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This talk could have been titled:

Yet another Krylov method equivalent to GMRES



Many Krylov methods have been proposed over the years for
solving linear systems Ax = b

Many of them can be classified as quasi-orthogonal (Q-OR) or
quasi-minimum residual (Q-MR)

Q-OR: FOM, BiCG, Hessenberg, ...
Q-MR: GMRES, QMR, CMRH, ...



Whatever their definition, these methods share many fundamental
properties
See M. Eiermann and O.G. Ernst, Geometric aspects in the theory

of Krylov subspace methods, Acta Numerica, v 10 n 10 (2001),
pp. 251-312

They differ by the basis of the Krylov space that is constructed:

- orthogonal for FOM/GMRES,
- bi-orthogonal for BiCG/QMR,
- based on an LU factorization for Hessenberg/CMRH



Q-OR and Q-MR methods

We assume that we have a basis V' of the Krylov space (with
columns of unit norm) such that K = VU with

K= (b Ab A’b --- A"lp)

V' nonsingular with vi = b and U upper triangular

We define H = UCU™!, upper Hessenberg, where C is the

companion matrix for the eigenvalues of A. As a consequence
AV = VH. The iterates are

i = Viey™

where V) is the matrix of the k first columns of V. The residual
1% is

Vier—AV,y k) = Vk(el—Hky(k))_hk+1,k}/;Ek)Vk+1 = Vir1(er—Hiey™)



The Q-OR method is defined (provided that Hj is nonsingular) by
Hiy ™) = e

This annihilates the first term in the residual

In the Q-MR method y(k) is computed as the solution of the least
squares problem
minles — Hyy|

where H, is (k +1) x k. The vector z} = e; — H,y(¥) is referred

as the quasi-residual. The residual vector is r,i‘/’ = Vk+1z,iw



Properties of Q-OR methods

We can show by induction that

1

(U D1kl = —5—
1724l

The inverses of the Q-OR residual norms can be read from the
first row of the inverse of U

For any Q-OR method we have the same property as for FOM

For these properties and more see:

G. Meurant and J. Duintjer Tebbens, On the convergence of Q-OR
and Q-MR Krylov methods for solving nonsymmetric linear
systems, BIT Numerical Mathematics, v 56 n 1 (2016), pp. 77-97



Construction of “good” bases

We would like to find bases which lead to a “good” convergence of
the Q-OR method

- The matrix V' of the basis is related to the Krylov matrix K by
K = VU with U upper triangular

- The entries of the first row of U~ are the inverses of the Q-OR
residual norms (up to the sign)

Constructing a “good” basis may seem easy since one can think
that we can just construct any upper triangular matrix U~! with
entries of large modulus on the first row

But, it is not so since the columns of V have to be of unit norm



We can try directly computing U~! from V = KU !

In this way we obtain the vectors v; straightforwardly, but, again,
the columns of V have to be of unit norm

Let v;; be the entries of U~ and
_ 2 k—1
Vik = V1V + 1o kATV + - g AT

We would like to have ||vi|| =1 and |v k| as large as possible

Can we solve this problem?



Let 7 be the vector of the components v; ,,i = 1,..., k. Then
Vi = Ko

We want ||K7|| = 1. This corresponds to

PTKIK =0T My =1
This is the equation of an (hyper) ellipsoid in R centered at the
origin

We have to find a point on the surface of this ellipsoid with a
maximum of the absolute value of the first coordinate



The solution is obtained by writing the equation of a tangent
hyperplane and asking that it is orthogonal to the first axis

One can show that a solution is 11 x = /(M ')11 and the other
components are obtained by solving a linear system of order kK — 1
whose matrix and right-hand side are M. 5., and —x M. 1

This yields U~. If we apply Q-OR with the basis V = KU~ we
obtain residual vectors whose norms are

1

02
22 =
(Migi)ia
These values are those that are obtained from GMRES
Therefore, they are the best ones that we can get with the given
Krylov subspace. In a sense we have an optimal Q-OR method



Avoiding the use of U

The previous construction is not practical because

1) we do not want to compute M, and M, *
2) in many cases the matrix U is almost singular and must be
(numerically) avoided

Instead we would like to directly construct H column by column.
We have
_ 1
H = UEU; " + (0 e 0 @Ulsj,jﬂ)
E; down-shift matrix
It yields

k+1

E Vl,jhj,k =0 = V1 k+l = —
Jj=1

g VlJ i k

hk+1 k4



At step k we have already computed 11, j = 1,..., k and we
would like to choose hjy, j = 1,..., k + 1 to maximize the

absolute value of v 441

But hyy1 has to be chosen to obtain a vector vi 1 of unit norm

Let

k
V=Av, — g h; kvj
j=1

the next basis vector is vii 1 = V/hjy1 , with hepq o = |7

etl = 122
’ |d — Byl
with
d=Av, B=Vi=(vn - w), y=(hx
v= (11 - vik)

We need to minimize 1/|v1 1/



We would like to solve

S
> yeRkpTyz0  (vTy)?

The minimum is given by

«
Topt = avT(BTB)~lv + w?

with o =d7d — d"B(BTB)"'BTd and w = d"B(BTB)~1v

Moreover, if w # 0, a solution y,,: of the minimization problem is
given by

Vopt = (BTB)’lBTd—kg(BTB)’ly

(6]
— erfp
w



This is obtained by finding the largest possible value of v such that

1 |b-By|?
1 kg1 ? (vTy)? —

which can be written in matrix form as
B™B —~wwT —BTbh
T Y y >
b 1) < —b"B bTh ) <1> =0
In our case we have to solve

(VIVi)s = V] A, (VI Vip=v



Properties of the optimal basis

~ _ « _
V=0 — Vi(V/ Vi)V Ay, — ;vk(v[vk) 1y

V1.1
T 1
Vk+1 Vk+1 =
V1 k+1 U1,k
V1 k+1
1 1
V1,2 V1,3 U1,k
1 2 2
V11,2 y V1,3 Zl,k
T L Az ..o As
Vk Vik= V13 V13 1 V1 k
I S b 1
U1,k 1,k

When the method converges, the basis is more and more
orthogonal



The inverse of VkT V/ is tridiagonal and the matrix VkTAVk is
upper triangular

p=(V/ Vi) v =
1,k

We will use this relation to simplify the construction of the basis
vectors

The relation giving VkT V) cannot be used numerically because it
will lead to a discrepancy between the computed vectors v; and the
computed V,[ V



We can simplify the formulas for the new vector

w= pTVkTAvk = V17kV,Z-AVk
Let yopt =5+ 2p

v o= Ay — Vk)/opt
= AVk — VkS — g\/kp
w

(0}
- AVk — VkS — —V1.kVk
w

(0}
- AVk - VkS - Vi

vaAvk

and o
hikk =s+Pex, B=——
v, Avg



The Q-OR optimal algorithm

We compute incrementally the inverses of the Cholesky factors of
V/I'Vi

Let v,’(4 = Av,

vy =V v, vA=VIVA

2- b = Leav), vyl =0 L q

3-if 0]l < 1, by = /1 =]l else (p))T =y V],
e = |[vic = gl end






.
v btk
hit1,k

V=g — Vichiweks husik = [[7]], vikr = —
.
v= (1 - Viks+1)

1
9- vjy1 = Por v and vkJrl = Avii1

10- if needed, solve H,y(k) = ||b| e, using Givens rotations,
« = Viy(®)

In this algorithm almost everything is expressed in terms of
matrix-vector products



Numerical experiments

fs 680 1 of order 680 scaled by the inverse of its diagonal
It has 2184 non zero entries. The norm of A is 3.8168 and its
condition number is 8.6944 103
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Difference of the true residual norms of GMRES-MGS and Q-OR
optimal, fs 680 1c, n = 680
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True residual norms of GMRES-MGS (blue) and Q-OR optimal
(red), fs 680 1c, n = 680



True residual norms for k = 150 (maximum attainable accuracy)

>

>

>

GMRES-CGS 6.8377 101!

GMRES-CGS with reorthogonalization 2.79327 10~14
GMRES-CGS with double reorthogonalization 1.75040 1014
GMRES-MGS 2.36046 1013

GMRES-MGS with reorthogonalization 2.51184 10~14
GMRES-MGS with double reorthogonalization 1.59114 10~14
GMRES-Householder 1.51153 1013

QOR opt 2.59770 10~ 14



SUPG scheme (Streamwise upwind Galerkin) for a
convection-diffusion equation in a square with a mesh size of 1/41
The diffusion coefficient is v = 0.01

This matrix is of order 1600 and has 13924 non zero entries. Its
norm is 4.8716 1072 and the condition number is 40.518
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True residual norms of GMRES-MGS (blue) and Q-OR optimal
(red), supg 1600, n = 1600



True residual norms for kK = 200

» GMRES-CGS 1.54043 10713

» GMRES-CGS with reorthogonalization 7.05585 10~1°

» GMRES-CGS with double reorthogonalization 7.23790 10715
» GMRES-MGS 1.33776 10~

» GMRES-MGS with reorthogonalization 6.70649 10~1°

» GMRES-MGS with double reorthogonalization 6.70339 10~%°
» GMRES-Householder 2.03961 1014

» QOR opt 5.50626 10~1°



A smaller matrix for the same problem, n = 100

T
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Conclusion

Using the properties of the Q-OR methods we were able to
construct a non-orthogonal basis for which Q-OR gives the same
residual norms as GMRES

The algorithm is slightly more expensive than GMRES

But, it is more parallel than GMRES-MGS and most of the
operations are matrix-vector products

In many cases the maximum attainable accuracy is better than
with GMRES-MGS

However, (at least theoretically), the algorithm is not
breakdown-free

It remains to study its stability in finite precision arithmetic and to
see how to use it on parallel computers



Homework

Find a good name for this method

Why not QuUORUM?
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