Computing the Jordan structure of an eigenvalue

Nicola Mastronardi*, IAC-CNR, Bari, Italy Paul Van Dooren, UCL, Louvain-la-Neuve, Belgium

Numerical Linear Algebra with Applications (NL2A) CIRM Luminy, France, October 24–28, 2016 * partially supported by NL2A organizers and by Mastronardi funds Res. gr. n. 0004/16. • Given $A \in \mathbb{C}^{n \times n}$ and let λ (given) be an eigenvalue of A.

- Given $A \in \mathbb{C}^{n \times n}$ and let λ (given) be an eigenvalue of A.
- Aim: Compute the Jordan structure of λ in A.

Table of contents

- Jordan structure of an eigenvalue
 - Jordan structure
 - Weyr characteristic
 - Segre characteristic
- The generalized null-space of a matrix
- QR algorithm for Eigenvalue problems (Francis, Kublanovskaya) and deflation of an eigenvalue
- New method to deflate an eigenvalue
- New algorithm for computing the generalized null-space of a matrix
- Numerical examples
- Conclusions

Jordan canonical form theorem

Let $A \in \mathbb{C}^{n \times n}$. There is a nonsingular $S \in \mathbb{C}^{n \times n}$, positive integers q and n_1, \dots, n_q with $n_1 + n_2 + \dots + n_q = n$, and scalars $\lambda_i \in \mathbb{C}, i = 1, \dots, q$, C such that

$$A = SJ_AS^{-1}, \quad J_A = \begin{bmatrix} J_{n_1}(\lambda_1) & & \\ & \ddots & \\ & & J_{n_q}(\lambda_q) \end{bmatrix}$$

The Jordan matrix J_A is uniquely determined by A up to permutation of its direct summands.

The *index* of λ_i is the maximum size of the Jordan blocks of A with eigenvalue λ_i .

The nonincreasingly ordered list of sizes of Jordan blocks of A with eigenvalue λ_i is called the *Segre characteristic* of A associated with the eigenvalue λ_i .

• Let $A \in \mathbb{C}^{n \times n}$, λ eigenvalue of A and

$$r_k(A,\lambda) = \operatorname{rank}(A - \lambda I)^k, \ r_0(A,\lambda) = n.$$

• Let
$$A \in \mathbb{C}^{n \times n}$$
, λ eigenvalue of A and

$$r_k(A,\lambda) = \operatorname{rank}(A-\lambda I)^k, \ r_0(A,\lambda) = n.$$

Define

$$w_k(A,\lambda) = r_{k-1}(A,\lambda) - r_k(A,\lambda), \quad w_1(A,\lambda) = n - r_1(A,\lambda).$$

• Let
$$A \in \mathbb{C}^{n \times n}$$
, λ eigenvalue of A and

$$r_k(A,\lambda) = \operatorname{rank}(A - \lambda I)^k, \ r_0(A,\lambda) = n.$$

Define

$$w_k(A,\lambda) = r_{k-1}(A,\lambda) - r_k(A,\lambda), \quad w_1(A,\lambda) = n - r_1(A,\lambda).$$

• $w_j(A, \lambda)$ is the number of blocks of size at least j

∜

 $w_j(A,\lambda) - w_{j+1}(A,\lambda)$ is the number of blocks of size j

• Let
$$A \in \mathbb{C}^{n \times n}$$
, λ eigenvalue of A and

$$r_k(A,\lambda) = \operatorname{rank}(A - \lambda I)^k, \ r_0(A,\lambda) = n.$$

Define

$$w_k(A,\lambda) = r_{k-1}(A,\lambda) - r_k(A,\lambda), \quad w_1(A,\lambda) = n - r_1(A,\lambda).$$

• $w_j(A, \lambda)$ is the number of blocks of size at least j

∜

 $w_j(A,\lambda) - w_{j+1}(A,\lambda)$ is the number of blocks of size j

• The *Weyr characteristic* of A associated with $\lambda \in \mathbb{C}$ is

$$w(A,\lambda) = (w_1(A,\lambda), \cdots, w_q(A,\lambda))$$

Let us suppose that the matrix A has $\lambda = 0$ as an eigenvalue.

• Define the spaces \mathcal{N}_i as the null spaces of the powers A^i .

Let us suppose that the matrix A has $\lambda = 0$ as an eigenvalue.

- Define the spaces \mathcal{N}_i as the null spaces of the powers A^i .
- These null spaces are nested.

Let us suppose that the matrix A has $\lambda = 0$ as an eigenvalue.

- Define the spaces \mathcal{N}_i as the null spaces of the powers A^i .
- These null spaces are nested.
- ► The index q of this eigenvalue is the smallest integer i for which the dimensions n_i := dim(N_i) of these spaces do not change anymore :

$$\begin{aligned} \mathcal{N}_1 \subset \mathcal{N}_2 \subset \cdots \subset \mathcal{N}_q &= \mathcal{N}_{q+1} \\ n_1 < n_2 < \cdots < n_q &= n_{q+1}. \end{aligned}$$

Given $A \in \mathbb{C}^{n \times n}$, we can construct a unitary matrix V partitioned as

$$V = \begin{bmatrix} V_1 \mid V_2 \mid \cdots \mid V_q \mid V_{q+1} \end{bmatrix}$$

where

$$\mathcal{N}_i = \operatorname{Im}(\left[\begin{array}{c|c} V_1 & V_2 & \cdots & V_i \end{array}\right]), \quad i = 1, \dots, q$$

i.e. V_i completes the orthogonal basis of \mathcal{N}_{i-1} to an orthogonal basis for the larger space \mathcal{N}_i .

V transforms A to the following staircase form

$$\tilde{A} = V^* A V = \begin{bmatrix} 0_{w_1} & \tilde{A}_{1,2} & \cdots & \tilde{A}_{1,q-1} & \tilde{A}_{1,q} & \tilde{A}_{1,q+1} \\ 0 & 0_{w_2} & \tilde{A}_{2,3} & \cdots & \tilde{A}_{2,k} & \tilde{A}_{2,q+1} \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ \vdots & \vdots & 0_{w_{q-1}} & \tilde{A}_{q-1,q} & \tilde{A}_{q-1,q+1} \\ 0 & 0 & \cdots & 0_{w_q} & \tilde{A}_{q,q+1} \\ \hline 0 & 0 & 0 & \cdots & 0 & \tilde{A}_{q+1,q+1} \end{bmatrix}$$

where

- ► the diagonal blocks 0_{wi} of Ã are square and of dimension w_i, i = 1,..., q,
- ▶ the blocks $\tilde{A}_{i-1,i}$ are of full column rank w_i , for i = 2, ..., q,
- the block $\tilde{A}_{q+1,q+1}$ is nonsingular (provided it is not empty),
- w(A, 0) = (w₁(A, 0), · · · , w_q(A, 0)) is the Weyr characteristic of A at the eigenvalue 0.

Implicit Q theorem

Let $A, H, Q \in \mathbb{C}^{n \times n}$, Q unitary and H upper Hessenberg with positive subdiagonal. If

$$H=Q^{H}AQ,$$

then both H and Q are uniquely determined by the first column of Q.

Let $A \in \mathbb{C}^{n \times n}$

Implicit QR algorithm

% Computation of an upper triangular matrix T % and a unitary matrix U such that $A = UTU^*$ 1) Set $A_0 = A$ and $U_0 = I$; 2) for k = 1, 2, ..., do3) Determine Q_k ; 4) $A_k = Q_k^H A_{k-1} Q_k$; 5) $U_k = U_{k-1} Q_k$; 6) end 7) Set $T = A_\infty$ and $U = U_\infty$

Let $A \in \mathbb{C}^{n \times n}$

Implicit QR algorithm

% Computation of an upper triangular matrix T % and a unitary matrix U such that $A = UTU^*$ 1) Set $A_0 = A$ and $U_0 = I$; 2) for k = 1, 2, ..., do3) Determine Q_k ; 4) $A_k = Q_k^H A_{k-1} Q_k$; 5) $U_k = U_{k-1} Q_k$; 6) end 7) Set $T = A_\infty$ and $U = U_\infty$

• Each iteration requires $O(n^3)$ flops.

Let $A \in \mathbb{C}^{n \times n}$

Implicit QR algorithm

% Computation of an upper triangular matrix T % and a unitary matrix U such that $A = UTU^*$ 1) Set $A_0 = A$ and $U_0 = I$; 2) for k = 1, 2, ..., do3) Determine Q_k ; 4) $A_k = Q_k^H A_{k-1} Q_k$; 5) $U_k = U_{k-1} Q_k$; 6) end 7) Set $T = A_\infty$ and $U = U_\infty$

- Each iteration requires $O(n^3)$ flops.
- ▶ if A upper Hessenberg, each iteration requires O(n²) flops. In this case Q_k are Hessenberg matrices, too (sequence of n − 1 Givens rotations).

If the shift σ = λ_i, (perfect shift) in theory, then one step of the Implicit QR algorithm is needed to compute λ_i. Indeed, it turns out that

$$Q^{H}AQ = \begin{bmatrix} \times \times \times \times \times \\ \times \times \times \times \\ \times \times \times \times \\ \times \times \times \\ \times \times \times \\ \times \times \\ \times \times \\ 0 \\ \lambda_{i} \end{bmatrix}$$

If the shift σ = λ_i, (perfect shift) in theory, then one step of the Implicit QR algorithm is needed to compute λ_i. Indeed, it turns out that

$$Q^{H}AQ = \begin{bmatrix} \times \times \times \times \times \times \\ \times \times \times \times \times \\ \times \times \times \times \\ \times \times \times \\ \times \times \times \\ \times \times \\ 0 \\ \lambda_{i} \end{bmatrix}$$

Moreover, the last column of Q is the corresponding eigenvector.

A_0 random Hessenberg matrix of order 6. Apply the reverse implicit QR method with zero shift.

Iteration 1 :

 A_1 $Q_1(:, 1)$ 2.1254e - 015.1355e - 01 - 9.8834e - 01 - 6.7006e - 01 - 9.1117e - 011.9544e + 007 $1.2819e - 01^{-1}$ 1.0498e + 00 - 2.2361e + 00 - 1.3969e + 001.6444e + 00 - 1.4496e + 001.3054e + 00-2.4644e - 013.8856e - 02 2.3230e + 00-3.2405e - 010 2.7097e + 00 - 1.2429e + 00 - 3.1337e - 012.2401e + 001.1219e - 012.0416e + 001.4699e + 00-3.7833e - 010 0 0 1.3407e + 00 - 9.2542e - 013.4951e - 01-2.0859e - 010 0 Λ 0 0 1.0699e + 00 - 7.9406e - 017.9447e - 01 0

A_0 random Hessenberg matrix of order 6. Apply the reverse implicit QR method with zero shift.

Iteration 4 :

A₄ $Q_4(:, 1)$ 6.4386e - 011.0008e + 00 1.6293e - 01 3.9208e - 01 - 1.6347e - 01 - 1.7600e + 00-9.8911e - 011.1251e - 01-9.5792e - 027.9231e - 01 8.3601e - 01 - 6.8727e - 01 - 4.6446e - 01 - 2.2911e + 001.6668e + 005.2169e - 02 0 7.8491e - 01 - 9.0158e - 01 - 1.7201e + 005.3743e - 012.8826e + 001.0044e + 002.5834e - 020 0 1.8797e + 004.5564e - 030 2.2059e + 00 - 2.7218e + 00 - 4.4165e - 01-5.5525e - 020 0 Λ 0 0 1.6866e + 00 - 1.9046e + 00-5.0259e - 020

A_0 random Hessenberg matrix of order 6. Apply the reverse implicit QR method with zero shift.

Iteration 8 :

 $Q_8(:, 1)$ A_8 6.9865e - 01 - 1.0905e + 00 1.0178e + 00 - 2.0665e - 01 - 1.3190e + 00 6.7463e - 01-1.0000e + 00-2.1948e - 031.0442e + 00 - 1.4087e + 002.1662e - 01 4.1660e - 011.1266e + 002.0624e - 032.2040e + 00 - 2.1854e - 011.9325e - 01-1.2570e - 030 1.1958e + 001.7750e - 011.8807e + 00 - 6.0932e - 01 - 1.6119e + 001.5927e + 00-1.9294e - 030 0 0 4.0942e - 01 - 1.9581e + 00 - 3.2083e + 00-5.4949e - 040 0 3.8693e - 01 - 3.4401e + 00Λ 0 -1.0571e - 040 0

A_0 random Hessenberg matrix of order 6. Apply the reverse implicit QR method with zero shift.

Iteration 12 :

 $Q_{12}(:, 1)$ A_{12} 6.9525e - 01 - 3.8666e - 01 - 8.7825e - 01 - 1.4922e + 00 - 4.9689e - 011.0232e + 007-1.0000e + 001.5766e + 00 - 4.9295e - 01 - 1.0653e + 00 9.0330e - 01 - 1.4783e + 00-7.9909e - 058.5507e - 051.4161e + 007.4398e - 01 1.9875e + 00 7.1971e - 01 -7.0018e - 05 0 3.2317e - 013.9805e - 01 - 2.0739e + 00 - 8.6430e - 01-3.1433e - 050 0 2.5337e - 020 2.5597e - 01 - 2.7158e + 00 - 3.7790e + 00-2.8754e - 060 0 2.0132e - 01 - 2.3133e + 00Λ 0 -2.0869e - 070 0

A_0 random Hessenberg matrix of order 6. Apply the reverse implicit QR method with zero shift.

Iteration 16 :

 $Q_{16}(:, 1)$ A_{16} 6.9534e - 011.0233e + 00 4.3544e - 01 - 1.3925e + 00 1.0340e + 004.4403e - 01 -1.0000e + 006.4837e - 06-4.8008e - 061.5777e + 00 - 1.3327e + 00 - 9.8825e - 015.4083e - 01 1.0299e + 001.0699e + 00 - 1.5714e + 00 - 1.0803e + 00 - 9.0116e - 01-2.3658e - 06 0 5.7733e - 01 1.1093e - 01 - 2.5524e + 00 - 8.8285e - 01-1.7938e - 070 0 7.6526e - 010 4.2870e - 02 - 2.9008e + 00 - 3.0216e - 01-1.9438e - 090 0 Λ 0 3.6724e + 00 - 1.9770e + 00-2.4496e - 090 0
The QR algorithm for computing the eigenvalues is backward stable and the error on th3e computed eigenvalues depends on the condition numbers of the eigenvalues

We consider a matrix of order 18 considered in the paper

N. GUGLIELMI, M.L. OVERTON, G.W. STEWART, An Efficient Algorithm for Computing the Generalized Null

We consider a matrix of order 18 considered in the paper

N. GUGLIELMI, M.L. OVERTON, G.W. STEWART, An Efficient Algorithm for Computing the Generalized Null

$$\sigma(A) = \begin{bmatrix} 1.9288e + 00 \\ 1.3561e + 00 \\ 8.7206e - 01 \\ 6.8301e - 01 \\ 6.3404e - 01 \\ 3.1994e - 01 \\ 3.1287e - 02 \\ 1.6030e - 01 \\ 3.1547e - 02 \\ 1.7171e - 02 \\ 1.7171e - 02 \\ 1.4103e - 02 \\ 1.6060e - 02 \\ 8.8228e - 03 \\ 8.4642e - 03 \\ 7.5872e - 07 \\ 9.6316e - 07 \\ 9.6316e - 07 \\ 9.6316e - 11 \\ 2.5727e - 16 \end{bmatrix}$$

We consider a matrix of order 18 considered in the paper

N. GUGLIELMI, M.L. OVERTON, G.W. STEWART, An Efficient Algorithm for Computing the Generalized Null

$\sigma(A) =$	$\begin{bmatrix} 1.9288e+00\\ 1.3561e+00\\ 8.7206e-01\\ 6.8301e-01\\ 6.344e-01\\ 3.1994e-01\\ 3.1287e-01\\ 1.6030e-01\\ 3.1287e-02\\ 1.7171e-02\\ 1.4103e-02\\ 1.4103e-02\\ 1.4103e-02\\ 8.8228e-03\\ 8.4642e-03\\ 8.4642e-03\\ 8.5872e-07\\ 6.5816e-07\\ 9.1614e-11\\ 2.5727e-16 \end{bmatrix}$	$\lambda(A) =$	$ \begin{array}{c} 1.0000 \pm 000 + 000 + 0000 \pm 000i \\ 2.5000e = 01 + 0.0000e \pm 00i \\ 2.5000e = 01 + 0.0000e \pm 00i \\ 2.5000e = 04 \pm 5.6050e = 05i \\ -1.7684e = 04 \pm 5.6050e = 05i \\ -1.4499e = 04 + 0.0000e \pm 00i \\ -3.3473e = 05 \pm 0.0000e \pm 00i \\ -1.6317e = 04 \pm 0.0000e \pm 00i \\ 2.3786e = 05 \pm 1.7410e = 04i \\ 2.3786e = 05 \pm 1.7410e = 04i \\ 3.4030e = 05 \pm 0.0000e \pm 00i \\ 1.8033e = 04 \pm 4.3683e = 05i \\ 1.8033e = 04 \pm 4.3683e = 05i \\ 1.8033e = 04 \pm 4.3683e = 05i \\ 1.8292e = 04 \pm 7.0199e = 06i \\ 6.2500e = 02 \pm 0.0000e \pm 00i \\ 6.2500e = 02 \pm 0.0000e \pm 00i \\ \end{array} $
---------------	--	----------------	--

We consider a matrix of order 18 considered in the paper

N. GUGLIELMI, M.L. OVERTON, G.W. STEWART, An Efficient Algorithm for Computing the Generalized Null

$\sigma(A) =$	$\left[\begin{array}{c} 1.9288 + 00\\ 1.3561e + 00\\ 8.7206e - 01\\ 6.301e - 01\\ 3.1994e - 01\\ 3.1994e - 01\\ 3.1287e - 01\\ 1.6030e - 01\\ 3.1547e - 02\\ 1.7171e - 02\\ 1.7171e - 02\\ 1.7171e - 02\\ 1.660e - 02\\ 8.8228e - 03\\ 8.84642e - 03\\ 7.5872e - 07\\ 6.5816e - 07\\ 9.1614e - 11\\ 2.5727e - 16\\ \right]$	$\lambda(A) =$	$ \begin{bmatrix} 1.0000e + 00 + 0.0000e + 00i \\ 2.5000e - 01 + 0.0000e + 00i \\ 2.5000e - 01 + 0.0000e + 00i \\ -1.7684e - 04 + 5.6050e - 05i \\ -1.7684e - 04 + 5.6050e - 05i \\ -1.4499e - 04 + 0.0000e + 00i \\ -3.3473e - 05 + 0.0000e + 00i \\ -3.3786e - 05 + 1.7410e - 04i \\ 2.3786e - 05 - 1.7410e - 04i \\ 3.736e - 05 + 1.7410e - 04i \\ 3.803e - 04 + 3.6638e - 05i \\ 1.8038e - 04 + 3.6638e - 05i \\ 1.8292e - 04 + 7.0199e - 06i \\ 1.8292e - 04 - 7.0199e - 06i \\ 6.2500e - 02 + 0.0000e + 00i \\ 6.2500e - 02 + 0.0000e + 00i \\ \end{bmatrix} $	
$\operatorname{rank}(A) = 17,$		$\operatorname{rank} \operatorname{diag}(\lambda(A)) = 18.$		

We consider a matrix of order 18 considered in the paper

N. GUGLIELMI, M.L. OVERTON, G.W. STEWART, An Efficient Algorithm for Computing the Generalized Null

$\sigma(A) = \begin{bmatrix} 1.3561e + 00 \\ 8.7206e - 01 \\ 6.8301e - 01 \\ 6.3801e - 01 \\ 3.1994e - 01 \\ 3.1287e - 01 \\ 1.6030e - 01 \\ 3.1547e - 02 \\ 1.7171e - 02 \\ 1.4103e - 02 \\ 1.4103e - 02 \\ 1.4103e - 02 \\ 1.660e - 02 \\ 8.8228e - 03 \\ 8.4642e - 03 \\ 7.5872e - 07 \\ 6.5816e - 07 \\ 9.1614e - 11 \\ 2.5727e - 16 \end{bmatrix} \lambda(A) = \begin{bmatrix} 2.5000e - 01 + 0.000e + 00i \\ 2.500e - 01 + 5.6050e - 05i \\ -1.7684e - 04 + 5.6050e - 05i \\ -1.7684e - 04 + 5.6050e - 00i \\ -3.3473e - 05 + 0.0000e + 00i \\ 2.3786e - 05 + 1.7410e - 04i \\ 2.3786e - 05 - 1.7410e - 04i \\ 2.500e - 02 + 0.0000e + 00i \\ 1.8033e - 04 + 3.683e - 05i \\ 1.8292e - 04 - 7.0199e - 06i \\ 1.8292e - 04 - 7.0199e - 06i \\ 0.2500e - 02 + 0.0000e + 00i \\ 0.2500e$		[1.9288e + 00 ⁻	1	1.0000e + 00 + 0.0000e + 00i					
$\sigma(A) = \begin{bmatrix} \frac{8.7206e - 01}{6.3444e - 01} \\ \frac{3.1994e - 01}{3.1287e - 01} \\ \frac{1.6030e - 01}{3.1287e - 01} \\ \frac{1.633e - 01}{3.1547e - 02} \\ \frac{1.4103e - 02}{1.7171e - 02} \\ \frac{1.4103e - 02}{1.4103e - 02} \\ \frac{1.466e - 03}{7.5872e - 07} \\ \frac{8.8228e - 03}{6.5816e - 07} \\ \frac{9.614e - 11}{2.5727e - 16} \end{bmatrix} \lambda(A) = \begin{bmatrix} \frac{2.5000e - 01 + 0.000e + 00i}{-1.7684e - 04 + 5.6050e - 05i} \\ -1.7684e - 04 + 5.6050e - 05i \\ -1.7684e - 04 + 5.6050e - 05i \\ -1.7684e - 04 + 5.6050e - 05i \\ -1.6317e - 04 + 0.0000e + 00i \\ -3.3473e - 05 + 1.7410e - 04i \\ 2.3786e - 05 + 1.7410e - 04i \\ 2.3786e - 05 + 1.7410e - 04i \\ 3.4033e - 04 + 4.3683e - 05i \\ 1.8033e - 04 + 4.3683e - 05i \\ 1.8292e - 04 - 7.0199e - 06i \\ 6.2500e - 02 + 0.0000e + 00i $		1.3561e + 00		2.5000e - 01 + 0.0000e + 00i					
$\sigma(A) = \begin{vmatrix} 6.3301e - 01 \\ 6.344e - 01 \\ 3.194e - 01 \\ 3.194e - 01 \\ 3.1287e - 01 \\ 1.630e - 01 \\ 3.1547e - 02 \\ 1.7171e - 02 \\ 1.7171e - 02 \\ 1.1660e - 02 \\ 8.8228e - 03 \\ 7.5872e - 07 \\ 6.5816e - 07 \\ 9.1614e - 11 \\ 2.5727e - 16 \end{vmatrix} \lambda(A) = \begin{vmatrix} -1.7684e - 04 + 5.6050e - 05i \\ -1.7684e - 04 - 5.6050e - 05i \\ -1.7499e - 04 + 0.0000e + 00i \\ -3.3473e - 05 + 0.000e + 00i \\ -3.3473e - 05 + 0.000e + 00i \\ -3.3473e - 05 - 1.7410e - 04i \\ 2.3786e - 05 - 1.7410e - 04i \\ 8.4030e - 05 + 0.0000e + 00i \\ 1.8033e - 04 + 4.3638e - 05i \\ 1.8032e - 04 + 7.0199e - 06i \\ 6.2500e - 02 + 0.0000e + 00i \\ -5.2500e - 02 + 0.00$		8.7206e – 01	$\lambda(A) =$	2.5000e - 01 + 0.0000e + 00i					
$\sigma(A) = \begin{vmatrix} 6.3444e - 01 \\ 3.1994e - 01 \\ 3.1287e - 01 \\ 1.6030e - 01 \\ 3.1547e - 02 \\ 1.7171e - 02 \\ 1.7171e - 02 \\ 1.4103e - 02 \\ 1.4103e - 02 \\ 1.1660e - 02 \\ 8.828e - 03 \\ 8.4642e - 03 \\ 7.5872e - 07 \\ 6.5816e - 07 \\ 9.1614e - 11 \\ 2.5727e - 16 \end{vmatrix} \lambda(A) = \begin{vmatrix} -1.7684e - 04 - 5.6050e - 05i \\ -1.4499e - 04 + 0.0000e + 00i \\ 2.3786e - 05 + 1.7410e - 04i \\ 2.3786e - 05 - 1.7410e - 04i \\ 2.3786e - 05 - 1.7410e - 04i \\ 3.4030e - 05 + 0.0000e + 00i \\ 1.8033e - 04 + 4.3683e - 05i \\ 1.8292e - 04 + 7.0199e - 06i \\ 6.2500e - 02 + 0.0000e + 00i \\ 6.2500e - 02 + 0.0$		6.8301e - 01		-1.7684e - 04 + 5.6050e - 05i					
$\sigma(A) = \begin{vmatrix} 3.194e - 01 \\ 3.1287e - 01 \\ 1.6030e - 01 \\ 3.1547e - 02 \\ 1.7171e - 02 \\ 1.4103e - 02 \\ 1.103e - 02 \\ 1.1660e - 02 \\ 8.8228e - 03 \\ 8.4642e - 03 \\ 7.5872e - 07 \\ 6.5816e - 07 \\ 9.1614e - 11 \\ 2.5727e - 16 \end{vmatrix} \lambda(A) = \begin{vmatrix} -1.449e - 04 + 0.000e + 00i \\ -3.3473e - 05 + 0.0000e + 00i \\ 2.3786e - 05 + 1.7410e - 04i \\ 2.3786e - 05 - 1.7410e - 04i \\ 8.4030e - 05 + 0.0000e + 00i \\ 1.8033e - 04 + 4.3683e - 05i \\ 1.8033e - 04 + 4.3683e - 05i \\ 1.8292e - 04 + 7.0199e - 06i \\ 6.2500e - 02 + 0.0000e + 00i \\ 6.2500e - 02 + 0.000$		6.3444e – 01		-1.7684e - 04 - 5.6050e - 05i					
$\sigma(A) = \begin{bmatrix} 3.1287e - 01\\ 1.6030e - 01\\ 3.1547e - 02\\ 1.7171e - 02\\ 1.1717e - 02\\ 1.1660e - 02\\ 1.1660e - 02\\ 8.8288e - 03\\ 8.4642e - 03\\ 7.5872e - 07\\ 6.5816e - 07\\ 9.1614e - 11\\ 2.5727e - 16 \end{bmatrix} \lambda(A) = \begin{bmatrix} -3.3473e - 05 + 0.000e + 00i\\ -1.6317e - 04 + 0.000e + 00i\\ 2.3786e - 05 + 1.7410e - 04i\\ 8.4030e - 05 + 0.000e + 00i\\ 1.8033e - 04 + 4.3683e - 05i\\ 1.8292e - 04 + 7.0199e - 06i\\ 1.8292e - 04 - 7.0199e - 06i\\ 6.2500e - 02 + 0.000e + 00i\\ 5.2500e - 02 + 0.000e + 00i\\ 6.2500e - 02 + 0.000e + 00i\\ 6.2500e - 02 + 0.000e + 00i\\ 5.2500e - 02 + 0.000e + 00i\\ 5.250e - 02 + 0.000e + 00i\\ 5.250e - 02$		3.1994e - 01		-1.4499e - 04 + 0.0000e + 00i					
$\sigma(A) = \begin{bmatrix} 1.633e - 01\\ 3.1547e - 02\\ 1.7171e - 02\\ 1.7171e - 02\\ 1.4103e - 02\\ 1.1660e - 02\\ 8.828e - 03\\ 8.4642e - 03\\ 7.5872e - 07\\ 6.5816e - 07\\ 9.1614e - 11\\ 2.5727e - 16 \end{bmatrix} \lambda(A) = \begin{bmatrix} -1.6317e - 04 + 0.000e + 00i\\ 2.3786e - 05 - 1.7410e - 04i\\ 8.4030e - 05 + 0.000e + 00i\\ 1.8033e - 04 + 4.3683e - 05i\\ 1.8292e - 04 - 7.0199e - 06i\\ 6.2500e - 02 + 0.000e + 00i\\ 6.2500e - 02 + 0.000e + 00i\\$		3.1287e — 01		-3.3473e - 05 + 0.0000e + 00i					
$\sigma(A) = \begin{bmatrix} 3.1547e - 02\\ 1.7171e - 02\\ 1.4103e - 02\\ 1.4103e - 02\\ 1.660e - 02\\ 8.8228e - 03\\ 8.4642e - 03\\ 7.5872e - 07\\ 6.5816e - 07\\ 9.1614e - 11\\ 2.5727e - 16 \end{bmatrix} \lambda(A) = \begin{bmatrix} 2.3786e - 05 + 1.7410e - 04i\\ 2.3786e - 05 + 1.7410e - 04i\\ 2.3786e - 05 + 1.7410e - 04i\\ 3.4030e - 05 + 0.0000e + 00i\\ 1.8033e - 04 + 4.3683e - 05i\\ 1.8032e - 04 + 7.0199e - 06i\\ 6.2500e - 02 + 0.000e + 00i\\ 6.2500e - $		1.6030e - 01		-1.6317e - 04 + 0.0000e + 00i					
$\begin{array}{c c} \mathcal{O}(\mathcal{A}) = \left[\begin{array}{c} 1.7171e - 02\\ 1.4103e - 02\\ 1.1660e - 02\\ 8.8288e - 03\\ 8.4642e - 03\\ 7.5872e - 07\\ 9.5816e - 07\\ 9.1614e - 11\\ 2.5727e - 16\end{array}\right] \qquad \qquad$	$\sigma(A) =$	3.1547e – 02		2.3786e - 05 + 1.7410e - 04i					
$\begin{bmatrix} 1.4103e - 02\\ 1.1660e - 02\\ 8.828e - 03\\ 8.4642e - 03\\ 7.5872e - 07\\ 6.5816e - 07\\ 9.1614e - 11\\ 2.5727e - 16 \end{bmatrix} \begin{bmatrix} 8.4030e - 05 + 0.000e + 00i\\ 1.8033e - 04 + 4.3683e - 05i\\ 1.8032e - 04 - 7.0199e - 06i\\ 6.2500e - 02 + 0.0000e + 00i\\ 6.2500e - 02 + 0.0000e + 00i\\ 6.2500e - 02 + 0.000e + 00i\\ 6.2500e - $	0(7) -	1.7171e – 02		2.3786e - 05 - 1.7410e - 04i					
$\begin{bmatrix} 1.1660e - 02\\ 8.8228e - 03\\ 8.4642e - 03\\ 7.5872e - 07\\ 6.5816e - 07\\ 9.1614e - 11\\ 2.5727e - 16 \end{bmatrix} \begin{bmatrix} 1.8033e - 04 + 4.3683e - 05i\\ 1.8033e - 04 + 4.3683e - 05i\\ 1.8292e - 04 + 7.0199e - 06i\\ 6.2500e - 02 + 0.0000e + 00i\\ 6.2500e - 02 + 0.000e + 00i\\ 6.2500e - 02 + 0.000e + 00i \end{bmatrix}$ rank(A) = 17, rank diag($\lambda(A)$) = 18. $\lambda_n, \mathbf{y}_{\lambda_n}, \mathbf{x}_{\lambda_n}$ smallest eigenvalue of A and associated eigenvectors. cond(λ_n) = $\frac{1}{ \mathbf{y}_{\lambda_n}^H \mathbf{x}_{\lambda_n} } = 2.6901e + 11.$ This means that $O(\epsilon)$ perturbations in A can induce $\frac{ \mathbf{y}_{\lambda_n}^H \mathbf{x}_{\lambda_n} }{ \mathbf{y}_{\lambda_n}^H \mathbf{x}_{\lambda_n} } = 5.9732e - 05.$		1.4103e - 02		8.4030e - 05 + 0.0000e + 00i					
$\begin{bmatrix} 8.8228e - 03\\ 8.4642e - 03\\ 7.5872e - 07\\ 6.5816e - 07\\ 9.1614e - 11\\ 2.5727e - 16 \end{bmatrix} \begin{bmatrix} 1.8033e - 04 - 4.3683e - 05i\\ 1.8292e - 04 + 7.0199e - 06i\\ 1.8292e - 04 - 7.0199e - 06i\\ 6.2500e - 02 + 0.0000e + 00i\\ 6.2500e - 02 + 0.0000e + 00i\\ 6.2500e - 02 + 0.000e + 00i \end{bmatrix}$ rank(A) = 17, rank diag($\lambda(A)$) = 18. $\lambda_n, \mathbf{y}_{\lambda_n}, \mathbf{x}_{\lambda_n}$ smallest eigenvalue of A and associated eigenvectors. cond(λ_n) = $\frac{1}{ \mathbf{y}_{\lambda_n}^H \mathbf{x}_{\lambda_n} } = 2.6901e + 11.$ This means that $O(\epsilon)$ perturbations in A can induce $\frac{\mathbf{y}_{\lambda_n}^H \mathbf{x}_{\lambda_n} }{ \mathbf{y}_{\lambda_n}^H \mathbf{x}_{\lambda_n} }$ changes in the eigenvalue (if $\epsilon = 2.2204e - 16, \frac{\epsilon}{ \mathbf{y}_{\lambda_n}^H \mathbf{x}_{\lambda_n} } = 5.9732e - 05.$)		1.1660e - 02		1.8033e - 04 + 4.3683e - 05i					
$\begin{bmatrix} \frac{8.4642e - 03}{7.5872e - 07} \\ \frac{6.5816e - 07}{9.1614e - 11} \end{bmatrix} \begin{bmatrix} 1.8292e - 04 + 7.0199e - 06i \\ 1.8292e - 04 - 7.0199e - 06i \\ 6.2500e - 02 + 0.0000e + 00i \end{bmatrix}$ rank(A) = 17, rank diag($\lambda(A)$) = 18. $\lambda_n, \mathbf{y}_{\lambda_n}, \mathbf{x}_{\lambda_n}$ smallest eigenvalue of A and associated eigenvectors. cond(λ_n) = $\frac{1}{ \mathbf{y}_{\lambda_n}^H \mathbf{x}_{\lambda_n} } = 2.6901e + 11.$ This means that $O(\epsilon)$ perturbations in A can induce $\frac{\epsilon}{ \mathbf{y}_{\lambda_n}^H \mathbf{x}_{\lambda_n} }$ changes in the eigenvalue (if $\epsilon = 2.2204e - 16, \frac{\epsilon}{ \mathbf{y}_{\lambda_n}^H \mathbf{x}_{\lambda_n} } = 5.9732e - 05.$)		8.8228e - 03		1.8033e - 04 - 4.3683e - 05i					
$\begin{bmatrix} 7.5872e - 07\\ 6.5816e - 07\\ 9.1614e - 11\\ 2.5727e - 16 \end{bmatrix} \begin{bmatrix} 1.8292e - 04 - 7.0199e - 06i\\ 6.2500e - 02 + 0.0000e + 00i\\ 6.2500e - 02 + 0.0000e + 00i\\ 6.2500e - 02 + 0.0000e + 00i \end{bmatrix}$ rank(A) = 17, rank diag($\lambda(A)$) = 18. $\lambda_n, \mathbf{y}_{\lambda_n}, \mathbf{x}_{\lambda_n}$ smallest eigenvalue of A and associated eigenvectors. cond(λ_n) = $\frac{1}{ \mathbf{y}_{\lambda_n}^H \mathbf{x}_{\lambda_n} } = 2.6901e + 11.$ This means that $O(\epsilon)$ perturbations in A can induce $\frac{ \mathbf{y}_{\lambda_n}^H \mathbf{x}_{\lambda_n} }{ \mathbf{y}_{\lambda_n}^H \mathbf{x}_{\lambda_n} }$ changes in the eigenvalue (if $\epsilon = 2.2204e - 16, \frac{\epsilon}{ \mathbf{y}_{\lambda_n}^H \mathbf{x}_{\lambda_n} } = 5.9732e - 05.$)		8.4642e - 03		1.8292e - 04 + 7.0199e - 06i					
$\begin{bmatrix} 6.5816e - 07\\ 9.1614e - 11\\ 2.5727e - 16 \end{bmatrix} \begin{bmatrix} 6.2500e - 02 + 0.0000e + 00i\\ 6.2500e - 02 + 0.0000e + 00i\\ 6.2500e - 02 + 0.0000e + 00i \end{bmatrix}$ rank(A) = 17, rank diag($\lambda(A)$) = 18. $\lambda_n, \mathbf{y}_{\lambda_n}, \mathbf{x}_{\lambda_n}$ smallest eigenvalue of A and associated eigenvectors. cond(λ_n) = $\frac{1}{ \mathbf{y}_{\lambda_n}^H \mathbf{x}_{\lambda_n} } = 2.6901e + 11.$ This means that $O(\epsilon)$ perturbations in A can induce $\frac{\epsilon}{ \mathbf{y}_{\lambda_n}^H \mathbf{x}_{\lambda_n} }$ changes in the eigenvalue (if $\epsilon = 2.2204e - 16$, $\frac{\epsilon}{ \mathbf{y}_{\lambda_n}^H \mathbf{x}_{\lambda_n} } = 5.9732e - 05.$)		7.5872e - 07		1.8292e - 04 - 7.0199e - 06i					
$\begin{bmatrix} 9.1614e - 11\\ 2.5727e - 16 \end{bmatrix} \begin{bmatrix} 6.2500e - 02 + 0.0000e + 00i\\ 6.2500e - 02 + 0.0000e + 00i \end{bmatrix}$ rank(A) = 17, rank diag($\lambda(A)$) = 18. $\lambda_n, \mathbf{y}_{\lambda_n}, \mathbf{x}_{\lambda_n}$ smallest eigenvalue of A and associated eigenvectors. cond(λ_n) = $\frac{1}{ \mathbf{y}_{\lambda_n}^H \mathbf{x}_{\lambda_n} } = 2.6901e + 11.$ This means that $O(\epsilon)$ perturbations in A can induce $\frac{\epsilon}{ \mathbf{y}_{\lambda_n}^H \mathbf{x}_{\lambda_n} }$ changes in the eigenvalue (if $\epsilon = 2.2204e - 16$, $\frac{\epsilon}{ \mathbf{y}_{\lambda_n}^H \mathbf{x}_{\lambda_n} } = 5.9732e - 05.$)		6.5816e - 07		6.2500e - 02 + 0.0000e + 00i					
$\begin{bmatrix} 2.5727e - 16 \end{bmatrix} \begin{bmatrix} 0.62500e - 02 + 0.0000e + 00i \end{bmatrix}$ rank(A) = 17, rank diag($\lambda(A)$) = 18. $\lambda_n, \mathbf{y}_{\lambda_n}, \mathbf{x}_{\lambda_n}$ smallest eigenvalue of A and associated eigenvectors. cond(λ_n) = $\frac{1}{ \mathbf{y}_{\lambda_n}^H \mathbf{x}_{\lambda_n} } = 2.6901e + 11.$ This means that $O(\epsilon)$ perturbations in A can induce $\frac{ \mathbf{y}_{\lambda_n}^H \mathbf{x}_{\lambda_n} }{ \mathbf{y}_{\lambda_n}^H \mathbf{x}_{\lambda_n} }$ changes in the eigenvalue (if $\epsilon = 2.2204e - 16, \frac{\epsilon}{ \mathbf{y}_{\lambda_n}^H \mathbf{x}_{\lambda_n} } = 5.9732e - 05.)$		9 1614e - 11		6.2500e - 02 + 0.0000e + 00i					
$\operatorname{rank}(A) = 17, \qquad \operatorname{rank} \operatorname{diag}(\lambda(A)) = 18.$ $\lambda_n, \mathbf{y}_{\lambda_n}, \mathbf{x}_{\lambda_n} \text{ smallest eigenvalue of } A \text{ and associated eigenvectors.}$ $\operatorname{cond}(\lambda_n) = \frac{1}{ \mathbf{y}_{\lambda_n}^H \mathbf{x}_{\lambda_n} } = 2.6901e + 11.$ $\operatorname{This means that } O(\epsilon) \text{ perturbations in } A \text{ can induce } \frac{\epsilon}{ \mathbf{y}_{\lambda_n}^H \mathbf{x}_{\lambda_n} } \text{ changes in the eigenvalue}$ $(\text{if } \epsilon = 2.2204e - 16, \frac{\epsilon}{ \mathbf{y}_{\lambda_n}^H \mathbf{x}_{\lambda_n} } = 5.9732e - 05.)$		25727e - 16		6.2500e - 02 + 0.0000e + 00i					
rank(A) = 17, rank diag($\lambda(A)$) = 18. $\lambda_n, \mathbf{y}_{\lambda_n}, \mathbf{x}_{\lambda_n}$ smallest eigenvalue of A and associated eigenvectors. $\operatorname{cond}(\lambda_n) = \frac{1}{ \mathbf{y}_{\lambda_n}^H \mathbf{x}_{\lambda_n} } = 2.6901e + 11.$ This means that $O(\epsilon)$ perturbations in A can induce $\frac{\epsilon}{ \mathbf{y}_{\lambda_n}^H \mathbf{x}_{\lambda_n} }$ changes in the eigenvalue (if $\epsilon = 2.2204e - 16$, $\frac{\epsilon}{ \mathbf{y}_{\lambda_n}^H \mathbf{x}_{\lambda_n} } = 5.9732e - 05.$)	1 (4)	$\begin{bmatrix} 2.5/2/6 - 10 \end{bmatrix} \begin{bmatrix} 0.25006 - 02 + 0.0006 + 007 \end{bmatrix}$							
$\begin{split} \lambda_n, \mathbf{y}_{\lambda_n}, \mathbf{x}_{\lambda_n} \text{ smallest eigenvalue of } A \text{ and associated eigenvectors.} \\ \operatorname{cond}(\lambda_n) &= \frac{1}{ \mathbf{y}_{\lambda_n}^H \mathbf{x}_{\lambda_n} } = 2.6901e + 11. \\ \text{This means that } O(\epsilon) \text{ perturbations in } A \text{ can induce } \frac{\epsilon}{ \mathbf{y}_{\lambda_n}^H \mathbf{x}_{\lambda_n} } \text{ changes in the eigenvalue} \\ (\text{if } \epsilon = 2.2204e - 16, \frac{\epsilon}{ \mathbf{y}_{\lambda_n}^H \mathbf{x}_{\lambda_n} } = 5.9732e - 05.) \end{split}$	$\operatorname{rank}(A) = 17,$ $\operatorname{rank} \operatorname{diag}(\lambda(A)) = 18.$								
$\operatorname{cond}(\lambda_n) = \frac{1}{ \mathbf{y}_{\lambda_n}^H \mathbf{x}_{\lambda_n} } = 2.6901e + 11.$ This means that $O(\epsilon)$ perturbations in A can induce $\frac{\epsilon}{ \mathbf{y}_{\lambda_n}^H \mathbf{x}_{\lambda_n} }$ changes in the eigenvalue (if $\epsilon = 2.2204e - 16$, $\frac{\epsilon}{ \mathbf{y}_{\lambda_n}^H \mathbf{x}_{\lambda_n} } = 5.9732e - 05.$)	$\lambda_n, \mathbf{y}_{\lambda_n}, \mathbf{x}_{\lambda_n}$ smallest eigenvalue of A and associated eigenvectors.								
$\operatorname{COIII}(\lambda_n) = \frac{ \mathbf{y}_{\lambda_n}^{H} \mathbf{x}_{\lambda_n} }{ \mathbf{y}_{\lambda_n}^{H} \mathbf{x}_{\lambda_n} } = 2.0901e + 11.$ This means that $O(\epsilon)$ perturbations in A can induce $\frac{1}{ \mathbf{y}_{\lambda_n}^{H} \mathbf{x}_{\lambda_n} }$ changes in the eigenvalue (if $\epsilon = 2.2204e - 16$, $\frac{\epsilon}{ \mathbf{y}_{\lambda_n}^{H} \mathbf{x}_{\lambda_n} } = 5.9732e - 05.$)	(1) (1)								
This means that $O(\epsilon)$ perturbations in A can induce $\frac{\epsilon}{ \mathbf{y}_{\lambda_n}^{\mathbf{f}} \mathbf{x}_{\lambda_n} }$ changes in the eigenvalue (if $\epsilon = 2.2204e - 16$, $\frac{\epsilon}{ \mathbf{y}_{\lambda_n}^{\mathbf{f}} \mathbf{x}_{\lambda_n} } = 5.9732e - 05.$)	$\operatorname{cond}(\lambda_n) = \frac{ \mathbf{y}_{\lambda_n}^H \mathbf{x}_{\lambda_n} }{ \mathbf{y}_{\lambda_n}^H \mathbf{x}_{\lambda_n} } = 2.09016 \pm 11.$								
(if $\epsilon = 2.2204e - 16$, $\frac{1}{ \mathbf{y}_{\lambda_n}^H \mathbf{x}_{\lambda_n} } = 5.9732e - 05.$)	This means that $O(\epsilon)$ perturbations in A can induce $\frac{\epsilon}{ \mathbf{y}_{\lambda_n}^H \mathbf{x}_{\lambda_n} }$ changes in the eigenvalue								

Second example

Z. ZENG, Sensitivity and Computation of a Defective Eigenvalue, SIAM. J. Matrix Anal. Appl., 37(2), 798817.

The eigenvalues of A₂₀ are 2 and 3 of nonzero Segre characteristic {4, 3, 3} and {5, 5}, respectively.

Second example

Z. ZENG, Sensitivity and Computation of a Defective Eigenvalue, SIAM. J. Matrix Anal. Appl., 37(2), 798817.

The eigenvalues of A₂₀ are 2 and 3 of nonzero Segre characteristic {4, 3, 3} and {5, 5}, respectively.
Means of clusters of defective eigenvalues are not hypersensitive (Ruhe, '70) :

Second example

Z. ZENG, Sensitivity and Computation of a Defective Eigenvalue, SIAM. J. Matrix Anal. Appl., 37(2), 798817.

- The eigenvalues of A₂₀ are 2 and 3 of nonzero Segre characteristic {4, 3, 3} and {5, 5}, respectively.
- Means of clusters of defective eigenvalues are not hypersensitive (Ruhe, '70) :

$$\sum_{\substack{\text{sum(eig}(A_{20}(1:10)))\\10}} = 3.00000000000001e + 00$$

$$\frac{\text{sum(eig}(A_{20}(11:20)))}{10} = 2.000000000001e + 00$$

$$(A + 2929 + 11) \\ (A + 299 + 11) \\ (A + 499 + 11) \\ (A + 499$$

$$_{eig}(A_{20}) =$$

Can we compute the eigenvalues in a more accurate way?

- Can we compute the eigenvalues in a more accurate way?
- Since we are interested in the Jordan structure at 0 we first compute the corresponding right (left) eigenvector (=singular vector) with one step of inverse iteration.

- Can we compute the eigenvalues in a more accurate way?
- Since we are interested in the Jordan structure at 0 we first compute the corresponding right (left) eigenvector (=singular vector) with one step of inverse iteration.
- Problem: how to to deflate the matrix

Given a Hessemberg matrix $H \in \mathbb{R}^{n \times n}$ with eigenpair (λ, x) the algorithm deflates the H removing the eigenvalue λ into two steps:

► Transform x into ±e_n ⇒ H is transformed into a similar one with one more subdiagonal:

Given a Hessemberg matrix $H \in \mathbb{R}^{n \times n}$ with eigenpair (λ, x) the algorithm deflates the H removing the eigenvalue λ into two steps:

► Transform x into ±e_n ⇒ H is transformed into a similar one with one more subdiagonal:

The second subdiagonal is removed by a "chasing the bulge" technique:

Businger's algorithm: conclusions

The Businger's algorithm is stable but too expensive requiring $\frac{1}{2}(n-1)(n-2) + 1$ Givens rotations $\Rightarrow O(n^3)$ flops!!

Alternate ways of deflation

Implicit Q theorem revisited

Let $H \in \mathbb{R}^{n \times n}$ irreducible Hessenberg with eigenvalue λ . Then

1. *H* has an "essentially unique" normalized eigenvector \mathbf{x} corresponding to λ :

$$H\mathbf{x} = \lambda \mathbf{x}, \quad \|\mathbf{x}\|_2 = 1$$

and its last component $x_n \neq 0$;

2. there is an "essentially unique" sequence of Givens rotations $G_{n-1,n}, \ldots, G_{1,2}$ whose product

$$Q:=G_{1,2}G_{2,3}\cdots G_{n-1,n}$$

transforms the pair (H, \mathbf{x}) to a similar one

$$(\tilde{H}, \tilde{\mathbf{x}}) := (QHQ^T, Q\mathbf{x})$$

where

$$\tilde{\mathbf{x}} = \alpha \mathbf{e}_1, \quad |\alpha| = \|\mathbf{x}\|_2 = 1$$

 $\tilde{H}\mathbf{e}_1 = \lambda \mathbf{e}_1, \quad \tilde{H} \text{ in Hessenberg form.}$
Implicit Q theorem revisited, proof

1. The fact that \mathbf{x} is unique follows from

$$(H - \lambda I)\mathbf{x} = 0, \quad \|\mathbf{x}\|_2 = 1,$$

where $(H - \lambda I)$ has rank n - 1 since H irreducible Hessenberg and $x_n \neq 0$.

2. The reduction of **x** to $\tilde{\mathbf{x}} = Q\mathbf{x} = \alpha \mathbf{e}_1$ requires a sequence of Givens rotations

$$G_{i-1,i} \in \mathbb{R}^{n \times n}, \quad i = n, n-1, \dots, 2, \tag{1}$$

in order to eliminate the entries x_i , i = n, n - 1, ..., 2 of the vector **x**. These are the same rotations that reduce

$$(H - \lambda I)Q^T = \left[\begin{array}{c} \\ \end{array} \right] = R$$
 triangular

$$Q(H - \lambda I)Q^T = \left[\sum \right] = \tilde{H} - \lambda I$$
 Hessenberg

Since
$$\mathbf{x} = \alpha Q^T \mathbf{e}_1$$
, $\alpha = \pm 1$, we have
 $R\mathbf{e}_1 = 0$, $(\tilde{H} - \lambda I)\mathbf{e}_1 = 0 \Rightarrow \tilde{H}\mathbf{e}_1 = \lambda \mathbf{e}_1$.

The implicit Q theorem is closely related to this lemma. It explains that the transformation Q can also be determined from the first rotation $G_{n-1,n}$ that computes

$$\begin{bmatrix} h_{n,n-1}, & h_{n,n} - \lambda \end{bmatrix} G_{n-1,n}^{T} = \begin{bmatrix} 0 & x \end{bmatrix}$$

and from the fact that QHQ^T is still Hessenberg. This is known as "chasing the bulge" tecknique (Watkins '07).

 In theory, the backward (forward) QR with perfect shift computes the same Hessenberg matrix computed transforming x(y) to e₁(e_n).

In practice, the two techniques have a different behavior.

In theory, the backward (forward) QR with perfect shift computes the same Hessenberg matrix computed transforming x(y) to e₁(e_n).

In practice, the two techniques have a different behavior.

In particular, the backward (forward) QR with perfect shift, due to small entries in the subdiagonal, does not yield the exact eigenvalue (blurred shift, Watkins '07).

In theory, the backward (forward) QR with perfect shift computes the same Hessenberg matrix computed transforming x(y) to e₁(e_n).

In practice, the two techniques have a different behavior.

- In particular, the backward (forward) QR with perfect shift, due to small entries in the subdiagonal, does not yield the exact eigenvalue (blurred shift, Watkins '07).
- ▶ It can be shown that, if the last two (first) entries of the right (left) eigenvectors are *"large enough"* ($\approx \frac{1}{n^2}$) the QR method with perfect shift applied to the eigenvector x(y) works properly.

If the last two (first) entries of the right (left) eigenvectors are "*small*" the lower part below the subdiagonal is filled by a rank-one structured matrix.

In theory, the backward (forward) QR with perfect shift computes the same Hessenberg matrix computed transforming x(y) to e₁(e_n).

In practice, the two techniques have a different behavior.

- In particular, the backward (forward) QR with perfect shift, due to small entries in the subdiagonal, does not yield the exact eigenvalue (blurred shift, Watkins '07).
- ▶ It can be shown that, if the last two (first) entries of the right (left) eigenvectors are *"large enough"* ($\approx \frac{1}{n^2}$) the QR method with perfect shift applied to the eigenvector x(y) works properly.

If the last two (first) entries of the right (left) eigenvectors are "small" the lower part below the subdiagonal is filled by a rank-one structured matrix.

► In the sequel we will show how to overcome this problem.

To compute the eigenvalues of A_{20} we proceed in the following way:

• Reduce A_{20} to upper Hessenberg form ($O(n^3)$ flops;

To compute the eigenvalues of A_{20} we proceed in the following way:

- Reduce A_{20} to upper Hessenberg form ($O(n^3)$ flops;
- Compute the smallest singular triplet (σ_i, u_i, v_i) of A_i − λ_kI; (O(n²) flops);

To compute the eigenvalues of A_{20} we proceed in the following way:

- Reduce A_{20} to upper Hessenberg form ($O(n^3)$ flops;
- Compute the smallest singular triplet (σ_i, u_i, v_i) of A_i − λ_kI; (O(n²) flops);
- Check whether the last two (first) entries of the right (left) eigenvectors are *"large enough"* (≈ 1/n²)
 If yes apply the revisited Q theorem on the right (left) eigenvector and deflate the matrix

The eigenvalues of A_{17} are 2 and 3.

perfect shift left eigenvector

$$A_{17}^{(1)} = Q_1 A_{17} Q_1^{T},$$

$$y = \begin{bmatrix} 1.0232e - 16 \\ -2.7123e - 16 \\ -3.8156e - 16 \\ -1.0473e - 15 \\ 1.1862e - 15 \\ 2.0485e - 15 \\ -1.5446e - 14 \\ -3.0139e - 03 \\ -1.1602e - 02 \\ -9.3025e - 04 \\ -3.0139e - 03 \\ -1.1602e - 02 \\ -9.3025e - 04 \\ -3.8075e - 15 \\ -1.0401e - 16 \\ -8.5684e - 17 \\ -8.787e - 16 \\ -8.5691e - 16 \\ -8.5691e - 16 \\ -8.5691e - 16 \\ -8.787e - 16 \\ -5.6910e - 16 \\ -1.2485e - 17 \\ -2.9224e - 15 \\ 2.4195e - 16 \\ -2.3211e - 16 \\ -2.3221e - 16 \\ -3.2882e - 17 \\ -2.9224e - 15 \\ 2.4195e - 16 \\ -1.2485e - 17 \\ -2.4451e - 16 \\ 3.2289e - 17 \\ -1.4691e - 17 \end{bmatrix}, W = \begin{bmatrix} -2.7297e - 16 \\ -5.6114e - 16 \\ -5.604e - 16 \\ -7.1543e - 18 \\ -2.3221e - 16 \\ -3.8281e - 16 \\ -1.4451e - 16 \\ -3.2289e - 17 \\ -1.4691e - 17 \end{bmatrix},$$

,

$$\begin{split} &d_{-2} = \operatorname{diag}(A_{18}^{(1)}, -2) \\ &w^T = (A_{17}^{(1)}(17, :) \\ &A_{17}^{(1)}(17, 17) = 2.00000000000001e + 00, \\ &\|\operatorname{tril}(A_{17}^{(1)}, -2)\|_2 = 6.8942e - 01. \end{split}$$

perfect shift right eigenvector

$$A_{17}^{(2)} = Q_2 A_{17} Q_2^{T},$$

$$x = \begin{bmatrix} \frac{-3.2644e - 01}{-2.1155e - 01} \\ \frac{-3.6169e - 01}{-3.6169e - 01} \\ \frac{-5.83776e - 01}{-5.83776e - 01} \\ \frac{-5.83776e - 01}{1.1730e - 02} \\ \frac{-7.2694e - 02}{1.0267e - 01} \\ \frac{4.1093e - 02}{1.0267e - 01} \\ \frac{4.1093e - 02}{1.4175e - 02} \\ \frac{1.4175e - 02}{3.3022e - 02} \\ \frac{1.4175e - 02}{-2.2944e - 03} \\ \frac{-7.9542e - 04}{-2.8838e - 08} \\ \frac{4.8694e - 15}{4.4041e - 16} \end{bmatrix}, \quad d_{-2} = \begin{bmatrix} 2.7756e - 16\\ -1.1494e - 15\\ -2.0039e - 16\\ 1.6412e - 15\\ 0.5694e - 16\\ -1.4412e - 15\\ 0.5674e - 17\\ 4.4265e - 15\\ -1.3015e - 15\\ -6.0012e - 16\\ 1.9700e - 15\\ 2.4631e - 13\\ 5.9216e - 13\\ -1.3890e - 08 \end{bmatrix}, \quad z = \begin{bmatrix} 2.0000e + 00\\ 4.4409e - 16\\ 2.4905e - 16\\ -1.4008e - 15\\ -1.408e - 16\\ 1.1118e - 15\\ 2.5818e - 15\\ -1.9832e - 15\\ -1.9832e - 15\\ -1.9702e - 15\\ -1.3830e - 08 \end{bmatrix}, \quad z = \begin{bmatrix} 2.000e + 00\\ 4.4409e - 16\\ 2.4905e - 16\\ -1.4008e - 15\\ -1.408e - 15\\ -1.9832e - 15\\ -1.9832e - 15\\ -1.9832e - 15\\ -1.9336e - 16\\ 1.3688e - 15 \end{bmatrix},$$

$$\begin{split} & d_{-2} = \operatorname{diag}(A_{17}^{(1)}, -2) \\ & z = (A_{17}^{(1)}(:, 1) \\ & A_{17}^{(2)}(17, 17) = 2.000000000000000e + 00, \\ & \|\operatorname{tril}(A_{17}^{(2)}, -2)\|_2 = 1.3890e - 08. \end{split}$$

Multishift backward algorithm 1

Multishift backward algorithm 2

perfect shift right eigenvector modified

$$A_{18}^{(2)} = Q_2 A_{18} Q_2^T,$$

$$x = \begin{bmatrix} 1.6219e - 01 \\ 9.1224e - 01 \\ -2.4749e - 01 \\ 2.2343e - 01 \\ -1.3038e - 01 \\ 1.7690e - 02 \\ 5.2873e - 02 \\ 7.8050e - 02 \\ -3.6873e - 02 \\ -4.4924e - 02 \\ 6.5400e - 03 \\ -1.9780e - 02 \\ 4.8924e - 02 \\ 6.5400e - 03 \\ -1.9780e - 02 \\ 4.8934e - 16 \\ -2.0834e - 16 \\ -1.9033e - 15 \\ 1.0139e - 15 \\ 6.6845e - 16 \\ 1.2260e - 14 \\ 1.9789e - 15 \\ -3.2387e - 15 \\ -5.2576e - 15 \end{bmatrix}, \quad Z = \begin{bmatrix} 2.0000e + 00 \\ -1.1022e - 16 \\ 2.0541e - 16 \\ -2.3492e - 16 \\ -3.1452e - 16 \\ -3.1452e - 16 \\ -4.1542e - 16 \\ -3.2387e - 15 \\ -5.2576e - 15 \end{bmatrix},$$

,

$$\begin{split} & d_{-2} = \operatorname{diag}(A_{17}^{(1)}, -2) \\ & z = (A_{17}^{(1)}(:, 1) \\ & A_{18}^{(2)}(18, 18) = 2.00000000000000e + 00, \\ & \|\operatorname{tril}(A_{17}^{(2)}, -2)\|_2 = 2.7224e - 14. \end{split}$$

New algorithm for computing the generalized null-space

First step: compute the "reverse" Hessenberg reduction of A :

$$A = Q_1 H Q_1^H, \quad H = \begin{bmatrix} H_1 & * & \cdots & * \\ & H_2 & \ddots & * \\ & & \ddots & * \\ & & & H_j \end{bmatrix},$$

 H_i , $i = 1, \ldots, j$, irreducible upper Hessenberg matrices.

New algorithm for computing the generalized null-space

Theorem

Let $m(\lambda) = \prod_{i=1}^{\ell} (\lambda - \lambda_i)^{k_i}$ be the monic minimal polynomial of a matrix A, and let $d := \sum_{i=1}^{\ell} k_i$ be its degree. Then

- 1. the Krylov subspace $\mathcal{K}_k(A, b) = \text{Im} [b, Ab, \dots, A^{k-1}b]$ has dimension bounded by min(k, d),
- 2. this upper bound is reached for almost any vector b, i.e. it is generic,
- 3. such a Krylov subspace of maximal dimension d is an invariant subspace of A corresponding to a largest Jordan block of each eigenvalue, and the vector b is its cyclic generator.

New algorithm for computing the generalized null-space

$$A = Q_1 H Q_1^H, \quad H = \begin{bmatrix} H_1 & * & \cdots & * \\ & H_2 & \ddots & * \\ & & \ddots & * \\ & & & & H_j \end{bmatrix}$$

Second step: Check whether H_i , i = 1, ..., j, are singular (via inverse iteration). If H_i is singular, deflate the 0 eignevalue by the perfect shift technique.

New algorithm

Third step: Reduce the block Hessenberg matrix to upper *echelon* form, i.e., multiply \hat{H} to the right by a unitary matrix U so that, if $\operatorname{rank}(\hat{H}) = \hat{n} \leq n$, the first $n - \hat{n}$ columns of $\hat{H}U$ are $\mathbf{0}$, where \hat{n} are the number of singular blocks H_j .

Example

г 0	0	0	×	\times	×т							
			×	\times	×							
				×	×	×	×	\times	×	\times	×	×
				\times	×							
					\times	×						
						×	×	\times	×	\times	×	×
						\times	\times	\times	\times	\times	\times	×
							×	\times	×	\times	×	×
								\times	×	\times	×	×
									\times	\times	\times	×
										\times	×	×
											\times	×
L												×

We consider a matrix of order 18 considered in the paper

N. Guglielmi, M.L. Overton, G.W. Stewart, An Efficient Algorithm for Computing the Generalized Null Space

We consider a matrix of order 18 considered in the paper

N. Guglielmi, M.L. Overton, G.W. Stewart, An Efficient Algorithm for Computing the Generalized Null Space

$$\sigma(A) = \begin{bmatrix} 1.9288 + 00 \\ 1.3561 + 00 \\ 8.7206e - 01 \\ 6.8301e - 01 \\ 6.3404e - 01 \\ 3.1994e - 01 \\ 3.1287e - 02 \\ 1.6030e - 01 \\ 3.1547e - 02 \\ 1.7171e - 02 \\ 1.7171e - 02 \\ 1.4103e - 02 \\ 1.606e - 02 \\ 8.8228e - 03 \\ 8.4642e - 03 \\ 7.5872e - 07 \\ 9.6316e - 07 \\ 9.6316e - 07 \\ 9.6316e - 07 \\ 9.6316e - 11 \\ 2.5727e - 16 \end{bmatrix}$$

We consider a matrix of order 18 considered in the paper

N. Guglielmi, M.L. Overton, G.W. Stewart, An Efficient Algorithm for Computing the Generalized Null Space

$\sigma(A) = \begin{bmatrix} 6.3444e - 01 \\ 3.1994e - 01 \\ 3.1287e - 01 \\ 1.6030e - 01 \\ 3.1547e - 02 \\ 1.7171e - 02 \\ 1.403e - 02 \\ 1.1660e - 02 \\ 8.8228e - 03 \\ 8.4642e - 03 \\ 7.5872e - 07 \\ 6.5816e - 07 \\ 9.1614e - 11 \\ 2.5727e - 16 \end{bmatrix} \qquad \lambda(A) = \begin{bmatrix} -1.7684e - 04 - 5.6050e - \\ -1.4499e - 04 + 0.0000e + \\ -3.3473e - 04 + 0.0000e + \\ -3.3736e - 05 + 1.7410e - \\ 2.3786e - 05 + 1.7410e - \\ 2.3786e - 05 + 1.7410e - \\ 2.3786e - 05 - 1.7410e - \\ 8.4030e - 05 + 0.000e + \\ 1.8033e - 04 + 4.3683e - \\ 1.8292e - 04 + 7.0199e - \\ 1.8292e - 04 - 7.0199e - \\ 6.2500e - 02 + 0.000e + \\ \end{array}$	+ 00i + 00i + 00i - 04i + 00i - 05i - 05i - 06i + 00i + 00i + 00i
---	---

We consider a matrix of order 18 considered in the paper

N. Guglielmi, M.L. Overton, G.W. Stewart, An Efficient Algorithm for Computing the Generalized Null Space

$\sigma(A) =$	$\left[\begin{array}{c} 1.9288 + 00\\ 1.3561e + 00\\ 8.7206e - 01\\ 6.3301e - 01\\ 3.1994e - 01\\ 3.1994e - 01\\ 3.1287e - 01\\ 1.6030e - 01\\ 3.1547e - 02\\ 1.7171e - 02\\ 1.7171e - 02\\ 1.4103e - 02\\ 1.660e - 02\\ 8.8228e - 03\\ 8.828e - 03\\ 8.4642e - 03\\ 7.5872e - 07\\ 6.5816e - 07\\ 9.1614e - 11\\ 2.5727e - 16\\ \right]$	$\lambda(A) =$	$ \begin{array}{c} 1.0000e+00+0.0000e+00i\\ 2.5000e-01+0.0000e+00i\\ 2.5000e-01+0.0000e+00i\\ -1.7684e-04+5.6050e-05i\\ -1.7684e-04+5.6050e-05i\\ -1.7684e-04+0.0000e+00i\\ -1.6317e-04+0.0000e+00i\\ -3.3473e-05+0.0000e+00i\\ 2.3786e-05-1.7410e-04i\\ 2.3786e-05-1.7410e-04i\\ 3.4030e-05+0.0000e+00i\\ 1.8033e-04+4.3683e-05i\\ 1.8033e-04+4.3683e-05i\\ 1.8292e-04+7.0199e-06i\\ 1.8292e-04+7.0199e-06i\\ 1.8290e-02+0.0000e+00i\\ 6.2500e-02+0.0000e+00i\\ \end{array}$		
$\operatorname{rank}(A)$	= 17,	rank diag $(\lambda(A)) = 18$.			

We consider a matrix of order 18 considered in the paper

N. Guglielmi, M.L. Overton, G.W. Stewart, An Efficient Algorithm for Computing the Generalized Null Space

$\sigma(A) =$	$ \begin{array}{c} 1.9288e + 00 \\ 1.3561e + 00 \\ 8.7206e - 01 \\ 6.3301e - 01 \\ 6.3444e - 01 \\ 3.1994e - 01 \\ 3.1287e - 01 \\ 1.6030e - 01 \\ 3.1547e - 02 \\ 1.7171e - 02 \\ 1.7171e - 02 \\ 1.4103e - 02 \\ 1.460e - 02 \\ 8.8228e - 03 \\ 8.4642e - 03 \\ 7.5872e - 07 \\ 6.5816e - 07 \\ 0.6316e \\ 11 \end{array} $	$\lambda(A) =$	$ \begin{bmatrix} 1.0000e + 00 + 0.0000e + 00i \\ 2.5000e - 01 + 0.0000e + 00i \\ 2.5000e - 01 + 0.0000e + 00i \\ 1.7684e - 04 + 5.6050e - 05i \\ -1.7684e - 04 + 5.6050e - 05i \\ -1.4499e - 04 + 0.0000e + 00i \\ -3.3473e - 05 + 0.0000e + 00i \\ 2.3786e - 05 + 1.7410e - 04i \\ 2.3786e - 05 + 1.7410e - 04i \\ 3.4030e - 05 + 0.0000e + 00i \\ 1.8033e - 04 + 4.3683e - 05i \\ 1.8033e - 04 + 4.3683e - 05i \\ 1.8292e - 04 - 7.0199e - 06i \\ 1.8292e - 04 + 7.0199e - 06i \\ 6.2500e - 02 + 0.0000e + 00i \\ 0.000e + 00i \\ 0.0000e + 00i \\ 0.000e + 00i \\ 0.0000e + 00i \\ 0.000e $			
	2.5727e - 16	J	6.2500e - 02 + 0.0000e + 00i			
$\operatorname{rank}(A) = 17,$ $\operatorname{rank} \operatorname{diag}(\lambda(A)) = 18.$						
$\lambda_n, \mathbf{y}_{\lambda_n}, \mathbf{x}_{\lambda_n}$ smallest eigenvalue of A and associated eigenvectors						
$\operatorname{cond}(\lambda_n) = \frac{1}{ \mathbf{y}_n^{\prime \prime} \mathbf{x}_{\lambda_n} } = 2.6901e + 11.$						
This means that $O(\epsilon)$ perturbations in A can induce $\frac{\epsilon}{ \mathbf{y}_{\lambda}^{H} \mathbf{x}_{\lambda_{\alpha}} }$ changes in the eigenvalue						
$(\text{if } \epsilon = 2.2204e - 16, \frac{\epsilon}{ \mathbf{y}_{\lambda_n}^H \mathbf{x}_{\lambda_n} } = 5.9732e - 05.)$						

Н

After having applied the first step of the algorithm, i.e., after having computed *H* by the reverse Hessenberg reduction, we have

$$(1:2,1) = \begin{bmatrix} 8.2665e - 03\\ -1.1695e - 02 \end{bmatrix} \text{ and } \text{diag}(H,-1) = \begin{bmatrix} 8.2665e - 03\\ -1.1695e - 02 \end{bmatrix} \text{ and } \text{diag}(H,-1) = \begin{bmatrix} 1.1695e - 04\\ 2.6277e - 07\\ 4.8788e - 04\\ 1.3198e - 05\\ 3.2209e - 03\\ 8.2828e - 03\\ 9.8768e - 04\\ 1.6310e - 05\\ 1.4189e - 06\\ 8.0967e - 05\\ 3.1571e - 02\\ 1.2242e - 02\\ 6.5106e - 02\\ 1.224e - 01\\ 1.1377e + 00\\ 4.9068e - 01 \end{bmatrix}$$

After having applied the first step of the algorithm, i.e., after having computed H by the reverse Hessenberg reduction, we have

$$H(1:2,1) = \begin{bmatrix} 8.2665e - 03\\ -1.1695e - 02 \end{bmatrix} \text{ and } \text{diag}(H,-1) = \begin{bmatrix} -1.193e - 04\\ 3.0480e - 04\\ 2.6277e - 07\\ 4.8788e - 04\\ 3.5209e - 03\\ 8.2828e - 03\\ 9.8768e - 04\\ 1.6310e - 05\\ 1.4189e - 06\\ 8.0967e - 05\\ 3.1571e - 02\\ 1.2242e - 02\\ 6.5106e - 02\\ 1.2294e - 01\\ 1.1377e + 00 \end{bmatrix}$$

H is an irreducible Hessenberg matrix

Rescue procedure: instead of computing the eigenvector \mathbf{x} associated to the smallest eigenvalue λ of \hat{H} , the matrix obtained after one iteration of the QR method with zero shift we :

Compute the eigenvector x associated to the smallest eigenvalue λ of H, the matrix obtained after the reverse Hessenberg reduction.

Rescue procedure: instead of computing the eigenvector \mathbf{x} associated to the smallest eigenvalue λ of \hat{H} , the matrix obtained after one iteration of the QR method with zero shift we :

- Compute the eigenvector x associated to the smallest eigenvalue λ of H, the matrix obtained after the reverse Hessenberg reduction.
- If $\lambda < tol$, tol fixed tolerance, apply the lemma

Computed λ : $\lambda = 3.5721e - 16$;

Rescue procedure: instead of computing the eigenvector \mathbf{x} associated to the smallest eigenvalue λ of \hat{H} , the matrix obtained after one iteration of the QR method with zero shift we :

- Compute the eigenvector x associated to the smallest eigenvalue λ of H, the matrix obtained after the reverse Hessenberg reduction.
- If $\lambda < tol$, tol fixed tolerance, apply the lemma

Computed λ : $\lambda = 3.5721e - 16$; Computed $\mathbf{x} = \begin{bmatrix} -7.4729e - 01 \\ -5.2624e - 01 \\ -3.6717e - 01 \\ 5.0551e - 02 \\ 1.2347e - 01 \\ -2.2328e - 02 \\ -5.7673e - 03 \\ -4.9440e - 02 \\ 2.2424e - 02 \\ 2.1667e - 02 \\ 3.3528e - 02 \\ 5.6918e - 03 \\ 2.8479e - 02 \\ 1.4739e - 03 \\ -2.7244e - 03 \\ 3.2894e - 03 \\ -6.1881e - 03 \\ 7.7724e - 02 \end{bmatrix}$

After having applied the perfect shift stategy on the right eigenvector x of H we obtain \tilde{H} , whose first column, the second subdiagonal of \tilde{H} are, respectively,

	1.0443e _ 10 -		
	-2.4807e - 16		г 2.7929e — 16 г
	2.7929e - 16		-3.6899e - 16
	3.2569e - 16		-4.1543e - 16
	2.1330e - 16		-5.4518e - 16
	1.0583e - 16		4.7972e - 17
	2.6678e - 17		-2.6513e - 15
~	-3.8877e - 16		-5.2372e - 16
$\ddot{H}(\cdot 1) =$	2.7456e - 16	$-(\hat{H} - 2) -$	7.6815e - 17
n(., 1) -	-1.5241e - 16	, diag(11, 2) -	-3.4518e - 19
	2.0498e - 18		-1.0449e - 15
	-4.0576e - 16		6.6930e - 16
	2.5667e – 16		-6.1971e - 16
	-1.3661e - 16		-1.2311e - 16
	-1.4935e - 16		-1.1904e - 15
	-2.7086e - 16		-1.0128e - 16
	-4.1496e - 16		L 7.1288e − 18 」
	L 8.8517e – 18]	
···· 1 11/ ·1/1	പ്പാല വ	1406 15	

and $\|\operatorname{tril}(\tilde{H}, -2)\|_2 = 9.1426e - 15$

Numerical example 2

$$\frac{\|A - Q_{GOS}B_{GOS}Q_{GOS}^{H}\|_{2}}{1.1185\text{e}{-}15} \frac{\|A - Q_{MV}B_{MV}Q_{MV}^{H}\|_{2}}{2.5532\text{e}{-}15}$$

tol = 1.0e - 13, Index = 1, $s_1 = 1$.

Numerical example 3

The design of smooth surfaces using subdivision algorithms, a common technique used in computer graphics, leads to certain eigenvalue optimization problems. Computations for a triangular mesh led to the matrix

69/448 2101/9632 2101/9632 2101/9632 295/19264 1403/28896 295/19264 1403/28896 295/19264 1403/28896 248/896 15/896 233/896 171/896 171/896 29/896 0 0 29/896 233/896 171/896 248/896 171/896 0 29/896 15/896 29/896 0 233/896 171/896 171/896 248/896 0 0 29/896 15/896 29/896 3/32 3/32 7/16 3/32 3/32 3/32 0 3/32 A =9/64 39/128 1/12839/128 3/64 3/128 9/64 3/128 1/1283/32 3/32 7/16 3/32 3/32 0 3/32 3/32 0 9/64 3/64 39/128 39/128 3/128 9/64 3/128 1/1281/1283/32 3/32 3/32 7/16 0 3/32 3/32 3/32 0 9/64 1/12839/128 3/64 39/128 3/128 0 1/1283/128 9/64

Numerical examples 3

B _{GOS} =	$\left[\begin{array}{ccccc} 0 & 0 & 0 & -3.84e & - 0.3 \\ 0 & 0 & 0 & -5.22e & - 0.3 \\ 0 & 0 & 0 & 2.53e & - 0.2 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$	$\begin{array}{c} -1.61e - 02 \\ -2.19e - 02 - \\ 1.06e - 01 \\ -1.13e - 01 - \\ 1.17e - 01 \\ 3.37e - 01 \\ 3.45e - 01 \\ 3.53e - 01 \\ 0 \\ 0 \end{array}$	$\begin{array}{r} 1.54e & - & 01 \\ -3.12e & - & 01 \\ 1.86e & - & 01 \\ -3.30e & - & 01 - \\ 4.57e & - & 02 \\ 4.71e & - & 01 \\ 2.26e & - & 01 \\ 2.31e & - & 01 \\ 0 \\ 0 \end{array}$	$\begin{array}{r} 1.07e - 01 \\ 2.36e - 01 \\ 2.97e - 01 \\ -3.37e - 01 \\ 4.67e - 02 \\ 2.26e - 01 \\ 4.81e - 01 \\ 2.36e - 01 \\ 0 \\ 0 \end{array}$	$\begin{array}{r} -3.49e - 01 \\ -6.45e - 02 \\ 1.72e - 01 \\ -3.45e - 01 \\ 4.78e - 02 \\ 2.31e - 01 \\ 2.36e - 01 \\ 4.92e - 01 \\ 0 \\ 0 \end{array}$	$\begin{array}{r} -3.41e - 02 \\ 4.91e - 02 \\ 4.92e - 03 \\ 0 \\ 0 \\ -3.29e - 02 \\ 1.57e - 02 \\ 1.60e - 02 \\ 6.25e - 02 \\ 0 \\ \end{array}$	$\begin{array}{c} 4.85e - 02\\ 3.23e - 02\\ 1.40e - 02\\ 0\\ 0\\ 0\\ 2.85e - 02\\ -2.78e - 02\\ 0\\ 6.25e - 02\\ \end{bmatrix}$
B _{MV} =	$\begin{bmatrix} 0 & 0 & 0 & -4.97e & -04 & -\\ 0 & 0 & 0 & 1.75e & -02 & -\\ 0 & 0 & 0 & -1.94e & -02 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$	$\begin{array}{c} -2.18e - 02 - \\ -1.62e - 02 - \\ 2.69e - 02 \\ 5.57e - 02 \\ 6.25e - 02 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} 2.84e - 05 - \\ 6.60e - 02 \\ 4.52e - 02 \\ 1.42e - 01 - \\ 1.47e - 05 \\ 6.24e - 02 - \\ 7.46e - 05 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} 3.41e - 01 - \\ 1.51e - 01 \\ 1.44e - 01 - \\ 5.65e - 05 - \\ 3.71e - 02 \\ 1.44e - 02 \\ 2.50e - 01 - \\ 0 \\ 0 \\ \end{array}$	$\begin{array}{c} -1.06e - 02 - \\ 5.42e - 02 - \\ -8.18e - 02 - \\ -1.77e - 01 - \\ 3.76e - 05 \\ 9.61e - 05 - \\ -3.82e - 08 - \\ 6.25e - 02 \\ 6.51e - 04 \\ 0 \end{array}$	$\begin{array}{c} -2.09e - 01 - \\ -2.54e - 01 \\ -2.27e - 01 - \\ -3.84e - 03 - \\ 1.00e - 02 - \\ 2.56e - 02 - \\ -1.01e - 05 \\ 2.98e - 02 \\ 2.49e - 01 \\ 6.10e - 03 \end{array}$	
$\ A - Q_{GOS}B_{GOS}Q_{GOS}^{H}\ _{2} \ \ A - Q_{MV}B_{MV}Q_{MV}^{H}\ _{2}$							
7.59e-16 1.53e-15							
$tol = 1.0e - 13$, Index = 2, $s_1 = 3$, $s_2 = 1$.							

Conclusions

 An algorithm for computing the generalized null-space of a matrix has been presented.

Conclusions

- An algorithm for computing the generalized null-space of a matrix has been presented.
- The algorithm is backward stable, relying only on orthogonal transformations.

K. M. ANSTREICHER AND U. G. ROTHBLUM, Using Gauss-Jordan elimination to compute the index, generalized nullspaces, and Drazin inverse, Linear Algebra and its Applications, 85 (1987), pp. 221–239.

T. BEELEN AND P. VAN DOOREN, Computational aspects of the Jordan canonical form, Oxford Univ. Press, New York, 1990, pp. 57–72.

G. H. GOLUB AND J. H. WILKINSON, III–conditioned eigensystems and the computation of the Jordan canonical form, SIAM Rev., 36 (1976), pp. 578–619.

N. GUGLIELMI, M. OVERTON, AND G. STEWART, An efficient algorithm for computing the generalized null space decomposition, SIAM J. Matrix Anal. Appl., 36 (2015), pp. 38–54.

R. HORN AND C. JOHNSON, Matrix analysis. Second Ed.

- V. N. KUBLANOVSKAYA, On solving the complete eigenvalue problem for a degenerate matrix, USSR Computational Math. and Math. Phys., 6 (1968), pp. 1–14.
- P. LANCASTER AND M. TISMENETSKY, Theory of Matrices, Academic Press, 1985.

- N. MASTRONARDI AND P. VAN DOOREN, *Computing the Jordan structure of an eigenvalue*, in preparation, (2015).
 - ------, Creating a nilpotent pencil via deadbeat, International Journal of Control, (2015).

- A. RUHE, An algorithm for numerical determination of the structure of a general matrix, BIT, 10 (1970), pp. 196–216.
- H. SHAPIRO, The Weyr charactersitic, American Mathematical Monthly, 106 (1999), pp. 919-929.

- D. S. WATKINS, The Matrix Eigenvalue Problem, SIAM, Philadelphia, 2007.
- Z. ZENG, Sensitivity and computation of a defective eigenvalue, SIAM. J. Matrix Anal. Appl., 37 (2016), pp. 798–817.

 $[1] \ [12] \ [5] \ [2] \ [11] \ [10] \ [6] \ [3] \ [4] \ [9] \ [8] \ [6] \ [7] \ [13]$