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University of Banja Luka

NL2A

Luminy, October 24 - 28, 2016

– p. 1/15



Overview

◮ Generalization of the Gauss quadrature (GQ):

from positive definite to quasi definite case



Overview

◮ Generalization of the Gauss quadrature (GQ):

from positive definite to quasi definite case

◮ Jordan decomposition of complex Jacobi matrices



Overview

◮ Generalization of the Gauss quadrature (GQ):

from positive definite to quasi definite case

◮ Jordan decomposition of complex Jacobi matrices

◮ The link of GQ with Padé approximants



Overview

◮ Generalization of the Gauss quadrature (GQ):
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◮ L is said to be positive definite onPk if ∆0, . . . ,∆k are positive and

m0, . . . ,m2k are real.

◮ There exists some positive Borel measureµ supported on the real axis

such thatL(P ) =
∫
P (x)dµ(x) for all P fromPk.

◮ L is said to be quasi-definite onPk if ∆j 6= 0, for j = 0, 1, . . . , k.
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◮ Interpolatory quadrature is GQ iff the polynomial

ωn(x) =
n∏

i=1

(x− yi)

satisfyL(ωnP ) = 0 for all P fromPn−1.

◮ G1: Then-point Gauss quadrature attains the maximal algebraic

degree of exactness which is2n− 1.

◮ G2: Forn ≤ k thenn-point Gauss quadrature is well-defined and is

unique.

◮ G3: The Gauss quadrature of a functionf can be written in the form

m0e
T
1 f(Jn)e1.
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1. deg(πj) = j (πj is of degreej),

2. L(πi πj) = 0, i < j,

3. L(π2
j ) 6= 0.

◮ Sequenceπ0, . . . , πk of orthogonal polynomials w.r. toL exists if and

only if L is quasi definite onPk.

◮ OP are unique up to constant factor, they satisfy three-termrecurrence

relation.

◮ Unlike in the positive-definite case, their coefficients arenot necessarily

real, the coefficients in the three-term recurrence relation are, in

general, complex, and zeros of OP can be complex and multiple.
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◮ Jn - complex Jacobi matrix: three-diagonal, symmetric, no zeros on

sub-diagonal
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∏n
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satisfyL(ωnP ) = 0 for all P fromPn−1.

◮ GQ exists if and only if:

1. L is quasi-definite onPn,

2. Corresponding Jacobi matrixJn is digonalizable.

◮ Gragg, Rocky Mountain J. Math. (1974)

◮ Saylor and Smolarski, Numer. Algorithms (2001)
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i=1
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◮ It has degree of exactness2n− 1 if and only if:

1. it is exact onPn−1,

2. πn(x) = (x− z1)
s1(x− z2)

s2 . . . (x− zℓ)
sℓ , where{πj}

n
j=0 is

the sequence of monic orthogonal polynomials with respect toL.

◮ quadrature= L(Tn−1)

◮ Tn−1 - the interpolating polynomial off in the nodeszi of

multiplicitiessi

◮ Should we call it Gauss quadrature? (G1, G2 and G3)
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Theorem

Quasi-definitness of the linear functionalL is the
necessary and sufficient conditionfor the quadrature

L(f) =
ℓ∑

i=1

si−1∑

j=0

ωi,j f
(j)(λi) +Rn(f) .

to have all three properties G1, G2 and G3. For
non-definite linear functionals all three properties
cannot hold.
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◮ J3 is diagonalizable,J2 is not diagonalizable
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Example
◮ Forn = 2 the Gauss quadrature is of the formA1f(2) +A2f

′(2). It is easy to check

that the nonlinear system

A1 · 1 +A2 · 0 = 1
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2
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has degree of exactness 3. Its degree of exactness would be higher if and only if
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2
1 +A2(2z1) = 8

A1z
3
1 +A2(3z

2
1) = 20

has unique solution (inC): A1 = 1, A2 = 1, z1 = 2. So the quadraturef(2) + f ′(2)

has degree of exactness 3. Its degree of exactness would be higher if and only if

m4 = 24 + 4 · 23 = 48. But in that case we would have∆2 = 0, i.e.L would not be

quasi definite onP2.

◮ The functionalL1 whose first five moments are

m0 = 1, m1 = 3, m2 = 8, m3 = 20, m4 = 48,

is not quasi-definite onP2. If m5 = 25 + 5 · 24 = 112 then the quadrature

f(2) + f ′(2) would have degree of exactness at least 5.
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0j
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(j)
j (λi)

...

p
(j)
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, i = 1, . . . , ℓ, j = 0, . . . , si − 1,

◮

vt =

si−1
∑

k=j

k!ωi,k w
i,k−j

◮ i andj are unique integers such that

t = s0 + s1 + · · ·+ si−1 + j + 1

with s0 = 0.
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∑
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◮ q is of degreen.

◮ Maclaurin expansion ofr(x) agrees withF (x) exactly through the powerx2n−1.

◮

1

x
r

(

1

x

)

=

ℓ̃
∑

i=1

s̃i−1
∑

j=0

Ai,j

(x− αi)j

◮

ℓ̃ = ℓ, s̃i = si,
Ai,j

j!
= ωi,j , αi = λi i = 1, . . . , ℓ, j = 0, . . . , si − 1
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THANK YOU FOR YOUR ATTENTION!
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