions

AV Vo, Vi = Uy, Us,... UGy + 0 U BT
AT[U17U27 - '7U£] — [‘/17‘/27 T "/E]aér7

where U; € R™*, V, € R™* and

<Ui7 Uj> — <V7/7VJ> — 51']"



Moreover,
a@ — Cﬁ X [ka

where ® stands for Kronecker product, and C) is a lower

bidiagonal matrix,

P1

092 P2

Per—1

O¢ Py




We also will need

C

T
Oe+1€¢

O€—|—1,€ — c R(£+1)X£,

Combining the GGKB decompositions gives
AAT[UL, Uy, .. Ul = [Uy, Us, ..., U Ty + peoerUsn EY

where
Cfg = Tg@]k, Tg = OgCET



Theorem: The symmetric tridiagonal matrix 7, defines

an (-point Gauss quadrature rule
Gefp = W7 ex fu(To)er
associated with the distribution function w(\), i.e.,
Gp=1p  Vp € Py,

where Py,_; denotes the set of all polynomials of degree
at most 2¢ — 1.



Remainder formula for Gauss quadrature:

(20) o !
Tfy—Gofu = f’E%;f) /O 1;[1()\ — 6;)% dw(N),

where & € (A1, \;,) and the 6, are Gaussian nodes. They
satisty Ay < 0; < A, for all j. It follows that

Go-1Ju < Gefu <ZLfy

For discussions on the relation between the standard
Lanczos process and Gauss quadrature; see

G. H. Golub and G. Meurant: Matrices, Moments and
Quadrature with Applications, Princeton, 2010.



An (¢ + 1)-point Gauss—Radau rule associated with the
distribution function w and a fixed node ¢ = 0 can be

expressed as

Resvofu = Wlger fu(Teso)er,

where
Tyy10= C£+1,eCeT+1,e
and
Rey10p = 1p Vp € Py

Note that T4 1s singular.



Remainder formula for Gauss—Radau quadrature:

(2¢41) o L
Lfy—Rerrofu = f(M% + (f)(),) /0 )‘[[10‘ - ej,O)Q dw(A).

The 0, are “free” Gauss-Radau nodes. Odd derivatives

fp(b%ﬂ)(t) are negative for ¢ > 0. One can show that

Tl <Rey10fu <Reofpu



Bounding the numerator of the GCV tunction

Let x, = (AT A+ p*I)~tA'b be the Tikhonov solution for

1 > 0, and define

2

(4
t>0.
b+ p?)? B

g/i(t) = (

Then
| Az, — b2 = p257 g, (AAT)b

Substituting the spectral factorization of AA? into the

rhs gives

g (AT = B [ g, (N ()
0



Application of £ steps of (standard) Golub—Kahan

bidiagonalization to A with initial vector b gives the

decompositions
Alvr,vg, ... v = [u1,ug, ... u By + Braueiey
AT[ul, U,y ... U] = |v1,09,... ,W]BZa
where
U;-TU]' — dija U,;-T?Jj = 57;]',

and B, € R"™* is lower bidiagonal.



Let Ty := B;BI. Then
Gegu = 12[|D]1* €1 g, (Tr)er

is an ¢-point Gauss quadrature rule associated with the

measure dv, i.e.,

G = [ pNv(N), Vo€ Puy
0
Moreover,

gvﬁ—lgu < Gﬂgu < ||Az, — b||2'



One obtains a (¢ + 1)-point Gauss—Radau rule with a

fixed node at zero by appending a row to By,

7v3£+1,0 = p?]|b]f? €1T9u(é6+1,eéeT+1,e)€h l§£+1,e = b
I 5£+1€g |
Then
Revap =il [ pNar(y)  pePa
and

HA.TM — bH2 < 73“_19# < ﬁgg,u.



Computed examples

We have described how the connection between

Golub—Kahan bidiagonalization and Gauss quadrature

can be exploited to determine upper and lower bounds

for the numerator and denominator for the GCV function
| Az, — b]|°

(trace(I — A(u)))?

V() =

We theretore can compute upper and lower bounds for

V(p).



Example 1: Consider the test problem phillips from

Regularization Tools,
Az = b, A e R 2 be R,

0.1% relative error in b.



Upper and lower bounds for V(u) for £ =2,4,...,10.



Example 2: Consider the test problem shaw from

Regularization Tools,
Az =D, A € R2000x2000 . j o R2000,

0.1% relative error in b.



Upper and lower bounds for V(u) for £ =2,4,...,10.
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Example 3: Timings as a function of block size.
A € RA096x4096



Example 4: Problems from Regularization Tools with
A € R2000x2000 op A ¢ RAVOX2000 - Block size k = 500.
Relative error in b: 0.1,0.01,0.001. 10 runs per noise

level gives 60 runs per matrix-type.

gcv_lanczos implementation by Golub and von Matt
using Hutchinson’s stochastic trace estimator: Compute

upper and lower bounds of
A (AAT + 217z,

2z random vector with entries =1 with equal probability:.

F. = number of times error is ¢ times larger than best

Tikhonov. Block size £ = 500.



gcv_lanczos

Quadrature

matrix Fs  Fig time Fs  Fig time

Baart 27 22 T7.0e-01 | O 0  2.0e+01
Deriv2 0 0 7.4e-01| O 0  2.9e+01
Foxgood 33 30 4.9e-01 | 3 0 1.7e+01
Gravity 9 7  6.2e-01 | 1 0 3.4e+01
Heat(1) 0 0 1.4 0 0 4.1e+01
Phillips 4 I 4.0e-01 | O 0 3.3e401
Shaw 25 21 9.1e-01 | O 0 2.1e401
Wing 19 18 6.0 0 0 1.8e+01



Example 5: Baart test problem A € R!?4x1024 Block

size k = H512. Relative error in b: 0.1.
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Example 5: Baart test problem A € R!?4x1024 Block
size k = 512. Relative error in b: 0.1.
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Quadrature: u=4.0-10"%, rel. error=2.5-10""!
gcv_lanczos: = 5.1-107% rel. error=1.3 - 10°



Application to network analysis:
A € R™"™ a symmetric matrix, W € R™ ¥ initial block
vector for the global block Lanczos method, block size

k < n. This method uses the inner product

1
(U, V) = Etrace(UTV), U,V e RV

and norm

V]| = (V,V)V2



The global block Lanczos process

¢ steps determine an ON basis {V;}:T} for the block
Krylov subspace Ko (A, W) := span{W, AW, ... AW }.

Algorithm:
Vo:=0, By = ||W]}; Vi :=W/B;
for  =1,2,.... ¢ do
V= AV; = Vi s a5 = (V;,V);
V=V —aq;Vj;
Ojt1 = “‘7“7 Vi = ‘7/@7“;

end



The global Lanczos process gives the decomposition
A[‘/la RN ‘/E] — [‘/17 RN ‘/E]@ + /Y€+1‘/Y£—I-1EZ7
where V; € R™** with

L, =y,

Vi, V) =
A KPS

\

and
T, =T, I



Application: Let

f(t) =exp(t), A adjacency matrix, W = E; = ey, eo,...

Pairs of Gauss and Gauss-Radau rules provide lower and

upper bounds for
trace(Ey exp(A)E)).
Repeat for
W=FE;, j7=23,....,n/k.
Gives lower and upper bounds for

trace(exp(A)) = Estrada index for graph.



Table 1: Execution times for computing the Estrada index.

Glob. Lanczos Scal. Lanczos expm
matrix nodes time k time time
Email 1133 | 3.45e-01 80 3.54e+00 1.18e4-01
Yeast 2114 | 4.73e-01 60 3.20e+-00 1.01e+01
Power 4941 | 1.89e+00 40 1.28e+-01 2.14e+01
Internet 22963 | 1.22e¢+02 8 3.30e4-02 -
Collaborations 40421 | 4.80e+02 40 1.25e+03 -
Facebook 63731 | 2.64e+03 60 8.82e+03 -



Table 2: Number of iterations and matrix-vector product
evaluations (MVPs)

Glob. Lanczos

Scal. Lanczos

matrix nodes Lk iterations MVPs MVPs
Email 1133 | 80 130 9730 9745
Yeast 2114 | 60 213 12596 8652
Power 4941 | 40 618 24644 22209
Internet 22963 | 8 28776 230158 226433
Collaborations 40421 | 40 10115 404372 416648
Facebook 63731 | 60 12075 723912 758618
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Figure 1: Execution times to compute the Estrada index

for the three largest networks, versus the block size k.
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Figure 2: Upper and lower bounds for the Estrada index

versus number of iterations for Email network.
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Figure 3: Upper and lower bounds for the Estrada index

versus number of iterations for Yeast network.
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