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Shanks transformation and the ε–algorithm

Shanks transformation (1955) is a well–known sequence
transformation for accelerating the convergence of sequences of
numbers. It can be recursively implemented by the scalar
ε–algorithm of Wynn (1956).

They were both extended to sequences of elements of a vector
space by Brezinski (1975).

The idea is as follows.



Let (Sn) be a sequence of elements of a vector space E converging
to S, and assume that it satisfies, for a fixed value of k , the
difference equation

a0(Sn − S) + · · ·+ ak(Sn+k − S) = 0 ∈ E , n = 0, 1, . . .

with a0ak 6= 0 and a0 + · · ·+ ak 6= 0.

We want to transform (Sn) into a new sequence (ek(Sn)) such
that

ek(Sn) = S, for all n.

If (Sn) satisfies the difference equation above then S is given by

S = (a0Sn + · · ·+ akSn+k)/(a0 + · · ·+ ak), ∀n.



This linear combination can be computed even if (Sn) does not
satisfy the difference equation, thus defining a sequence
transformation.

We now have to compute the coefficients a0, . . . , ak (now
depending on k and n).

It holds, ∀n,
a0∆Sn + · · ·+ ak∆Sn+k = 0.

We need to transform this relation in E into a system of scalar
relations.



Let y be an element of the dual space E ∗ of E (which means that
it is a linear functional).
Taking the duality product of this relation with y, we have, ∀n,

a0〈y,∆Sn〉+ · · ·+ ak〈y,∆Sn+k〉 = 0.

Writing this relation for the indices n, . . . , n + k − 1 and adding
that a0 + · · ·+ ak = 1 (which does not restrict the generality),
leads to the system

{
a0 + · · ·+ ak = 1
a0〈y,∆Sn+i 〉+ · · ·+ ak〈y,∆Sn+k+i 〉 = 0, i = 0, . . . , n + k − 1,

where the unknowns depend on n (and k) if (Sn) does not satisfy
the difference equation.



The first topological Shanks transformation is then defined by

ek(Sn) = a0Sn + · · ·+ akSn+k ,

and the second topological Shanks transformation by

ẽk(Sn) = a0Sn+k + · · ·+ akSn+2k .

By construction, ∀n, ek(Sn) = ẽk(Sn) = S if

∀n, a0(Sn − S) + · · ·+ ak(Sn+k − S) = 0.



Each of these transformations can be implemented by a recursive
algorithm which generalizes the scalar ε–algorithm of Wynn
(Brezinski, 1975). They are named the
Topological ε–algorithms (TEA).
However, these algorithms are quite complicated:

they possess two rules,
they require the storage of elements of E and of E ∗,
the duality product with y is recursively used in their rules.
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Topological ε–algorithms (TEA).
However, these algorithms are quite complicated:
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the duality product with y is recursively used in their rules.

Recently, simplified versions of these algorithms were obtained
(Brezinski and R.-Z., 2014), and called the
Simplified Topological ε–algorithms (STEA).

only one recursive rule,
they require less storage than the initial algorithms and only
elements of E ,
the elements of the dual vector space E ∗ no longer have to be
used in the recursive rules (only in their initializations) ,
numerical stability is improved (thanks to particular rules of
Wynn).



The rule of the First Simplified Topological ε–algorithm,
denoted by STEA1, is
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with ε
(n)
0 = Sn ∈ E , n = 0, 1, . . .

The scalars ε
(n)
2k are computed by the scalar ε–algorithm of Wynn

whose rule is




ε
(n)
−1 = 0, n = 0, 1, . . . ,

ε
(n)
0 = 〈y,Sn〉, n = 0, 1, . . . ,

ε
(n)
k+1 = ε

(n+1)
k−1 + (ε

(n+1)
k − ε

(n)
k )−1, k , n = 0, 1, . . .



The rule of the Second Simplified Topological ε–algorithm,
denoted by STEA2, is
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same as above.



The rule of the Second Simplified Topological ε–algorithm,
denoted by STEA2, is
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with ε̃
(n)
0 = Sn ∈ E , n = 0, 1, . . ., and the numbers ε

(n)
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same as above.

These algoritms are related to the topological Shanks
transformation by

ε
(n)
2k = ek(Sn) and ε̃

(n)
2k = ẽk(Sn).

Remark 1: These simplified algorithms allow to prove easily
convergence and acceleration results.
Remark 2: For STEA1 there exist four different equivalent
formulas. The same for STEA2.



The ε-array
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TEA1 vs STEA1

Odd rule TEA1 Even rule TEA1 STEA1
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Similar for STEA2.
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Acceleration method (AM)
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Exploitation of the algorithms

The algorithms will be used in two different ways

Acceleration method (AM)
Restarted method (RM)

The Acceleration Method (AM) can be applied to the solution
of systems of linear and nonlinear equations, to the computation of
matrix functions, . . . .





Choose 2k and x0.
For n = 1, 2, . . .

Compute xn.
Apply the STEA1 to x0, x1, x2, . . . and compute the sequence
of extrapolated values

ε
(0)
0 = x0, ε

(1)
0 , ε

(0)
2 , ε

(1)
2 , . . . , ε

(0)
2k , ε

(1)
2k , ε

(2)
2k , . . .

or similar quantities by the STEA2.
end



The Restarted Method (RM) is used for fixed point problems,
that is for solving systems of linear and nonlinear equations.
Let F : Rm 7−→ R

m. We have to find the solution of equations of
the form

x = F (x) or f (x) = F (x) − x = 0 or x = x+ αf (x).



The Restarted Method (RM) is used for fixed point problems,
that is for solving systems of linear and nonlinear equations.
Let F : Rm 7−→ R

m. We have to find the solution of equations of
the form

x = F (x) or f (x) = F (x) − x = 0 or x = x+ αf (x).





Choose 2k and x0.
For i = 0, 1, . . . (cycle or outer iterations)

Set u0 = xi
For n = 1, . . . , 2k (inner iterations)

Compute un = F (un−1)
Apply the STEA to u0, . . . ,u2k

end

Set xi+1 = ε
(0)
2k or ε̃

(0)
2k

end



Generalized Steffensen Method (GSM)

A particular case of the RM is the Generalized Steffensen
Method (GSM) that corresponds to take in the RM
k = m (the dimension of the system).

In this case, under some assumptions, the sequence (xi ) of the
vertices of the successive ε–arrays asymptotically converges
quadratically to the fixed point x of F (Le Ferrand, 1992).

Remark: This method can also be applied when
F : Rm×s 7−→ R

m×s but the quadratic convergence of the GSM
has not yet been proved in this case.
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A Matlab toolbox called EPSfun has been submitted with the
paper. It contains:

All the STEA functions and SEAW function.

Script for users.

Demo scripts (producing all the examples of the paper).

TEA and VEAW functions for comparisons.



Example 1

Let us consider the following nonlinear system





fi(x) = xi +

m∑

j=1

xj − (m + 1), i = 1, . . . ,m − 1,

fm(x) =

m∏

j=1

xj − 1,

whose solution is x = (1, . . . , 1)T .
For m = 5, starting from x0 = (1/2, . . . , 1/2)T , taking α = −0.05,
and k = 2 for the AM, we obtain the results of the next Figure.
After 350 iterations, an error of 7.70 · 10−3 is obtained by the
iterative procedure while the AM goes down to 1.4 · 10−6.
The GSM needs 5 iterations (thus a total of 50 basic iterations) to
achieve an error of 1.43 · 10−8 for the STEA2 and 6.66 · 10−11 for
the STEA1. y is the mean value of a vector (also in Examples 2:5).
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Example 2

We consider the nonlinear system

fi (x) = m −
m∑

j=1

cos xj + i(1− cos xi)− sin xi , i = 1, . . . ,m,

whose solution is zero.
For m = 10 and x0 = (1/(2n), . . . , 1/(2n))T , we obtain with
α = 0.1 and k = 2 for the AM, the results of the next Figure.
They show that instability occurs for the AM after iteration 75
(where the error attains 1.48 · 10−11), and that the GSM achieved
a much better precision with a fewer number of iterations (after 2
iterations the STEA1 has an error of 8.54 · 10−14, and the STEA2
an error of 5.78 · 10−15).
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Example 3

We consider the nonlinear system





x1 = x1x
3
2/2− 1/2 + sin x3

x2 = (exp(1 + x1x2) + 1)/2
x3 = 1− cos x3 + x41 − x2,

whose solution is (−1, 1, 0)T .

Starting from x0 = 0, we obtain the results of the next Figure
(left) for the AM with α = 0.2 and k = 4.

For the GSM with α = 0.1 and k = 3 the STEA2 gives better
results than the STEA1 as shown on the Figure (right).
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Example 4

Consider now the non–differentiable system

{
|x21 − 1|+ x2 − 1 = 0
x22 + x1 − 2 = 0.

It has two solutions:
(1, 1)T for which we are starting from x0 = (1.3, 1.3)T , with
α = −0.1 (First Figure - left),
and (−2,−2) for which we are starting from x0 = (−1,−1)T , with
α = 0.1 (First Figure - right).
For the AM we took k = 3. We see that, for both solutions, the
AM works quite well.
The GSM with k = 2 achieves a precision of 10−15 in three
iterations.
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Example 5

For the nonlinear system

7∑

j=1

xj − (xi + e−xi ) = 0, i = 1, . . . , 7,

the solution is the vector with all components equal to
0.14427495072088622350.

Starting from x0 = (1, . . . , 1)T /10, α = −0.01 and with k = 3 for
the AM, we obtain the results of the following Figure.

Notice that the with GSM with k = 7 achieves with full precision
in only two iterations.
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Example 6

We consider the linear system AX = B,

A is the parter matrix of dimension 5 divided by 3 (its spectral
radius is 0.9054 and its condition number is 2.149)

X is formed by the first two columns of the matrix pei

B is computed accordingly.

We perform the iterations

Xn+1 = (I − A)Xn + B

starting from X0 = 0.
With y defined as the linear functional associating to a matrix the
sum of its elements, we obtain for the AM the results of next
Figure, with k = 3 (left) and k = 4 (right).
For k = 5 (that is for column 10 of the ε–array), the solution is
obtained with full precision in one iteration by the GSM as stated
by the theory.
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Example 7

We are looking for the maximal Hermitian positive definite solution
X+ of the matrix equation

f (X ) = X + A∗X−1A− Q = 0,

where A,Q ∈ C
m×m with Q Hermitian positive definite.

For Q = I +A∗A, X+ = I if and only if ρ(A) < 1, a result by C.-H.
Guo (2001) which provides an easy way of constructing numerical
examples by taking A = S/r with r > ρ(S) and S any matrix.
He also proposed the following iterative method

X0 = Q,

Xn+1 = Q − A∗X−1
n A, n = 0, 1, . . .

that converges slowly if the spectral radius of A is close to 1.
We take as matrix S the prolate matrix, m = 5. For the AM, we
took k = 2 and for the GSM k = 5. y is the trace of a matrix.



0 10 20 30 40 50 60 70
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Acceleration STEA1 and STEA2

 

 

|x−sol|
|eps − sol| stea1
|eps − sol| stea2

0 0.5 1 1.5 2 2.5 3 3.5 4
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Restarted eps with STEA1 and STEA2

 

 

|eps−sol| stea1
|eps−sol| stea2

Acceleration Method Generalized Steffensen Method



Example 8

We now want to solve the matrix equation

X =

∞∑

i=0

AiX
i . (1)

We use the algorithm of Z.-Z. Bai (1997) which consists, for
n = 1, 2, . . ., in the iterations

Qn = I −

∞∑

i=1

AiX
i−1
n−1,

Bn = 2Bn−1 − Bn−1QnBn−1,

Xn = BnA0,

starting from a given A0, B0 = I and X0 = B0A0. He proved that
the sequence (Xn) converges to the minimal nonnegative solution
of the matrix equation.



We consider the numerical example treated by C.-H. Guo
(1999),were

A0 =
4

3
(1− p)




0.05 0.1 0.2 0.3 0.1
0.2 0.05 0.1 0.1 0.3
0.1 0.2 0.3 0.05 0.1
0.1 0.05 0.2 0.1 0.3
0.3 0.1 0.1 0.2 0.05




,

Ai = piA0 for i = 1, 2, . . ., and p = 0.49.

The linear functional y used in the duality product corresponds to
the trace of the matrix (also in all the Examples presented in the
sequel).

The infinite sum in the computation of Qn was stopped after 100
terms.

The results are given in the next Figure with k = 3 for the AM,
and k = 5 for the GSM.
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Example 9

We now consider the computation of the matrix exponential by its
series expansion

eAt = I +
At

1!
+

A2t2

2!
+ · · ·

In order to be able to compute the error, we take A = UDU−1,
where D is a diagonal matrix, so that eAt = UeDtU−1.

For D, we took the frank matrix and for U the matrix orthog, both
of dimension 100.

With t = −0.099, we obtain the results of the following Figure
with k = 3 and k = 5 for the AM.
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Example 10

We want now to accelerate the series

(I − At)−1 = 1 + (At) + (At)2 + · · ·

With the same matrix A as in Example 9, but of dimension 50 and
with t = −0.0099, we obtain for the AM the results of the next
Figure (on the left k = 3, and on the right k = 6).
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Example 11

We want now to compute the square root of a symmetric positive
definite matrix A by the iterative method, denoted as the IN
iteration by N.J Higham (2008), which is a variant of Newton’s
method

Xn+1 = Xn + En

En+1 = −
1

2
EnX

−1
n+1En.

with X0 = A and E0 = (I − A)/2.

With the matrix moler of dimension 50, the AM gives the results
of the next Figure with k = 1 on the left and k = 2 on the right.
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Example 12

The binomial iteration for computing the AM, square root of
I − C , where ρ(C ) < 1, consists in the iterations

Xn+1 =
1

2
(C + X 2

n ), k = 0, 1, . . . ,

with X0 = 0.
The sequence (Xn) converges linearly to X = I − (I − C )1/2 and
Xn reproduces the series

(I − C )1/2 =

∞∑

i=0

(
1/2
i

)
(−C )i = I −

∞∑

i=1

αiCi , αi > 0,

up to and including the term Cn.

For C , we took the matrix moler of dimension 500 divided by
1.1 · 105 so that ρ(C ) = 0.9855. The AM gives the results of the
following Figure with k = 2 on the left and k = 4 on the right, for
the acceleration of the sequence (Xn).
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THANK YOU !


