
Ubiquitous Doubling Algorithms, General
Theory, and Applications

Ren-Cang Li
University of Texas at Arlington

with collaborators

Tsung-Ming Huang, Wen-Wei Lin

NL2A, CIRM Luminy, France
October 24, 2016

Outline

1 A Primitive Doubling Idea

2 Applications

3 General Theory
Doubling Transformation Theorem
Two Standard Forms
Doubling iterative kernel
The duals
Convergence analysis: regular case
Convergence analysis: critical case

4 Case Studies

5 Numerical Examples

6 Summary

Outline

1 A Primitive Doubling Idea

2 Applications

3 General Theory
Doubling Transformation Theorem
Two Standard Forms
Doubling iterative kernel
The duals
Convergence analysis: regular case
Convergence analysis: critical case

4 Case Studies

5 Numerical Examples

6 Summary

Simple and Yet Powerful Idea

Numerous approximations rely on simple iteration:

Xj+1 = f (Xj) for j = 0,1, . . ., gievn X0

to generate a sequence of approximations that hopefully
converges to the desired target.

Often too slow, but can we make it go faster? Any ideas?

What about skipping all Xj but for j = 2i?
Kind of like repeatedly squaring:

x , x2, (x2)2 = x4, (x4)2 = x8,

This is the basics of the Doubling Algorithm (DA).

Simple and Yet Powerful Idea

Numerous approximations rely on simple iteration:

Xj+1 = f (Xj) for j = 0,1, . . ., gievn X0

to generate a sequence of approximations that hopefully
converges to the desired target.

Often too slow, but can we make it go faster? Any ideas?

What about skipping all Xj but for j = 2i?
Kind of like repeatedly squaring:

x , x2, (x2)2 = x4, (x4)2 = x8,

This is the basics of the Doubling Algorithm (DA).

Simple and Yet Powerful Idea

Numerous approximations rely on simple iteration:

Xj+1 = f (Xj) for j = 0,1, . . ., gievn X0

to generate a sequence of approximations that hopefully
converges to the desired target.

Often too slow, but can we make it go faster? Any ideas?

What about skipping all Xj but for j = 2i?
Kind of like repeatedly squaring:

x , x2, (x2)2 = x4, (x4)2 = x8,

This is the basics of the Doubling Algorithm (DA).

Simple and Yet Powerful Idea

Numerous approximations rely on simple iteration:

Xj+1 = f (Xj) for j = 0,1, . . ., gievn X0

to generate a sequence of approximations that hopefully
converges to the desired target.

Often too slow, but can we make it go faster? Any ideas?

What about skipping all Xj but for j = 2i?
Kind of like repeatedly squaring:

x , x2, (x2)2 = x4, (x4)2 = x8,

This is the basics of the Doubling Algorithm (DA).

Simple and Yet Powerful Idea

Numerous approximations rely on simple iteration:

Xj+1 = f (Xj) for j = 0,1, . . ., gievn X0

to generate a sequence of approximations that hopefully
converges to the desired target.

Often too slow, but can we make it go faster? Any ideas?

What about skipping all Xj but for j = 2i?
Kind of like repeatedly squaring:

x , x2, (x2)2 = x4, (x4)2 = x8,

This is the basics of the Doubling Algorithm (DA).

Simple and Yet Powerful Idea (cont’d)

To accelerate Xj+1 = f (Xj) by computing Xj for j = 2i only.

Simple and Yet Powerful Idea (cont’d)

To accelerate Xj+1 = f (Xj) by computing Xj for j = 2i only.
Make sense only if there is a cost-effective path X2i−1 → X2i .

Simple and Yet Powerful Idea (cont’d)

To accelerate Xj+1 = f (Xj) by computing Xj for j = 2i only.
Make sense only if there is a cost-effective path X2i−1 → X2i .

No such a path guaranteed in general, unless f is linear:
f (X) = ΦX , and then

X2i = Φ2i
X0 = Φ2i−1

X2i−1 .

But still need to be able to square Φ2i−1
efficiently.

Simple and Yet Powerful Idea (cont’d)

To accelerate Xj+1 = f (Xj) by computing Xj for j = 2i only.
Make sense only if there is a cost-effective path X2i−1 → X2i .

No such a path guaranteed in general, unless f is linear:
f (X) = ΦX , and then

X2i = Φ2i
X0 = Φ2i−1

X2i−1 .

But still need to be able to square Φ2i−1
efficiently.

Example (Discrete-time Algebraic Riccati Equation):
X = AT X (I + GX)−1A + H.

Simple and Yet Powerful Idea (cont’d)

To accelerate Xj+1 = f (Xj) by computing Xj for j = 2i only.
Make sense only if there is a cost-effective path X2i−1 → X2i .

No such a path guaranteed in general, unless f is linear:
f (X) = ΦX , and then

X2i = Φ2i
X0 = Φ2i−1

X2i−1 .

But still need to be able to square Φ2i−1
efficiently.

Example (Discrete-time Algebraic Riccati Equation):
X = AT X (I + GX)−1A + H. Naturally

Xj+1 = f (Xj) := ATXj(I + GXj)
−1A + H, given X0

It can be turned into a linear iteration of twice the dimensions
by Bernoulli substitution.

Simple and Yet Powerful Idea (cont’d)

To accelerate Xj+1 = f (Xj) by computing Xj for j = 2i only.
Make sense only if there is a cost-effective path X2i−1 → X2i .

No such a path guaranteed in general, unless f is linear:
f (X) = ΦX , and then

X2i = Φ2i
X0 = Φ2i−1

X2i−1 .

But still need to be able to square Φ2i−1
efficiently.

Example (Discrete-time Algebraic Riccati Equation):
X = AT X (I + GX)−1A + H. Naturally

Xj+1 = f (Xj) := ATXj(I + GXj)
−1A + H, given X0

It can be turned into a linear iteration of twice the dimensions
by Bernoulli substitution.

Anderson () did just that.

Go Forward

In the last 12 years also saw tremendous progresses in using
“doubling idea” to solve

three types nonlinear matrix equations (NMEs)

and related applications.

Go Forward

In the last 12 years also saw tremendous progresses in using
“doubling idea” to solve

three types nonlinear matrix equations (NMEs)

and related applications.

Current developments: mostly equation-wise, somewhat
fragmented, not totally coherent.

Go Forward

In the last 12 years also saw tremendous progresses in using
“doubling idea” to solve

three types nonlinear matrix equations (NMEs)

and related applications.

Current developments: mostly equation-wise, somewhat
fragmented, not totally coherent.

This talk attempts to provide a coherent theory to go forward.

References I

Brian D. O. Anderson.

Second-order convergent algorithms for the steady-state Riccati equation.
Int. J. Control, 28(2):295–306, 1978.

Morishige Kimura.

Convergence of the doubling algorithm for the discrete-time algebraic Riccati equation.
International Journal of Systems Science, 19(5):701–711, 1988.

J. Juang and W.-W. Lin.

Nonsymmetric algebraic Riccati equations and Hamiltonian-like matrices.
SIAM J. Matrix Anal. Appl., 20(1):228–243, 1998.

J. Juang.

Global existence and stability of solutions of matrix Riccati equations.
J. Math. Anal. and Appl., 258(1):1–12, 2001.

E. K.-W. Chu, H.-Y. Fan, and W.-W. Lin.

A structure-preserving doubling algorithm for continuous-time algebraic Riccati equations.
Linear Algebra Appl., 396:55 – 80, 2005.

T.-M. Hwang, E. K.-W. Chu, and W.-W. Lin.

A generalized structure-preserving doubling algorithm for generalized discrete-time algebraic Riccati
equations.
Int. J. Control, 78(14):1063–1075, 2005.

W.-W. Lin and S.-F. Xu.

Convergence analysis of structure-preserving doubling algorithms for Riccati-type matrix equations.
SIAM J. Matrix Anal. Appl., 28(1):26–39, 2006.

X. Guo, W. Lin, and S. Xu.

A structure-preserving doubling algorithm for nonsymmetric algebraic Riccati equation.
Numer. Math., 103:393–412, 2006.

References II

Eric King-Wah Chu, Tsung-Min Hwang, Wen-Wei Lin, and Chin-Tien Wu.

Vibration of fast trains, palindromic eigenvalue problems and structure-preserving doubling algorithms.
J. Comput. Appl. Math., 219:237–252, 2008.

Chun-Yueh Chiang, Eric King-Wah Chu, Chun-Hua Guo, Tsung-Ming Huang, Wen-Wei Lin, and Shu-Fang

Xu.
Convergence analysis of the doubling algorithm for several nonlinear matrix equations in the critical case.
SIAM J. Matrix Anal. Appl., 31(2):227–247, 2009.

D. A. Bini, B. Meini, and F. Poloni, Transforming algebraic Riccati equations into unilateral quadratic matrix

equations, Numer. Math., 116 (2010), pp. 553–578.

C. Guo and W. Lin.

Solving a structured quadratic eigenvalue problem by a structure-preserving doubling algorithm.
SIAM J. Matrix Anal. Appl., 31(5):2784–2801, 2010.

C.-H. Guo, Y.-C. Kuo, and W.-W. Lin.

Numerical solution of nonlinear matrix equations arising from Green’s function calculations in nano research.
J. Comput. Appl. Math., 236:4166–4180, 2012.

C.-H. Guo, Y.-C. Kuo, and W.-W. Lin.

On a nonlinear matrix equation arising in nano research.
SIAM J. Matrix Anal. Appl., 33(1):235–262, 2012.

Jungong Xue, Shufang Xu, and Ren-Cang Li.

Accurate solutions of M-matrix Sylvester equations.
Numer. Math., 120(4):639–670, 2012.

Jungong Xue, Shufang Xu, and Ren-Cang Li.

Accurate solutions of M-matrix algebraic Riccati equations.
Numer. Math., 120(4):671–700, 2012.

References III

Wei-Guo Wang, Wei-Chao Wang, and Ren-Cang Li.

Alternating-directional doubling algorithm for M-matrix algebraic Riccati equations.
SIAM J. Matrix Anal. Appl., 33(1):170–194, 2012.

Linzhang Lu, Fei Yuan, and Ren-Cang Li.

A new look at the doubling algorithm for a structured palindromic quadratic eigenvalue problem.
Numer. Linear Algebra Appl., 22:393–409, 2015.

G. T. Nguyen and F.Poloni.

Componentwise accurate fluid queue computations using doubling algorithms.
Numer. Math., 130:763–792, 2015.

Jungong Xue and Ren-Cang Li.

Highly accurate doubling algorithms for M-matrix algebraic Riccati equations.
Numer. Math., 2016.

Linzhang Lu, Teng Wang, Yueh-Cheng Kuo, Ren-Cang Li, and Wen-Wei Lin.

A fast algorithm for fast train palindromic quadratic eigenvalue problems.
Technical Report 2016-03, Department of Mathematics, University of Texas at Arlington, April 2016.

Outline

1 A Primitive Doubling Idea

2 Applications

3 General Theory
Doubling Transformation Theorem
Two Standard Forms
Doubling iterative kernel
The duals
Convergence analysis: regular case
Convergence analysis: critical case

4 Case Studies

5 Numerical Examples

6 Summary

Continuous-time Algebraic Riccati Equation (CARE) Type

XDX − AX − XB + C = 0.

Continuous-time Algebraic Riccati Equation (CARE) Type

XDX − AX − XB + C = 0.

CARE A⊤X + XA − XGX + H = 0 from continuous-time
control system [...]

Continuous-time Algebraic Riccati Equation (CARE) Type

XDX − AX − XB + C = 0.

CARE A⊤X + XA − XGX + H = 0 from continuous-time
control system [...]

M-matrix Algebraic Riccati equation (MARE)
XDX − AX − XB + C = 0 from transport theory of particles
[Juang (1995), C. Guo (2001), X. Guo, Lin, Xu (2006), ...]

Continuous-time Algebraic Riccati Equation (CARE) Type

XDX − AX − XB + C = 0.

CARE A⊤X + XA − XGX + H = 0 from continuous-time
control system [...]

M-matrix Algebraic Riccati equation (MARE)
XDX − AX − XB + C = 0 from transport theory of particles
[Juang (1995), C. Guo (2001), X. Guo, Lin, Xu (2006), ...]

MARE XDX − AX − XB + C = 0 from Markov-modulated
fluid queue theory [Latouche & Taylor (2009), C. Guo (2001),
X. Guo, Lin, Xu (2006), ...]

Continuous-time Algebraic Riccati Equation (CARE) Type

XDX − AX − XB + C = 0.

CARE A⊤X + XA − XGX + H = 0 from continuous-time
control system [...]

M-matrix Algebraic Riccati equation (MARE)
XDX − AX − XB + C = 0 from transport theory of particles
[Juang (1995), C. Guo (2001), X. Guo, Lin, Xu (2006), ...]

MARE XDX − AX − XB + C = 0 from Markov-modulated
fluid queue theory [Latouche & Taylor (2009), C. Guo (2001),
X. Guo, Lin, Xu (2006), ...]

H∗ARE from the Laplace transform inversion method in
Markov modulated fluid flow [Ahn & Ramaswami (2004), Liu &
Xue (2012), ...]

Discrete-time Algebraic Riccati Equation (DARE) Type

BX (I + GX)−1A + H − X = 0.

Discrete-time Algebraic Riccati Equation (DARE) Type

BX (I + GX)−1A + H − X = 0.

DARE A⊤X (I + GX)−1A − X + H = 0 from Discrete-time
control system [...]

Yet Another Type of Nonlinear Matrix Equation

X + BX−1A = Q.

Yet Another Type of Nonlinear Matrix Equation

X + BX−1A = Q.

Solve Palindromic Quadratic Eigenvalue Problem (PQEP)
P(λ)z ≡ (λ2AT + λQ + A)z = 0 from high speed trains
[Hilliges, Mehl, & V. Mehrmann (2004), ...]

Compute Green function from quantum transport in nano
research [S. Datta (2000), Guo & Lin (2010), ...]

Solve QEP P(λ)xxx ≡
(
λ2B + λQ + A

)
xxx = 0 from Retarded

Time-Delay System (TDS) [Jarlebring (2008)]

X + ATX−1A = Q from surface acoustic wave simulation in
telecommunication [Campbell (1998)]

Commonality

Let X be a solution to one of the equations. Then
[m

m I
n X

]
is basis

matrix of an eigenspace for A − λB:

A

[
I
X

]
≡

[
A11 A12

A21 A22

] [
I
X

]
=

[
B11 B12

B21 B22

] [
I
X

]
M ≡ B

[
I
X

]
M,

where M is m × m. As a consequence, eig(M) ⊂ eig(A ,B).

Commonality

Let X be a solution to one of the equations. Then
[m

m I
n X

]
is basis

matrix of an eigenspace for A − λB:

A

[
I
X

]
≡

[
A11 A12

A21 A22

] [
I
X

]
=

[
B11 B12

B21 B22

] [
I
X

]
M ≡ B

[
I
X

]
M,

where M is m × m. As a consequence, eig(M) ⊂ eig(A ,B).

Blockwise we have

A11 + A12X = (B11 + B12X)M, A21 + A22X = (B21 + B22X)M.

Assume (B11 + B12X) is invertible to get

A21 + A22X = (B21 + B22X) (B11 + B12X)−1(A11 + A12X)︸ ︷︷ ︸
M

.

Commonality (cont’d)

A

[
I
X

]
≡

[
A11 A12

A21 A22

] [
I
X

]
=

[
B11 B12

B21 B22

] [
I
X

]
M ≡ B

[
I
X

]
M,

A21 + A22X = (B21 + B22X)(B11 + B12X)−1(A11 + A12X).

Commonality (cont’d)

A

[
I
X

]
≡

[
A11 A12

A21 A22

] [
I
X

]
=

[
B11 B12

B21 B22

] [
I
X

]
M ≡ B

[
I
X

]
M,

A21 + A22X = (B21 + B22X)(B11 + B12X)−1(A11 + A12X).

Case: B = Im+n:

A21 + A22X = X(A11 + A12X)

gives
−XA12X + A22X − XA11 + A21 = 0.

This is “CARE”.

Commonality (cont’d)

A

[
I
X

]
≡

[
A11 A12

A21 A22

] [
I
X

]
=

[
B11 B12

B21 B22

] [
I
X

]
M ≡ B

[
I
X

]
M,

A21 + A22X = (B21 + B22X)(B11 + B12X)−1(A11 + A12X).

Commonality (cont’d)

A

[
I
X

]
≡

[
A11 A12

A21 A22

] [
I
X

]
=

[
B11 B12

B21 B22

] [
I
X

]
M ≡ B

[
I
X

]
M,

A21 + A22X = (B21 + B22X)(B11 + B12X)−1(A11 + A12X).

Case: A12 = 0, A22 = I, B11 = I, and B21 = 0, i.e.,

A =

[
A11 0
A21 I

]
, B =

[
I B12

0 B22

]
.

We have A21 + X = B22X(I + B12X)−1A11, or equivalently

B22X(I + B12X)−1A11 − A21 − X = 0.

This is “DARE”.

Commonality (cont’d)

A

[
I
X

]
≡

[
A11 A12

A21 A22

] [
I
X

]
=

[
B11 B12

B21 B22

] [
I
X

]
M ≡ B

[
I
X

]
M,

A21 + A22X = (B21 + B22X)(B11 + B12X)−1(A11 + A12X).

Commonality (cont’d)

A

[
I
X

]
≡

[
A11 A12

A21 A22

] [
I
X

]
=

[
B11 B12

B21 B22

] [
I
X

]
M ≡ B

[
I
X

]
M,

A21 + A22X = (B21 + B22X)(B11 + B12X)−1(A11 + A12X).

Case: m = n, A12 = 0, A22 = I, B11 = 0, B12 = I, and B22 = 0, i.e.,

A =

[
A11 0
A21 I

]
, B =

[
0 I

B21 0

]
.

We have A21 + X = B21X−1A11, or equivalently

X − B21X−1A11 = −A21.

This is the NME.

Outline

1 A Primitive Doubling Idea

2 Applications

3 General Theory
Doubling Transformation Theorem
Two Standard Forms
Doubling iterative kernel
The duals
Convergence analysis: regular case
Convergence analysis: critical case

4 Case Studies

5 Numerical Examples

6 Summary

Key ingredients

Three ingredients to DA:

doubling transformation theorem

initial setups (two standard forms)

doubling iterative kernel

Outline

1 A Primitive Doubling Idea

2 Applications

3 General Theory
Doubling Transformation Theorem
Two Standard Forms
Doubling iterative kernel
The duals
Convergence analysis: regular case
Convergence analysis: critical case

4 Case Studies

5 Numerical Examples

6 Summary

Doubling Transformation Theorem

Let A − λB ∈ C
ℓ×ℓ be a regular matrix pencil: det(A − λB) 6≡ 0.

Doubling Transformation Theorem

Let A − λB ∈ C
ℓ×ℓ be a regular matrix pencil: det(A − λB) 6≡ 0.

Let A⊥, B⊥ ∈ C
ℓ×ℓ such that

rank([A⊥,B⊥]) = ℓ, [A⊥,B⊥]

[
B

−A

]
= 0.

Doubling Transformation Theorem

Let A − λB ∈ C
ℓ×ℓ be a regular matrix pencil: det(A − λB) 6≡ 0.

Let A⊥, B⊥ ∈ C
ℓ×ℓ such that

rank([A⊥,B⊥]) = ℓ, [A⊥,B⊥]

[
B

−A

]
= 0.

Define Ã = A⊥A and B̃ = B⊥B. Then Ã − λB̃ is regular.

Doubling Transformation Theorem

Let A − λB ∈ C
ℓ×ℓ be a regular matrix pencil: det(A − λB) 6≡ 0.

Let A⊥, B⊥ ∈ C
ℓ×ℓ such that

rank([A⊥,B⊥]) = ℓ, [A⊥,B⊥]

[
B

−A

]
= 0.

Define Ã = A⊥A and B̃ = B⊥B. Then Ã − λB̃ is regular.

Let Z = R(Z) be an eigenspace, i.e., A Z = BZM. Then

Ã Z = B̃ZM2.

Doubling Transformation Theorem

Let A − λB ∈ C
ℓ×ℓ be a regular matrix pencil: det(A − λB) 6≡ 0.

Let A⊥, B⊥ ∈ C
ℓ×ℓ such that

rank([A⊥,B⊥]) = ℓ, [A⊥,B⊥]

[
B

−A

]
= 0.

Define Ã = A⊥A and B̃ = B⊥B. Then Ã − λB̃ is regular.

Let Z = R(Z) be an eigenspace, i.e., A Z = BZM. Then

Ã Z = B̃ZM2.

keep “doubling” to quickly arrive at some null space,
provided eig(M) ∈ D− (open unit disk);

Doubling Transformation Theorem

Let A − λB ∈ C
ℓ×ℓ be a regular matrix pencil: det(A − λB) 6≡ 0.

Let A⊥, B⊥ ∈ C
ℓ×ℓ such that

rank([A⊥,B⊥]) = ℓ, [A⊥,B⊥]

[
B

−A

]
= 0.

Define Ã = A⊥A and B̃ = B⊥B. Then Ã − λB̃ is regular.

Let Z = R(Z) be an eigenspace, i.e., A Z = BZM. Then

Ã Z = B̃ZM2.

keep “doubling” to quickly arrive at some null space,
provided eig(M) ∈ D− (open unit disk);

maintain special forms for A - and B-matrices to find Z in
special form.

Outline

1 A Primitive Doubling Idea

2 Applications

3 General Theory
Doubling Transformation Theorem
Two Standard Forms
Doubling iterative kernel
The duals
Convergence analysis: regular case
Convergence analysis: critical case

4 Case Studies

5 Numerical Examples

6 Summary

Road Map

A

[
I
X

]
≡

[
A11 A12

A21 A22

] [
I
X

]
=

[
B11 B12

B21 B22

] [
I
X

]
M ≡ B

[
I
X

]
M.

But eig(M) may not be “favorable”, i.e., lying in D or even D0− (closed
unit disk).

Road Map

A

[
I
X

]
≡

[
A11 A12

A21 A22

] [
I
X

]
=

[
B11 B12

B21 B22

] [
I
X

]
M ≡ B

[
I
X

]
M.

But eig(M) may not be “favorable”, i.e., lying in D or even D0− (closed
unit disk).

1) Transform A − λB → A ′ − λB′ such that

A
′

[
I
X

]
= B

′

[
I
X

]
M , eig(M) ⊂ D− or even eig(M) ⊂ D0−.

Road Map

A

[
I
X

]
≡

[
A11 A12

A21 A22

] [
I
X

]
=

[
B11 B12

B21 B22

] [
I
X

]
M ≡ B

[
I
X

]
M.

But eig(M) may not be “favorable”, i.e., lying in D or even D0− (closed
unit disk).

1) Transform A − λB → A ′ − λB′ such that

A
′

[
I
X

]
= B

′

[
I
X

]
M , eig(M) ⊂ D− or even eig(M) ⊂ D0−.

One such a transformation is the Möbius transformation:
[
A

B

]
→

[
A ′

B′

]
:=

[
βI −γI
αI δI

] [
A

B

]
.

Road Map

A

[
I
X

]
≡

[
A11 A12

A21 A22

] [
I
X

]
=

[
B11 B12

B21 B22

] [
I
X

]
M ≡ B

[
I
X

]
M.

But eig(M) may not be “favorable”, i.e., lying in D or even D0− (closed
unit disk).

1) Transform A − λB → A ′ − λB′ such that

A
′

[
I
X

]
= B

′

[
I
X

]
M , eig(M) ⊂ D− or even eig(M) ⊂ D0−.

One such a transformation is the Möbius transformation:
[
A

B

]
→

[
A ′

B′

]
:=

[
βI −γI
αI δI

] [
A

B

]
.

2) Perform A0 − λB0 = P(A ′ − λB′) for preferable A0 − λB0.

Road Map

A

[
I
X

]
≡

[
A11 A12

A21 A22

] [
I
X

]
=

[
B11 B12

B21 B22

] [
I
X

]
M ≡ B

[
I
X

]
M.

But eig(M) may not be “favorable”, i.e., lying in D or even D0− (closed
unit disk).

1) Transform A − λB → A ′ − λB′ such that

A
′

[
I
X

]
= B

′

[
I
X

]
M , eig(M) ⊂ D− or even eig(M) ⊂ D0−.

One such a transformation is the Möbius transformation:
[
A

B

]
→

[
A ′

B′

]
:=

[
βI −γI
αI δI

] [
A

B

]
.

2) Perform A0 − λB0 = P(A ′ − λB′) for preferable A0 − λB0.

3) Perform doubling iteration kernel.

First standard form (SF1)

(SF1) A0 =

[m n

m E0 0
n −X0 I

]
, B0 =

[m n

m I −Y0

n 0 F0

]
.

First standard form (SF1)

(SF1) A0 =

[m n

m E0 0
n −X0 I

]
, B0 =

[m n

m I −Y0

n 0 F0

]
.

Essentially Gaussian elimination (assuming involved inversions
exist):

[A ′ |B′] =

[
X X X X
X X X X

]
→

[
X X I X
X X X X

]

→

[
X X I X
X X 0 X

]
→

[
X X I X
X I 0 X

]

→

[
X 0 I X
X I 0 X

]

in SF1

Second standard form (SF2)

(SF2) A0 =

[n n

n E0 0
n −X0 I

]
, B0 =

[n n

n −Y0 I
n F0 0

]
.

Second standard form (SF2)

(SF2) A0 =

[n n

n E0 0
n −X0 I

]
, B0 =

[n n

n −Y0 I
n F0 0

]
.

Essentially Gaussian elimination (assuming involved inversions
exist):

[A ′ |B′] =

[
X X X X
X X X X

]
→

[
X X X X
X I X X

]

→

[
X 0 X X
X I X X

]
→

[
X 0 X I
X I X X

]

→

[
X 0 X I
X I X 0

]

in SF2

Outline

1 A Primitive Doubling Idea

2 Applications

3 General Theory
Doubling Transformation Theorem
Two Standard Forms
Doubling iterative kernel
The duals
Convergence analysis: regular case
Convergence analysis: critical case

4 Case Studies

5 Numerical Examples

6 Summary

To keep in mind ...

To generate a sequence {Ai − λBi} such that

maintain respective standard form, and

at the same time satisfy

Ai

[
I
X

]
= Bi

[
I
X

]
M

2i
for i = 0,1, . . .

When the spectral radius ρ(M) < 1, {M 2i
} goes to 0

quadratically.

To keep in mind ...

To generate a sequence {Ai − λBi} such that

maintain respective standard form, and

at the same time satisfy

Ai

[
I
X

]
= Bi

[
I
X

]
M

2i
for i = 0,1, . . .

When the spectral radius ρ(M) < 1, {M 2i
} goes to 0

quadratically.

Guidance – doubling transformation theorem:

rank([A⊥,B⊥]) = ℓ, [A⊥,B⊥]

[
B

−A

]
= 0,

Ã := A⊥A , B̃ := B⊥B,

A Z = BZM ⇒ Ã Z = B̃ZM2.

DA for SF1

To construct Ai − λBi with

Ai =

[m n

m Ei 0
n −Xi I

]
, Bi =

[m n

m I −Yi

n 0 Fi

]
.

Enough to know how to go from step i to step i + 1.

DA for SF1

To construct Ai − λBi with

Ai =

[m n

m Ei 0
n −Xi I

]
, Bi =

[m n

m I −Yi

n 0 Fi

]
.

Enough to know how to go from step i to step i + 1.

To find Ai⊥, Bi⊥ ∈ C(m+n)×(m+n) such that

rank([Ai⊥,Bi⊥]) = m + n, [Ai⊥,Bi⊥]

[
Bi

−Ai

]
= 0.

DA for SF1

To construct Ai − λBi with

Ai =

[m n

m Ei 0
n −Xi I

]
, Bi =

[m n

m I −Yi

n 0 Fi

]
.

Enough to know how to go from step i to step i + 1.

To find Ai⊥, Bi⊥ ∈ C(m+n)×(m+n) such that

rank([Ai⊥,Bi⊥]) = m + n, [Ai⊥,Bi⊥]

[
Bi

−Ai

]
= 0.

Can again perform Gaussian-like block eliminations















Im −Yi

0 Fi

−Ei 0
Xi −In















L1
→















Im −Yi

0 Fi

0 −EiYi

0 −In + XiYi















L2
→















Im −Yi

0 Fi

0 −EiYi

0 −In















L3
→















Im −Yi

0 0
0 0
0 −In















L4
→















Im −Yi

0 −In
0 0
0 0















.

DA for SF1 (cont’d)

Post-process the last m + n rows of L4L3L2L1 to give

Ai⊥ =

[
Ei (Im − Yi Xi)

−1 0
−Fi(In − Xi Yi)

−1Xi In

]
, Bi⊥ =

[
Im −Ei(Im − Yi Xi)

−1Yi

0 −Fi(In − XiYi)
−1

]
.

DA for SF1 (cont’d)

Post-process the last m + n rows of L4L3L2L1 to give

Ai⊥ =

[
Ei (Im − Yi Xi)

−1 0
−Fi(In − Xi Yi)

−1Xi In

]
, Bi⊥ =

[
Im −Ei(Im − Yi Xi)

−1Yi

0 −Fi(In − XiYi)
−1

]
.

Finally
Ai+1 = Ai⊥Ai , Bi+1 = Bi⊥Bi

to give

Ei+1 = Ei (Im − Yi Xi)
−1Ei , (1a)

Fi+1 = Fi(In − Xi Yi)
−1Fi , (1b)

Xi+1 = Xi + Fi(In − Xi Yi)
−1XiEi , (1c)

Yi+1 = Yi + Ei (Im − Yi Xi)
−1YiFi . (1d)

DA for SF1 (cont’d)

Post-process the last m + n rows of L4L3L2L1 to give

Ai⊥ =

[
Ei (Im − Yi Xi)

−1 0
−Fi(In − Xi Yi)

−1Xi In

]
, Bi⊥ =

[
Im −Ei(Im − Yi Xi)

−1Yi

0 −Fi(In − XiYi)
−1

]
.

Finally
Ai+1 = Ai⊥Ai , Bi+1 = Bi⊥Bi

to give

Ei+1 = Ei (Im − Yi Xi)
−1Ei , (1a)

Fi+1 = Fi(In − Xi Yi)
−1Fi , (1b)

Xi+1 = Xi + Fi(In − Xi Yi)
−1XiEi , (1c)

Yi+1 = Yi + Ei (Im − Yi Xi)
−1YiFi . (1d)

At convergence, Xi goes to some solution X .

DA for SF2

To construct Ai − λBi with

Ai =

[n n

n Ei 0
n −Xi I

]
, Bi =

[n n

n −Yi I
n Fi 0

]
.

Enough to know how to go from step i to step i + 1.

DA for SF2

To construct Ai − λBi with

Ai =

[n n

n Ei 0
n −Xi I

]
, Bi =

[n n

n −Yi I
n Fi 0

]
.

Enough to know how to go from step i to step i + 1.

To find Ai⊥, Bi⊥ ∈ C(m+n)×(m+n) such that

rank([Ai⊥,Bi⊥]) = m + n, [Ai⊥,Bi⊥]

[
Bi

−Ai

]
= 0.

DA for SF2

To construct Ai − λBi with

Ai =

[n n

n Ei 0
n −Xi I

]
, Bi =

[n n

n −Yi I
n Fi 0

]
.

Enough to know how to go from step i to step i + 1.

To find Ai⊥, Bi⊥ ∈ C(m+n)×(m+n) such that

rank([Ai⊥,Bi⊥]) = m + n, [Ai⊥,Bi⊥]

[
Bi

−Ai

]
= 0.

Can again perform Gaussian-like block eliminations















−Yi In
Fi 0
Ei 0

−Xi In















L1
→















Xi − Yi 0
Fi 0
Ei 0

−Xi In















L2
→















In 0
Fi 0
Ei 0

−Xi In















L3
→















In 0
0 0
0 0
0 In















L4
→















In 0
0 In
0 0
0 0















.

DA for SF2 (cont’d)

Post-process the last 2n rows of L4L3L2L1 to give

Ai⊥ =

[
Ei(Xi − Yi)

−1 0
−Fi(Xi − Yi)

−1 I

]
, Bi⊥ =

[
I Ei (Xi − Yi)

−1

0 −Fi(Xi − Yi)
−1

]
.

DA for SF2 (cont’d)

Post-process the last 2n rows of L4L3L2L1 to give

Ai⊥ =

[
Ei(Xi − Yi)

−1 0
−Fi(Xi − Yi)

−1 I

]
, Bi⊥ =

[
I Ei (Xi − Yi)

−1

0 −Fi(Xi − Yi)
−1

]
.

Finally
Ai+1 = Ai⊥Ai , Bi+1 = Bi⊥Bi

to give

Ei+1 = Ei (Xi − Yi)
−1Ei , (2a)

Fi+1 = Fi(Yi − Xi)
−1Fi , (2b)

Xi+1 = Xi + Fi(Xi − Yi)
−1Ei , (2c)

Yi+1 = Yi + Ei (Yi − Xi)
−1Fi . (2d)

DA for SF2 (cont’d)

Post-process the last 2n rows of L4L3L2L1 to give

Ai⊥ =

[
Ei(Xi − Yi)

−1 0
−Fi(Xi − Yi)

−1 I

]
, Bi⊥ =

[
I Ei (Xi − Yi)

−1

0 −Fi(Xi − Yi)
−1

]
.

Finally
Ai+1 = Ai⊥Ai , Bi+1 = Bi⊥Bi

to give

Ei+1 = Ei (Xi − Yi)
−1Ei , (2a)

Fi+1 = Fi(Yi − Xi)
−1Fi , (2b)

Xi+1 = Xi + Fi(Xi − Yi)
−1Ei , (2c)

Yi+1 = Yi + Ei (Yi − Xi)
−1Fi . (2d)

At convergence, Xi goes to some solution X .

Outline

1 A Primitive Doubling Idea

2 Applications

3 General Theory
Doubling Transformation Theorem
Two Standard Forms
Doubling iterative kernel
The duals
Convergence analysis: regular case
Convergence analysis: critical case

4 Case Studies

5 Numerical Examples

6 Summary

Primary and Dual

In a DA, Xi , if it does, converges to a solution of “Primary
equation”. What about Yi? “Dual” (to the primary equation) is
the key for answering that.

Primary and Dual

In a DA, Xi , if it does, converges to a solution of “Primary
equation”. What about Yi? “Dual” (to the primary equation) is
the key for answering that.

Framework:

(primary) A0

[
I
X

]
= B0

[
I
X

]
M ,

Primary and Dual

In a DA, Xi , if it does, converges to a solution of “Primary
equation”. What about Yi? “Dual” (to the primary equation) is
the key for answering that.

Framework:

(primary) A0

[
I
X

]
= B0

[
I
X

]
M ,

(dual) Â0

[
I
Y

]
= B̂0

[
I
Y

]
N .

Primary and Dual

In a DA, Xi , if it does, converges to a solution of “Primary
equation”. What about Yi? “Dual” (to the primary equation) is
the key for answering that.

Framework:

(primary) A0

[
I
X

]
= B0

[
I
X

]
M ,

(dual) Â0

[
I
Y

]
= B̂0

[
I
Y

]
N .

Let Πm,n =

[
0 In
Im 0

]
.

Case: SF1

(SF1) A0 =

[m n

m E0 0
n −X0 I

]
, B0 =

[m n

m I −Y0

n 0 F0

]
.

Case: SF1

(SF1) A0 =

[m n

m E0 0
n −X0 I

]
, B0 =

[m n

m I −Y0

n 0 F0

]
.

Define
Â0 := ΠT

m,nB0Πm,n, B̂0 := ΠT
m,nA0Πm,n

to give

Â0 =

[n m

n F0 0
m −Y0 I

]
, B̂0 =

[n m

n I −X0

m 0 E0

]
.

Case: SF1

(SF1) A0 =

[m n

m E0 0
n −X0 I

]
, B0 =

[m n

m I −Y0

n 0 F0

]
.

Define
Â0 := ΠT

m,nB0Πm,n, B̂0 := ΠT
m,nA0Πm,n

to give

Â0 =

[n m

n F0 0
m −Y0 I

]
, B̂0 =

[n m

n I −X0

m 0 E0

]
.

reciprocal relationship in eigenvalues

If (λ, z) is an eigenpair of A0 − λB0, then (1/λ,ΠT
m,nz) is an

eigenpair of Â0 − λB̂0 and vice versa.

Case: SF1 (cont’d)

(primary) A0

[
I
X

]
= B0

[
I
X

]
M ; (dual) Â0

[
I
Y

]
= B̂0

[
I
Y

]
N .

Case: SF1 (cont’d)

(primary) A0

[
I
X

]
= B0

[
I
X

]
M ; (dual) Â0

[
I
Y

]
= B̂0

[
I
Y

]
N .

Plug in A0 and B0 to get

E0 = (I − Y0X)M , X − X0 = F0XM ,

F0 = (I − X0Y)N , Y − Y0 = E0YN .

Case: SF1 (cont’d)

(primary) A0

[
I
X

]
= B0

[
I
X

]
M ; (dual) Â0

[
I
Y

]
= B̂0

[
I
Y

]
N .

Plug in A0 and B0 to get

E0 = (I − Y0X)M , X − X0 = F0XM ,

F0 = (I − X0Y)N , Y − Y0 = E0YN .

Eliminate M and N to get

primary: X = X0 + F0X(I − Y0X)−1E0,

dual: Y = Y0 + E0Y (I − X0Y)−1F0.

Case: SF2

(SF2) A0 =

[n n

n E0 0
n −X0 I

]
, B0 =

[n n

n −Y0 I
n F0 0

]
.

Case: SF2

(SF2) A0 =

[n n

n E0 0
n −X0 I

]
, B0 =

[n n

n −Y0 I
n F0 0

]
.

Define
Â0 := ΠT

n,nB0, B̂0 := ΠT
n,nA0

to give

Â0 =

[n n

n F0 0
n −Y0 I

]
, B̂0 =

[n n

n −X0 I
n E0 0

]
.

Case: SF2

(SF2) A0 =

[n n

n E0 0
n −X0 I

]
, B0 =

[n n

n −Y0 I
n F0 0

]
.

Define
Â0 := ΠT

n,nB0, B̂0 := ΠT
n,nA0

to give

Â0 =

[n n

n F0 0
n −Y0 I

]
, B̂0 =

[n n

n −X0 I
n E0 0

]
.

reciprocal relationship in eigenvalues

If (λ, z) is an eigenpair of A0 − λB0, then (1/λ, z) is an
eigenpair of Â0 − λB̂0 and vice versa.

Case: SF2 (cont’d)

(primary) A0

[
I
X

]
= B0

[
I
X

]
M ; (dual) Â0

[
I
Y

]
= B̂0

[
I
Y

]
N .

Case: SF2 (cont’d)

(primary) A0

[
I
X

]
= B0

[
I
X

]
M ; (dual) Â0

[
I
Y

]
= B̂0

[
I
Y

]
N .

Plug in A0 and B0 to get

E0 = (X − Y0)M , X − X0 = F0M ,

F0 = (Y − X0)N , Y − Y0 = E0N .

Case: SF2 (cont’d)

(primary) A0

[
I
X

]
= B0

[
I
X

]
M ; (dual) Â0

[
I
Y

]
= B̂0

[
I
Y

]
N .

Plug in A0 and B0 to get

E0 = (X − Y0)M , X − X0 = F0M ,

F0 = (Y − X0)N , Y − Y0 = E0N .

Eliminate M and N to get

primary: X = X0 + F0(X − Y0)
−1E0,

dual: Y = Y0 + E0(Y − X0)
−1F0.

Case: SF2 (cont’d)

(primary) A0

[
I
X

]
= B0

[
I
X

]
M ; (dual) Â0

[
I
Y

]
= B̂0

[
I
Y

]
N .

Plug in A0 and B0 to get

E0 = (X − Y0)M , X − X0 = F0M ,

F0 = (Y − X0)N , Y − Y0 = E0N .

Eliminate M and N to get

primary: X = X0 + F0(X − Y0)
−1E0,

dual: Y = Y0 + E0(Y − X0)
−1F0.

self-dual-ness

“primary” is “dual”.

DA on Primary and Dual

What happen if DA is applied to A0 − λB0, generating

Xi , Yi , Ei , Fi

and to Â0 − λB̂0, generating

X̂i , Ŷi , Êi , F̂i?

DA on Primary and Dual

What happen if DA is applied to A0 − λB0, generating

Xi , Yi , Ei , Fi

and to Â0 − λB̂0, generating

X̂i , Ŷi , Êi , F̂i?

DA on primary and dual

For all i ≥ 0,

X̂i = Yi , Ŷi = Xi ,

Êi = Fi , F̂i = Ei .

Outline

1 A Primitive Doubling Idea

2 Applications

3 General Theory
Doubling Transformation Theorem
Two Standard Forms
Doubling iterative kernel
The duals
Convergence analysis: regular case
Convergence analysis: critical case

4 Case Studies

5 Numerical Examples

6 Summary

General

When a DA is applied to both A0 − λB0 and Â0 − λB̂0, two
sequences {Ai − λBi}

∞

i=0 and {Âi − λB̂i}
∞

i=0 are produced, assuming
no breakdown occurs.

General

When a DA is applied to both A0 − λB0 and Â0 − λB̂0, two
sequences {Ai − λBi}

∞

i=0 and {Âi − λB̂i}
∞

i=0 are produced, assuming
no breakdown occurs.

The sequences are essentially “identical”. Moreover,

Ai

[
I
X

]
= Bi

[
I
X

]
M

2i
, Âi

[
I
Y

]
= B̂i

[
I
Y

]
N

2i
for i = 0, 1,

General

When a DA is applied to both A0 − λB0 and Â0 − λB̂0, two
sequences {Ai − λBi}

∞

i=0 and {Âi − λB̂i}
∞

i=0 are produced, assuming
no breakdown occurs.

The sequences are essentially “identical”. Moreover,

Ai

[
I
X

]
= Bi

[
I
X

]
M

2i
, Âi

[
I
Y

]
= B̂i

[
I
Y

]
N

2i
for i = 0, 1,

Certain conditions on ρ(M) and ρ(N) should be imposed.

General

When a DA is applied to both A0 − λB0 and Â0 − λB̂0, two
sequences {Ai − λBi}

∞

i=0 and {Âi − λB̂i}
∞

i=0 are produced, assuming
no breakdown occurs.

The sequences are essentially “identical”. Moreover,

Ai

[
I
X

]
= Bi

[
I
X

]
M

2i
, Âi

[
I
Y

]
= B̂i

[
I
Y

]
N

2i
for i = 0, 1,

Certain conditions on ρ(M) and ρ(N) should be imposed.

DA computes special solutions X = Φ and Y = Ψ to Primary and
Dual.

Case: SF1

Ai =

[m n

m Ei 0
n −Xi I

]
, Bi =

[m n

m I −Yi

n 0 Fi

]
,

Âi =

[n m

n Fi 0
m −Yi I

]
, B̂i =

[n m

n I −Xi

m 0 Ei

]
,

Case: SF1

Ai =

[m n

m Ei 0
n −Xi I

]
, Bi =

[m n

m I −Yi

n 0 Fi

]
,

Âi =

[n m

n Fi 0
m −Yi I

]
, B̂i =

[n m

n I −Xi

m 0 Ei

]
,

Ei = (I − YiΦ)M
2i
, Φ− Xi = FiΦM

2i
,

Fi = (I − XiΨ)N
2i
, Ψ − Yi = EiΨN

2i
.

Case: SF1

Ai =

[m n

m Ei 0
n −Xi I

]
, Bi =

[m n

m I −Yi

n 0 Fi

]
,

Âi =

[n m

n Fi 0
m −Yi I

]
, B̂i =

[n m

n I −Xi

m 0 Ei

]
,

Ei = (I − YiΦ)M
2i
, Φ− Xi = FiΦM

2i
,

Fi = (I − XiΨ)N
2i
, Ψ − Yi = EiΨN

2i
.

Convergence Theorem

Suppose that there are solutions X = Φ and Y = Ψ to Primary and Dual such that
ρ(M) · ρ(N) < 1, and suppose that DA executes without any breakdown. Then Xi
and Yi converge to Φ and Ψ quadratically, and moreover,

lim sup
i→∞

‖Xi − Φ‖1/2i
≤ ρ(M) · ρ(N), lim sup

i→∞

‖Yi − Ψ‖1/2i
≤ ρ(M) · ρ(N).

Case: SF2

Ai =

[n n

n Ei 0
n −Xi I

]
, Bi =

[n n

n −Yi I
n Fi 0

]
,

Âi =

[n n

n Fi 0
n −Yi I

]
, B̂i =

[n n

n −Xi I
n Ei 0

]
,

Case: SF2

Ai =

[n n

n Ei 0
n −Xi I

]
, Bi =

[n n

n −Yi I
n Fi 0

]
,

Âi =

[n n

n Fi 0
n −Yi I

]
, B̂i =

[n n

n −Xi I
n Ei 0

]
,

Ei = (Φ− Yi)M
2i
, Φ− Xi = FiM

2i
,

Fi = (Ψ − Xi)N
2i
, Ψ − Yi = EiN

2i
.

Case: SF2

Ai =

[n n

n Ei 0
n −Xi I

]
, Bi =

[n n

n −Yi I
n Fi 0

]
,

Âi =

[n n

n Fi 0
n −Yi I

]
, B̂i =

[n n

n −Xi I
n Ei 0

]
,

Ei = (Φ− Yi)M
2i
, Φ− Xi = FiM

2i
,

Fi = (Ψ − Xi)N
2i
, Ψ − Yi = EiN

2i
.

Convergence Theorem

Suppose that there are solutions X = Φ and Y = Ψ to Primary and Dual such that
ρ(M) · ρ(N) < 1, and suppose that DA executes without any breakdown. Then Xi
and Yi converge to Φ and Ψ quadratically, and moreover,

lim sup
i→∞

‖Xi − Φ‖1/2i
≤ ρ(M) · ρ(N), lim sup

i→∞

‖Yi − Ψ‖1/2i
≤ ρ(M) · ρ(N).

Outline

1 A Primitive Doubling Idea

2 Applications

3 General Theory
Doubling Transformation Theorem
Two Standard Forms
Doubling iterative kernel
The duals
Convergence analysis: regular case
Convergence analysis: critical case

4 Case Studies

5 Numerical Examples

6 Summary

critical case

What if ρ(M) · ρ(N) = 1, the critical case?

critical case

What if ρ(M) · ρ(N) = 1, the critical case?

Complicated but still possible to have linear convergence at the
respectable rate 1/2.

critical case

What if ρ(M) · ρ(N) = 1, the critical case?

Complicated but still possible to have linear convergence at the
respectable rate 1/2.

More to come ...

Outline

1 A Primitive Doubling Idea

2 Applications

3 General Theory
Doubling Transformation Theorem
Two Standard Forms
Doubling iterative kernel
The duals
Convergence analysis: regular case
Convergence analysis: critical case

4 Case Studies

5 Numerical Examples

6 Summary

CARE: −XGX + AHX + XA + H = 0

A − λB := H − λI2n ≡

[
A −G
−H −AH

]
− λI2n,

[
A ′

B′

]
=

[
I2n −γI2n

I2n γI2n

] [
H

I2n

]
(γ > 0),

P(A ′ − λB
′) = A0 − λB0 in SF1 and then apply DA.

(a) All I − XiYi and I − YiXi are nonsingular;
(b) 0 � X0 � Xi � Xi+1 � Φ, 0 � Y0 � Yi � Yi+1 � Ψ and

lim sup
i→∞

‖Φ− Xi‖
1/2i

≤ ρ(M)2, lim sup
i→∞

‖Ψ − Yi‖
1/2i

≤ ρ(N)2,

where
ρ(M) = ρ((I − Y0Φ)

−1E0) = ρ(N) = ρ((I − X0Ψ)
−1EH

0);
(c) eig(A − GΦ) ⊂ C−, eig(−HΨ − AH) ⊂ C+, and

eig(H) = eig(A − GΦ) ∪ eig(−HΨ − AH).

MARE: XDX − AX − XB + C = 0

Assume

W =

[
B −D

−C A

]
is a nonsingular or an irre-

ducible singular M-matrix.
(3)

MARE with (3) has a unique minimal nonnegative solution Φ,
i.e.,

0 ≤ Φ ≤ X for any other nonnegative solution X .

Known in applied probability, stochastic fluid models, but rigorous matrix proof by C.

Guo (2000):

MARE: XDX − AX − XB + C = 0

Assume

W =

[
B −D

−C A

]
is a nonsingular or an irre-

ducible singular M-matrix.
(3)

MARE with (3) has a unique minimal nonnegative solution Φ,
i.e.,

0 ≤ Φ ≤ X for any other nonnegative solution X .

Known in applied probability, stochastic fluid models, but rigorous matrix proof by C.

Guo (2000):

MARE: XDX − AX − XB + C = 0

A − λB := H − λIm+n ≡

[
B −D
C −AH

]
− λIm+n,

[
A ′

B′

]
=

[
Im+n −βIm+n

Im+n αIm+n

] [
H

Im+n

]
(α ≥ max

i
Aii , β ≥ max

i
Bii),

P(A ′ − λB
′) = A0 − λB0 in SF1 and then apply DA.

(a) All I − XiYi and I − YiXi are nonsingular M-matrices for all
i ≥ 0;

(b) 0 ≤ X0 ≤ Xi ≤ Xi+1 ≤ Φ, 0 ≤ Y0 ≤ Yi ≤ Yi+1 ≤ Ψ and

lim sup
i→∞

‖Φ− Xi‖
1/2i

≤ ρ(M)2, lim sup
i→∞

‖Ψ − Yi‖
1/2i

≤ ρ(N)2,

where
ρ(M) = ρ((I − Y0Φ)

−1E0) = ρ(N) = ρ((I − X0Ψ)
−1EH

0);
(c) eig(B − DΦ) ⊂ C−, eig(−A − ΦD) ⊂ C−, and

eig(H) = eig(B − DΦ) ∪ eig(−A − ΦD).

Moreover ...

Fast Train Eigenvalue Problem

P(λ)z ≡ (λ2AT + λQ + A)z = 0.

Fast Train Eigenvalue Problem

P(λ)z ≡ (λ2AT + λQ + A)z = 0.

Framework of solvent approach:

1 Compute the stabilizing solution Φ of the matrix equation
X + ATX−1A = Q. Then

P(λ) = λ2AT + λQ + A = (λAT + X)X−1(λX + A).

2 Solve the (linear) eigenvalue problems for matrix pencils
λAT + X and λX + A.

Fast Train Eigenvalue Problem

Q =




k k k ··· k

k H0 HT
1

k H1 H0 HT
1

k H1
.

...
. HT

1
k H1 H0



, A =




k ··· k k

k 0 . . . 0 H1

k 0 . . . 0 0
...

...
...

...
k 0 . . . 0 0


.

Fast Train Eigenvalue Problem

Q =




k k k ··· k

k H0 HT
1

k H1 H0 HT
1

k H1
.

...
. HT

1
k H1 H0



, A =




k ··· k k

k 0 . . . 0 H1

k 0 . . . 0 0
...

...
...

...
k 0 . . . 0 0


.

Numerous notorious numerical difficulties:
most eigenvalues are 0 and ∞, 2(m − 1)k in all;
problem size n can range from 103 to 105

most seriously, badly scaled finite eigenvalues:
10−50 ∼ 1050 or to an even greater extreme
all finite nonzero eigenvalues and eigenvectors are to be
computed

Fast Train Eigenvalue Problem

Q =




k k k ··· k

k H0 HT
1

k H1 H0 HT
1

k H1
.

...
. HT

1
k H1 H0



, A =




k ··· k k

k 0 . . . 0 H1

k 0 . . . 0 0
...

...
...

...
k 0 . . . 0 0


.

Numerous notorious numerical difficulties:
most eigenvalues are 0 and ∞, 2(m − 1)k in all;
problem size n can range from 103 to 105

most seriously, badly scaled finite eigenvalues:
10−50 ∼ 1050 or to an even greater extreme
all finite nonzero eigenvalues and eigenvectors are to be
computed

Cleverly implemented solvent approach based on DA gets it
done!

Outline

1 A Primitive Doubling Idea

2 Applications

3 General Theory
Doubling Transformation Theorem
Two Standard Forms
Doubling iterative kernel
The duals
Convergence analysis: regular case
Convergence analysis: critical case

4 Case Studies

5 Numerical Examples

6 Summary

MARE: XDX − AX − XB + C = 0

W =

[m n

m B −D
n −C A

]
,

and W is a nonsingular or an irreducible singular M-matrix.

MARE: XDX − AX − XB + C = 0

W =

[m n

m B −D
n −C A

]
,

and W is a nonsingular or an irreducible singular M-matrix.

B =




3 −1

3
. . .
. . . −1

−1 3



∈ R

n×n, C = 2In, A = ξB, D = ξC,

where ξ > 0 is a parameter.

MARE: XDX − AX − XB + C = 0

W =

[m n

m B −D
n −C A

]
,

and W is a nonsingular or an irreducible singular M-matrix.

B =




3 −1

3
. . .
. . . −1

−1 3



∈ R

n×n, C = 2In, A = ξB, D = ξC,

where ξ > 0 is a parameter.

Quadratic convergence for ξ 6= 1 and linear convergence
otherwise.

MARE ξ = 1 (cont’d)

iteration
0 5 10 15 20 25 30 35 40 45 50 55

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

accADDA

NRes
ERRes
ERErr

MARE ξ = 104 (cont’d)

iteration
0 1 2 3 4 5 6

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

accADDA

NRes
ERRes
ERErr

Fast Train Eigenvalue Problem

P(λ)z ≡ (λ2AT + λQ + A)z = 0, with

Q =




k k k ··· k

k H0 HT
1

k H1 H0 HT
1

k H1
.

...
. HT

1
k H1 H0



, A =




k ··· k k

k 0 . . . 0 H1

k 0 . . . 0 0
...

...
...

...
k 0 . . . 0 0


.

Fast Train Eigenvalue Problem

P(λ)z ≡ (λ2AT + λQ + A)z = 0, with

Q =




k k k ··· k

k H0 HT
1

k H1 H0 HT
1

k H1
.

...
. HT

1
k H1 H0



, A =




k ··· k k

k 0 . . . 0 H1

k 0 . . . 0 0
...

...
...

...
k 0 . . . 0 0


.

Can prove that it is equivalent to
P̂(λ̂)y := (λ̂2HT

1 + λ̂H0 + H1)y = 0: λ = λ̂m.

Fast Train Eigenvalue Problem

P(λ)z ≡ (λ2AT + λQ + A)z = 0, with

Q =




k k k ··· k

k H0 HT
1

k H1 H0 HT
1

k H1
.

...
. HT

1
k H1 H0



, A =




k ··· k k

k 0 . . . 0 H1

k 0 . . . 0 0
...

...
...

...
k 0 . . . 0 0


.

Can prove that it is equivalent to
P̂(λ̂)y := (λ̂2HT

1 + λ̂H0 + H1)y = 0: λ = λ̂m.

P̂(λ) = (λHT
1 + Φ̂)Φ̂−1(λΦ̂+ H1) for a solution Φ̂ of

X̂ + HT
1 X̂−1H1 = H0

Fast Train Eigenvalue Problem (cont’d)

2 4 6 8 10 12

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

i

(k,m)=(159,11) and different ω

ω=100
ω=1000
ω=3000
ω=5000

Fast Train Eigenvalue Problem (cont’d)

2 4 6 8 10 12 14 16

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

i

(k,m)=(705,51) and different ω

ω=100
ω=1000
ω=3000
ω=5000

Outline

1 A Primitive Doubling Idea

2 Applications

3 General Theory
Doubling Transformation Theorem
Two Standard Forms
Doubling iterative kernel
The duals
Convergence analysis: regular case
Convergence analysis: critical case

4 Case Studies

5 Numerical Examples

6 Summary

Summary

Three types of nonlinear matrix equations (NMEs) from
various applications

Summary

Three types of nonlinear matrix equations (NMEs) from
various applications

Eigen-connections of NMEs to matrix pencils A − λB

Summary

Three types of nonlinear matrix equations (NMEs) from
various applications

Eigen-connections of NMEs to matrix pencils A − λB

A coherent general theory of doubling algorithms, actively
researched in last decade or so

Summary

Three types of nonlinear matrix equations (NMEs) from
various applications

Eigen-connections of NMEs to matrix pencils A − λB

A coherent general theory of doubling algorithms, actively
researched in last decade or so

Overwhelming favorable numerical evidences

	A Primitive Doubling Idea
	Applications
	General Theory
	Doubling Transformation Theorem
	Two Standard Forms
	Doubling iterative kernel
	The duals
	Convergence analysis: regular case
	Convergence analysis: critical case

	Case Studies
	Numerical Examples
	Summary

