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This talk could have been titled:

Yet another Krylov method equivalent to GMRES



Many Krylov methods have been proposed over the years for
solving linear systems Ax = b

Many of them can be classified as quasi-orthogonal (Q-OR) or
quasi-minimum residual (Q-MR)

Q-OR: FOM, BiCG, Hessenberg, . . .

Q-MR: GMRES, QMR, CMRH, . . .



Whatever their definition, these methods share many fundamental
properties

See M. Eiermann and O.G. Ernst, Geometric aspects in the theory
of Krylov subspace methods, Acta Numerica, v 10 n 10 (2001),
pp. 251–312

They differ by the basis of the Krylov space that is constructed:

- orthogonal for FOM/GMRES,
- bi-orthogonal for BiCG/QMR,
- based on an LU factorization for Hessenberg/CMRH



Q-OR and Q-MR methods

We assume that we have a basis V of the Krylov space (with
columns of unit norm) such that K = VU with

K =
(
b Ab A2b · · · An−1b

)
V nonsingular with v1 = b and U upper triangular

We define H = UCU−1, upper Hessenberg, where C is the
companion matrix for the eigenvalues of A. As a consequence
AV = VH. The iterates are

xk = Vky
(k)

where Vk is the matrix of the k first columns of V . The residual
rk is

Vke1−AVky
(k) = Vk(e1−Hky

(k))−hk+1,ky
(k)
k vk+1 = Vk+1(e1−Hky

(k))



The Q-OR method is defined (provided that Hk is nonsingular) by

Hky
(k) = e1

This annihilates the first term in the residual

In the Q-MR method y (k) is computed as the solution of the least
squares problem

min
y
‖e1 − Hky‖

where Hk is (k + 1)× k. The vector zMk = e1 −Hky
(k) is referred

as the quasi-residual. The residual vector is rMk = Vk+1z
M
k



Properties of Q-OR methods

We can show by induction that

|(U−1)1,k | =
1

‖rOk−1‖

The inverses of the Q-OR residual norms can be read from the
first row of the inverse of U

For any Q-OR method we have the same property as for FOM

For these properties and more see:

G. Meurant and J. Duintjer Tebbens, On the convergence of Q-OR
and Q-MR Krylov methods for solving nonsymmetric linear
systems, BIT Numerical Mathematics, v 56 n 1 (2016), pp. 77-97



Construction of “good” bases

We would like to find bases which lead to a “good” convergence of
the Q-OR method

- The matrix V of the basis is related to the Krylov matrix K by
K = VU with U upper triangular

- The entries of the first row of U−1 are the inverses of the Q-OR
residual norms (up to the sign)

Constructing a “good” basis may seem easy since one can think
that we can just construct any upper triangular matrix U−1 with
entries of large modulus on the first row

But, it is not so since the columns of V have to be of unit norm



We can try directly computing U−1 from V = KU−1

In this way we obtain the vectors vj straightforwardly, but, again,
the columns of V have to be of unit norm

Let νi ,j be the entries of U−1 and

vk = ν1,kv + ν2,kA
2v + · · ·+ νk,kA

k−1v

We would like to have ‖vk‖ = 1 and |ν1,k | as large as possible

Can we solve this problem?



Let ν̃ be the vector of the components νi ,k , i = 1, . . . , k . Then
vk = K ν̃

We want ‖Kk ν̃‖ = 1. This corresponds to

ν̃TKT
k Kk ν̃ = ν̃TMk ν̃ = 1

This is the equation of an (hyper) ellipsoid in �k centered at the
origin

We have to find a point on the surface of this ellipsoid with a
maximum of the absolute value of the first coordinate



The solution is obtained by writing the equation of a tangent
hyperplane and asking that it is orthogonal to the first axis

One can show that a solution is ν1,k =
√

(M−1k )1,1 and the other

components are obtained by solving a linear system of order k − 1
whose matrix and right-hand side are M2:k,2:k and −xM2:k,1

This yields U−1. If we apply Q-OR with the basis V = KU−1 we
obtain residual vectors whose norms are

‖rOk ‖2 =
1

(M−1k+1)1,1

These values are those that are obtained from GMRES
Therefore, they are the best ones that we can get with the given
Krylov subspace. In a sense we have an optimal Q-OR method



Avoiding the use of U

The previous construction is not practical because

1) we do not want to compute Mk and M−1k

2) in many cases the matrix U is almost singular and must be
(numerically) avoided

Instead we would like to directly construct H column by column.
We have

Hj = UjEjU
−1
j +

(
0 · · · 0 1

uj,j
U1:j ,j+1

)
Ej down-shift matrix

It yields

k+1∑
j=1

ν1,jhj ,k = 0 ⇒ ν1,k+1 = − 1

hk+1,k

k∑
j=1

ν1,jhj ,k



At step k we have already computed ν1,j , j = 1, . . . , k and we
would like to choose hj ,k , j = 1, . . . , k + 1 to maximize the
absolute value of ν1,k+1

But hk+1,k has to be chosen to obtain a vector vk+1 of unit norm
Let

ṽ = Avk −
k∑

j=1

hj ,kvj

the next basis vector is vk+1 = ṽ/hk+1,k with hk+1,k = ‖ṽ‖

|ν1,k+1| =
|νT y |
‖d − By‖

with

d = Avk , B = Vk =
(
v1 · · · vk

)
, y =

(
h1,k · · · hk,k

)T
ν =

(
ν1,1 · · · ν1,k

)
We need to minimize 1/|ν1,k+1|2



We would like to solve

γopt = min
y∈�k ,νT y 6=0

‖d − By‖2

(νT y)2

The minimum is given by

γopt =
α

ανT (BTB)−1ν + ω2

with α = dTd − dTB(BTB)−1BTd and ω = dTB(BTB)−1ν

Moreover, if ω 6= 0, a solution yopt of the minimization problem is
given by

yopt = (BTB)−1BTd +
α

ω
(BTB)−1ν

= s +
α

ω
p



This is obtained by finding the largest possible value of γ such that

1

|ν1,k+1|2
=
‖b − By‖2

(νT y)2
≥ γ

which can be written in matrix form as(
yT 1

)(BTB − γννT −BTb
−bTB bTb

)(
y
1

)
≥ 0

In our case we have to solve

(V T
k Vk)s = V T

k Avk , (V T
k Vk)p = ν



Properties of the optimal basis

ṽ = (I − Vk(V T
k Vk)−1V T

k )Avk −
α

ω
Vk(V T

k Vk)−1ν

V T
k+1vk+1 =

1

ν1,k+1


ν1,1

...
ν1,k
ν1,k+1



V T
k Vk =



1 1
ν1,2

1
ν1,3

· · · 1
ν1,k

1
ν1,2

1
ν1,2
ν1,3

· · · ν1,2
ν1,k

1
ν1,3

ν1,2
ν1,3

1 · · · ν1,3
ν1,k

...
...

. . .
...

1
ν1,k

ν1,2
ν1,k

· · · 1


When the method converges, the basis is more and more

orthogonal



The inverse of V T
k Vk is tridiagonal and the matrix V T

k AVk is
upper triangular

p = (V T
k Vk)−1ν =


0
...
0
ν1,k


We will use this relation to simplify the construction of the basis
vectors

The relation giving V T
k Vk cannot be used numerically because it

will lead to a discrepancy between the computed vectors vj and the
computed V T

k Vk



We can simplify the formulas for the new vector

ω = pTV T
k Avk = ν1,kv

T
k Avk

Let yopt = s + α
ωp

ṽ = Avk − Vkyopt

= Avk − Vks −
α

ω
Vkp

= Avk − Vks −
α

ω
ν1,kvk

= Avk − Vks −
α

vTk Avk
vk

and
h1:k,k = s + βek , β =

α

vTk Avk



The Q-OR optimal algorithm

We compute incrementally the inverses of the Cholesky factors of
V T
k Vk

Let vAk = Avk

1- vVk = V T
k−1vk , v tAk = V T

k vAk

2- `k = L̃k−1v
V
k , y

T
k = `Tk L̃k−1

3- if `Tk `k < 1, `k,k =
√

1− `Tk `k , else (pvk )T = yTk V T
k−1,

`k,k = ‖vk − pvk‖ end



4-

L̃k =

(
L̃k−1 0
− 1
`k,k

yTk
1
`k,k

)

5- `A = L̃kv
tA
k , s = L̃Tk `A

6- α = (vAk )T vAk − `TA `A, β = α
(v tA

k )k

7-

h1:k,k =

h1,k
...

hk,k

 = s + βek



8-

ṽ = vAk − Vk h1:k,k , hk+1,k = ‖ṽ‖, ν1,k+1 = − 1

hk+1,k
νTh1:k,k

ν =
(
ν1,1 · · · ν1,k+1

)T
9- vk+1 = 1

hk+1,k
ṽ and vAk+1 = Avk+1

10- if needed, solve Hky
(k) = ‖b‖e1 using Givens rotations,

xk = Vky
(k)

In this algorithm almost everything is expressed in terms of
matrix-vector products



Numerical experiments
fs 680 1 of order 680 scaled by the inverse of its diagonal
It has 2184 non zero entries. The norm of A is 3.8168 and its
condition number is 8.6944 103
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optimal, fs 680 1c, n = 680
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(red), fs 680 1c, n = 680



True residual norms for k = 150 (maximum attainable accuracy)

I GMRES-CGS 6.8377 10−11

I GMRES-CGS with reorthogonalization 2.79327 10−14

I GMRES-CGS with double reorthogonalization 1.75040 10−14

I GMRES-MGS 2.36046 10−13

I GMRES-MGS with reorthogonalization 2.51184 10−14

I GMRES-MGS with double reorthogonalization 1.59114 10−14

I GMRES-Householder 1.51153 10−13

I QOR opt 2.59770 10−14



SUPG scheme (Streamwise upwind Galerkin) for a
convection-diffusion equation in a square with a mesh size of 1/41
The diffusion coefficient is ν = 0.01
This matrix is of order 1600 and has 13924 non zero entries. Its
norm is 4.8716 10−2 and the condition number is 40.518
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(red), supg 1600, n = 1600



True residual norms for k = 200

I GMRES-CGS 1.54043 10−13

I GMRES-CGS with reorthogonalization 7.05585 10−15

I GMRES-CGS with double reorthogonalization 7.23790 10−15

I GMRES-MGS 1.33776 10−14

I GMRES-MGS with reorthogonalization 6.70649 10−15

I GMRES-MGS with double reorthogonalization 6.70339 10−15

I GMRES-Householder 2.03961 10−14

I QOR opt 5.50626 10−15



A smaller matrix for the same problem, n = 100
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Conclusion

Using the properties of the Q-OR methods we were able to
construct a non-orthogonal basis for which Q-OR gives the same
residual norms as GMRES

The algorithm is slightly more expensive than GMRES

But, it is more parallel than GMRES-MGS and most of the
operations are matrix-vector products

In many cases the maximum attainable accuracy is better than
with GMRES-MGS

However, (at least theoretically), the algorithm is not
breakdown-free

It remains to study its stability in finite precision arithmetic and to
see how to use it on parallel computers



Homework

Find a good name for this method

Why not QuORUM?
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