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» P, - space of polynomials of degree upito

» L is fully determined by its moments; = £(z’),j = 0,1, ...

mo ma 500 mj
. mi mo oo o mij41
» Hankel determinants; =
mj  mMi41 ... T2j
» L Is said to be positive definite dR if A, ..., A, are positive and

mo, ..., Mo are real.

» There exists some positive Borel measumsupported on the real axis
such thatZ(P) = [ P(x)du(x) for all P from P.

» L is said to be quasi-definite o, if A; #0,forj =0,1,... k.
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Orthogonal polynomials w.r. to positive definite £

>

>

po(x), p1(x),..

They exist, they are unique and haeal coefficients

141

zpi(xr) = Y, tipi(x),

j=i—1

po(x)
p1(x)

po(x)
p1(x)

'+tn—Ln

tn—Ln—Q

., pn(x)- orthonormal polynomials w.r. tol

t;; = L(zps(z)pj(T)) =t €R

tn—ln—l

tn—Ln—l
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Gauss quadrature for positive definiteL on Py,

>

>

ﬂﬂ=}nkﬁww+RMﬁ,Rﬂﬂ=ﬂmﬂwf€PM4
=1

Interpolatory quadrature is GQ iff the polynomial

n

wn(@) = [[ @ u)

1=1
satisfyL(w, P) = 0 for all P fromP,,_;.

G1l: Then-point Gauss quadrature attains the maximal algebraic
degree of exactness which2s — 1.

G2. Forn < k thenn-point Gauss quadrature is well-defined and is
unique.

G3: The Gauss quadrature of a functibean be written in the form

moe{f(Jn)el.
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» my,71,...IS asequence of orthogonal polynomials w.r£td:
1. dedw;) = j (7, is of degreg)),
2. L(mym;)=0,1<}7,
3. L(75) #0.
» Sequencer, ..., ; of orthogonal polynomials w.r. t@ exists if and

only if £ is quasi definite orPy.

» OP are unique up to constant factor, they satisfy three-teoumrrence
relation.

» Unlike in the positive-definite case, their coefficients mpénecessarily
real, the coefficients in the three-term recurrence reiai@, in
general, complex, and zeros of OP can be complex and multiple
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po(x)
p1(x)
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OP for quasi definite £

» Do, ..

» J, - complex Jacobi matrix: three-diagonal, symmetric, n@zem
sub-diagonal

po(x)
p1(x)

i pn—l(w) i

In

| Pn-—1 (37)

, D, - Orthonormal

po(x)
p1(x)

‘|‘tn—1,n

| Pnl@)
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GQ for quasi definite £

=
L(f) =) Aif(z)+ Ru(f)
1=1
» ADE is at leasn — 1 iff the polynomialw, (z) = [[;_, (z — 2)
satisfyL(w, P) = 0 for all P fromP,,_;.

» GQ exists if and only if:
1. L is quasi-definite orP,,,

2. Corresponding Jacobi matrik, is digonalizable.

» Gragg, Rocky Mountain J. Math. (1974)

» Saylor and Smolarski, Numer. Algorithms (2001)
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GQ for quasi definite £
>

14 Si—l

‘C(f):ZZAi,hf(h)(Zi)+Rn(f)a n==s+...+

1=1 h=0

» It has degree of exactne®s — 1 if and only if:
1. itisexactorP,_q,
2. mp(x) = (v — 21)% (r — 22)°2 ... (x — 2¢)%, Where{m; }7_g is
the sequence of monic orthogonal polynomials with respmect t

» quadrature= L(T},_1)

» 1, 1 -the interpolating polynomial of in the nodeg; of
multiplicities s;

» Should we call it Gauss quadrature? (G1, G2 and G3)
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Theorem

for the quadrature

to have all three properties G1, G2 and G3. For
non-definite linear functionals all three properties
cannot hold.
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Example
» L is defined by sequence of momeits3, 8, 20, 52, 156, i, ...
» LisquasidefiniteorPs: Ag =1, A1 =-1, Ao =—-4, A3 =2128 — 41
» mo=1, m(zx)=xz—-3, ma(z)==x°—4x+4, w3(x)=2x3—Tzr?+20x— 24
» The zeros ofry arexr; = xo = 2, which means that the Gauss quadrature in the
standard form does not exist. In other words, the nonlingstesm

A28 + Ag 28 =my, k=0,1,2,3,

has no solution irC.

» The zeros ofrs arex1 = 3, zo2 = 2 — 2¢ andxs = 2 + 27, which means that Gauss
guadrature has the standard form.

3 5 0 |
> J3 = 7 1 22
|0 20 3

» Js is diagonalizable,/J> is not diagonalizable
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Example
» Forn = 2 the Gauss quadrature is of the forn f(2) + A2 f/(2). Itis easy to check
that the nonlinear system

A1 -14+A2-0 = 1

Aiz1 +A2-1 = 3
A1z2 + A3(221) = 8
A1z3 +Ax(322) = 20

has unique solution (i€): A; = 1, A3 = 1, 27 = 2. So the quadraturé(2) + f/(2)
has degree of exactness 3. Its degree of exactness wouldhe ifiand only if

my = 24 + 4 .23 = 48. But in that case we would havks = 0, i.e. £ would not be
guasi definite orpP-.

» The functionall; whose first five moments are

mo =1, mp = 3, mg = 8, m3 = 20, myg = 48,

is not quasi-definite oPs. If ms = 2° + 5 - 24 = 112 then the quadrature
f(2) + f’(2) would have degree of exactness at least 5.
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Jordan decomposition ofJ,, and GQ
> Jp,=WAW!

» The columnsw; (t = 1,...,n) of W and the rowss; of W —! can be expressed in
terms of nodesX;) and weights(; ;) in GQ and orthonormal polynomialg);

4
0,
1 P‘gj)()\i)
Wt = — ’ 7/:17 a£7 .7207 y S4 17
7!
| pgll(&-) |
4
87;—1
Vi Z klw; , whF—J
k=j

» ¢ andj are unique integers such that

t=sot+s1+---+s-1+7+1

with sg = 0.

—n. 13/15



GQ and Padé approximants

> r(x)= zgg - [n — 1, n] Padé approximant for thec formal power series




GQ and Padé approximants

> r(x)= zgg - [n — 1, n] Padé approximant for thec formal power series

» ¢ is of degreen.



GQ and Padé approximants

> r(x) = Zgg - [n — 1, n] Padé approximant for thec formal power series

» ¢ is of degreen.

» Maclaurin expansion of(z) agrees withF'(z) exactly through the power?”—1.



GQ and Padé approximants

> r(x) = Zgg - [n — 1, n] Padé approximant for thec formal power series

» ¢ is of degreen.
» Maclaurin expansion of(z) agrees withF'(z) exactly through the power?”—1.

>



GQ and Padé approximants

> r(x) = Zgg - [n — 1, n] Padé approximant for thec formal power series

» ¢ is of degreen.

» Maclaurin expansion of(z) agrees withF'(z) exactly through the power?”—1.

>
lr(l>:§:~z_l Aij
x 7% =1 =% (r — ay)d
>
(=10, §; =s;, ;"‘7 =wi g, ;=X 1=1,...,¢ 3=0,...,5,—1
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THANK YOU FOR YOUR ATTENTION!
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