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Introduction

Saltwater intrusion problem - case of unconfined aquifer with diffuse interface

The saltwater intrusion problem is defined by:

$0th — V- (aK To(h)Vh) — V- (V) = V - (K Ta(h)Xo(h1)Vhy) = Qs, (1)
$0chy — V- (K(Tr(h = hy) + To(h)))Xo(h)Vhy) — V - (6Vhy) — V - (a K To(h)Vh)
= Qf + Qs7 (2)
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Introduction

Saltwater intrusion problem - case of unconfined aquifer with diffuse interface

Boundary and initial conditions

with the following initial and boundary conditions :

h= hD s hl = hl,D on [ x (0, T), (3)
h(O,X) = ho(X) , hl(O,X) = hl’o(X) in Q,

and

OShLDShDghQ , 4d.e. in Fx(O, T), (4)
0 S h170 S ho S h2 , a.e. in €.

such that (Qs, Qr) € (L2(0, T; H))?, and
(hp, h1.p) € (L2(0, T; HY(2)) N HY(0, T; (HX(Q)))?, while (ho, h10) € (H(2))?.




Introduction

The control problem

The control problem is defined by:

(00) find K* € U,gm such that
TN T(K*) = infreu,g, T (K),

with
L 2 1 2
T(K) = Slh(K) = hyobs|[i2i0r) + 511AK) = hobs|[12(q):
and
Usam = (K € BV(S) N L¥(Q), Km < K < Kus et TV(K) < c},

where Kp, and Ky are strictly positive real constants. (BV/(Q);[|.|[gv(q)) is the space of
functions with bounded variation on 2.



Main results

Existence of optimal control

There exists at least one optimal control for the problem (O.).




Main results

Existence of optimal control
Proof

o Let (Kn)nen C Uadm be a minimizing sequence such that

j(Kn)—>j :KEIT/tmj(K)

d

o U,gm is a compact subset of L?(), so
K, — K* strongly in L2(Q).
@ From the existence theorem of the exact solution, (hf, h") = (h1(Kn), h(Kp)), satisfies:

111l 20,7 11)) + 1A 20,7 H1(0)) < G,
110" 200, 7,v1) < C,

10eht 1200, 7,v1) < C,
where C is a constant independent of n.



Main results

Existence of optimal control
Proof

e We deduce from Aubin compactness that there exist (hj, hi*) € W(0, T)? such that :
A" — h*in L2(0, T; H) and a.e. in [0, T] x Q,
Dth™ — 9;:h* weakly in L2(0, T; V'),
h7 — hi in [2(0, T; H) and a.e. in [0, T] x Q,
D:hl — Ok} weakly in L2(0, T; V'),
With
W(0, T) := {w e L%(0, T; V), dw € L*(0, T; V')}
and
V = Hy(9),

@ From the passage to limit in the variational formulation of the exact problem and from
the uniqueness of the exact solution, we obtain

(hi, h*) = (h1(K™),h(K*)) and J(K*)=J".



Main results

optimality conditions
Introduce the Lagrangian £

We introduce the Lagrangian £ defined as follows:
L (h1,h, A e, Ai, K) = / /gf) A dxdt

+ /to /9(5—1-04K(X)Ts(h))Vh.V)\,'dxdt—i-/to /QK(X) To(h) Xo(h)Vhy - V\; dxdt

_|_

/tf/ ¢%Af dth+/tf/[K(X)(Tf(h—h1)+ Ts(h)) + 0] Xo(h1)Vhy - Vs dxdt

+ / /aK Ts(h)Vh- V¢ dxdt—/ /Qs)\ dxdt
N / /(Qs—|— Q) dxdt.
to Q




Main results

Existence and uniqueness of the adjoint problem

Introduce the adjoint system

The state system is given by:

oM L i (5 + aKTo(R)V ) + div (K(x)(hs — h)Xo(h)Vhy) = Qs

—p + div (KGO(Te(h — ) + Te(h)) + 6)Xo(h) Vhy) + div (oK (x) Ts(h)V h)

- Qf + Qs
The associated adjoint state system is given by the following retrograde system:

*‘b?ti — div((6 + aKTs(h))VA;) — aK(x)Vh -V + K(x)Vhy - VA;,

—div(aK(x) Ts(h)VAf) — aK(x)Vh- Vs = hops — h,
,¢% — div(K(x)(h2 — h)V ;) — div((K(x)(Te(h — h1) + Ts(h)) + 6)VAs)
—K(x) Vhy - VAr = hy obs — b1,

A\ = 0, Ar =0 on FD, )\;(tf,X) =0, )\f(tf,X) =0, Vx € R.



Main results

Existence and uniqueness of the adjoint problem

Let (h1, h) = (h1(K), h(K)) the exact solution associated with the hydraulic conductivity
K € U,gm, the adjoint problem defined by:

Find  (Ai, Ar) € W(O, T)? such that V(ur, u;) € H3(Q)? :

fQT[fgba(;; + (0 + aK(x)Ts(h))VAi - Vui — aK(x)Vh -V - uj]dxdt

+ fQ [aK(x) Ts(h)VAf - Vuj — K(x)Vhy - Vi - uj — aK(x)Vh- Vf - ujdxdt

— fQ obs — h)ujdxdt, (6)
fQT[ ¢ Uf + K(x)(ho — h)V\; - Vus — fQ x)Vhy - Vr - urdxdt

+ Jo, (K )(Tf(h — h1) + Ts(h)) + 6) VA - )\Uf]dxdt
= fQT(hl,obs — hy)ur dxdt,

has a unique solution.




Main results

Existence of the solution of the optimality system

Theorem
Let K* be a solution of problem (O.), there exists a couple (h* — hp, hi — h1 p) € W(0, T)?
and a couple \* = (A, \¥) € W(0, T)? satisfying the optimality system determined by the
direct problem, the adjoint problem (6) and, for all K € Uagm

Dk J(K) - (K(x) — K*(x)) > 0.

Where the gradient of the cost function is given by:

tr
Die T (K*) 6k :/ / Sk To(H*) (Vh* + VA) - VAL dxdt
to Q

tf
+/ /5K ((hy — W)V H, + a To(h*)VA*) - VAL dxdt, with 6k € Usm.
to Q




Main results

Existence of the solution of the optimality system
Proof

e We introduce the application Q : K — (h(K), h1(K)) implicitly defined by the direct
problem,

@ we thus define the mapping

R: Z(0,T)? x Int(U) — L3(0, T; H}(Q))
(h1,h,K) — R(h1, h,K)
where
Z(0, T) = W(0, T) N L=(0, T; L*(Q))
and

U={KeBV(Q)NL®Q),Kn <K < Ky and TV(K) < C}, with ¢ < C,

Where the constant c is the constant defining U,y and (hy, h) = (hy — hi.p, h— hp).



Main results

Existence of the solution of the optimality system
Proof

such that ¥V (¢;, ¢r) € L2(0, T; H3(Q))?, we have

<R h17h K) (9017 Qof

- / /¢ cp,dxdt—i—/ /¢<pfdxdt

+ / / (0 + aK(x)Ts(h))Vh- Vo, dxdt+/ / h) Xo(h1) Vhy - Vi dxdt

.
+ / (6 + K(x)(Ts(h) + Te(h— h1))Xo(hy)) Vhy - Vigr dxdt

:O

-
+ / a K(x h)Vh - Vor dxdt — / / Qs dxdt + / / (Qs + Qr)pr dxdt.
Q
(7)



Main results

Existence of the solution of the optimality system
Proof

o T, and Tr belong to L>(Q7), so the continuity of R and DxR(hy, h, K) is clear,

@ We use the regularity of exact solution to demonstrate the continuity of
D, mR(h1, b, K),

° D(,;h,-,)R(h_l, h, K) is an isomorphism,

@ Applying the theorem of implicit function, we state that the application Q is continuous
and differentiable from U,4m to Z(0, T).




Main results

Existence of the solution of the optimality system
Proof

@ The application K — J(K) is differentiable and
Dk J(K*) = Ok £(K™, h(K®), hi(K™), A7, A),
with

Dk J(K*) ( / / Sk Ts(h(K*)) (aVA(K*) — Vhi(K*) - V! dxdt

tr
+/ /5K ((h2 = h(K*))Vhi(K*) — a To(h(K*))Vh(K*)) - VA; dxdt, Yok € Uagn
t Q
@ Furthermore, if K* is a minimum of 7, we have
Ok L(K*, h*, h{, \i, \e)(K — K*) > 0,YK € Uadm,
where
h* = h(K*), hi = hi(K™), A\ = Xi(K*, h*, h7), A\r = Ae(K™, h*, hD).
S



Numerical results

Algorithm

Data:
@ Ky initial shooting;

@ Hy =1 a first approximation of the inverse of the Hessian matrix,

Exit: a parameter K verifies ||VJ(K)|| < e.
while ||VJ(K;)|| > €, do:

e di = H «xVJI(K),
o if (—dl, Vj(K,)) >0, put d,' = di, else d,' g —Vj(K,‘),

e calculate s; (the step length) verifies the Wolf conditions using the line search algorithm,




Numerical results

Algorithm

Kit1 = Ki + s * d;,
calculate J(Kit+1) and VI (Kit1),

calculate y; and ¢;:

yi = VJI(Kit1) — VI(Ki);

and
¢i = Kit1 — Ki;
° C,'y,-T Vi CI-T Ci C,-T
Hi-i-lz(/_?) Hi (/_ T )+ T

Yi G Yi G Yi G




Numerical results

The line search algorithm

Data: sy the initial step length,
Exit: s; a step length satisfy the Wolf conditions.
The Wolf conditions is:

@ The function J must increase significantly:

J(Ki +sidi) < J(K;) + Wis; - VI (K;)d; (A)
@ The step length s; must be large enough:

(VI(Ki + sidi))T - dj > WaV T (K;)d; (B)
where Wy = 10~% and W, = 0.99.




Numerical results

The line search algorithm

@ Set sy =0and s, =0,

@ we take 0
—2AY
S0 = Y 7(K) 4 (fletcher step),
with A =~ (T (K;) — Tmin) and 7 of the order 1072 or 1071
For k=0,1,...

a. if s; does not satisfy the Wolf condition (A) :
o decreases the upper bound : s, = s;;

1
o Choosing a new step length: s; = 5(51 + ).

b. if s; satisfy the Wolf condition (A) and does not satisfy (B):

e increasing the lower bound: s; = s;,

o Choosing a new step length: s; = 5(51 + ),



Experience 1

Numerical results

Table: experience 1

Case

Number of wells

exact values

initial values

identified values

i 1 K=50 m/d | KO= 70 m/d | K1= 49.6266 m/d
i 2 K=50 m/d | KO= 70 m/d | K2= 50.3181 m/d
i 3 K=50 m/d | KO= 70 m/d | K3= 50.0101 m/d




Numerical results
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Figure: Graph representing the convergence of the hydraulic conductivity in the experience 1.




Experience 2

Numerical results

Table: experience 2

Number of wells

exact values

initial values

identified values

i 2 Kl= 50 m/d | KI= 60 m/d | KI= 49.490 m/d
K2= 90 m/d | K2=100 m/d | K2=91.115 m/d
i 4 KI= 50 m/d | KI= 60 m/d | KI= 49.963 m/d
K2=90 m/d | K2=100 m/d | K2=90.090 m/d




Numerical results
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Figure: Graph representing the convergence of hydraulic conductivity in Experience 2 for case (i).
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Figure: Graph representing the convergence of hydraulic conductivity in Experience 2 for case (ii).




Numerical results

Conclusion:

We solved parameter identification problem by the adjoint method. We are interested in the
identification of the hydraulic conductivity K. We estimated that parameter in terms of the
observations or the measures on the ground, made on the depth of the interface between the
saturated zone and the dry area, and on the depth of the interface freshwater/saltwater.
Perspectives:

@ Studying the saltwater intrusion problem considering that parameters such as hydraulic
conductivity and porosity are stochastic,

@ compare the results for problem of saltwater intrusion as the parameters are
deterministic or stochastic.
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