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Simple and Yet Powerful Idea

Numerous approximations rely on simple iteration:

Xj+1 = f (Xj) for j = 0,1, . . ., gievn X0

to generate a sequence of approximations that hopefully
converges to the desired target.

Often too slow, but can we make it go faster? Any ideas?

What about skipping all Xj but for j = 2i?
Kind of like repeatedly squaring:

x , x2, (x2)2 = x4, (x4)2 = x8, . . . .

This is the basics of the Doubling Algorithm (DA).
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To accelerate Xj+1 = f (Xj) by computing Xj for j = 2i only.
Make sense only if there is a cost-effective path X2i−1 → X2i .

No such a path guaranteed in general, unless f is linear:
f (X ) = ΦX , and then

X2i = Φ2i
X0 = Φ2i−1

X2i−1 .

But still need to be able to square Φ2i−1
efficiently.

Example (Discrete-time Algebraic Riccati Equation):
X = AT X (I + GX )−1A + H. Naturally

Xj+1 = f (Xj) := ATXj(I + GXj)
−1A + H, given X0

It can be turned into a linear iteration of twice the dimensions
by Bernoulli substitution.

Anderson () did just that.
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Go Forward

In the last 12 years also saw tremendous progresses in using
“doubling idea” to solve

three types nonlinear matrix equations (NMEs)

and related applications.

Current developments: mostly equation-wise, somewhat
fragmented, not totally coherent.

This talk attempts to provide a coherent theory to go forward.
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Continuous-time Algebraic Riccati Equation (CARE) Type

XDX − AX − XB + C = 0.

CARE A⊤X + XA − XGX + H = 0 from continuous-time
control system [...]

M-matrix Algebraic Riccati equation (MARE)
XDX − AX − XB + C = 0 from transport theory of particles
[Juang (1995), C. Guo (2001), X. Guo, Lin, Xu (2006), ...]

MARE XDX − AX − XB + C = 0 from Markov-modulated
fluid queue theory [Latouche & Taylor (2009), C. Guo (2001),
X. Guo, Lin, Xu (2006), ...]

H∗ARE from the Laplace transform inversion method in
Markov modulated fluid flow [Ahn & Ramaswami (2004), Liu &
Xue (2012), ...]
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Yet Another Type of Nonlinear Matrix Equation

X + BX−1A = Q.

Solve Palindromic Quadratic Eigenvalue Problem (PQEP)
P(λ)z ≡ (λ2AT + λQ + A)z = 0 from high speed trains
[Hilliges, Mehl, & V. Mehrmann (2004), ...]

Compute Green function from quantum transport in nano
research [S. Datta (2000), Guo & Lin (2010), ...]

Solve QEP P(λ)xxx ≡
(
λ2B + λQ + A

)
xxx = 0 from Retarded

Time-Delay System (TDS) [Jarlebring (2008)]

X + ATX−1A = Q from surface acoustic wave simulation in
telecommunication [Campbell (1998)]
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where M is m × m. As a consequence, eig(M) ⊂ eig(A ,B).

Blockwise we have

A11 + A12X = (B11 + B12X)M, A21 + A22X = (B21 + B22X)M.

Assume (B11 + B12X) is invertible to get

A21 + A22X = (B21 + B22X) (B11 + B12X)−1(A11 + A12X)︸ ︷︷ ︸
M

.
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[
I
X

]
≡

[
A11 A12

A21 A22

] [
I
X

]
=

[
B11 B12

B21 B22

] [
I
X

]
M ≡ B

[
I
X

]
M,

A21 + A22X = (B21 + B22X)(B11 + B12X)−1(A11 + A12X).

Case: A12 = 0, A22 = I, B11 = I, and B21 = 0, i.e.,

A =

[
A11 0
A21 I

]
, B =

[
I B12

0 B22

]
.

We have A21 + X = B22X(I + B12X)−1A11, or equivalently

B22X(I + B12X)−1A11 − A21 − X = 0.

This is “DARE”.
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Commonality (cont’d)

A

[
I
X

]
≡

[
A11 A12

A21 A22

] [
I
X

]
=

[
B11 B12

B21 B22

] [
I
X

]
M ≡ B

[
I
X

]
M,

A21 + A22X = (B21 + B22X)(B11 + B12X)−1(A11 + A12X).

Case: m = n, A12 = 0, A22 = I, B11 = 0, B12 = I, and B22 = 0, i.e.,

A =

[
A11 0
A21 I

]
, B =

[
0 I

B21 0

]
.

We have A21 + X = B21X−1A11, or equivalently

X − B21X−1A11 = −A21.

This is the NME.
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Key ingredients

Three ingredients to DA:

doubling transformation theorem

initial setups (two standard forms)

doubling iterative kernel
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Let A − λB ∈ C
ℓ×ℓ be a regular matrix pencil: det(A − λB) 6≡ 0.

Let A⊥, B⊥ ∈ C
ℓ×ℓ such that

rank([A⊥,B⊥]) = ℓ, [A⊥,B⊥]

[
B

−A

]
= 0.

Define Ã = A⊥A and B̃ = B⊥B. Then Ã − λB̃ is regular.

Let Z = R(Z ) be an eigenspace, i.e., A Z = BZM. Then

Ã Z = B̃ZM2.

keep “doubling” to quickly arrive at some null space,
provided eig(M) ∈ D− (open unit disk);

maintain special forms for A - and B-matrices to find Z in
special form.
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:=

[
βI −γI
αI δI

] [
A

B

]
.

2) Perform A0 − λB0 = P(A ′ − λB′) for preferable A0 − λB0.

3) Perform doubling iteration kernel.
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[ m n

m I −Y0

n 0 F0

]
.



First standard form (SF1)

(SF1) A0 =

[ m n

m E0 0
n −X0 I

]
, B0 =

[ m n

m I −Y0

n 0 F0

]
.

Essentially Gaussian elimination (assuming involved inversions
exist):

[A ′ |B′] =

[
X X X X
X X X X

]
→

[
X X I X
X X X X

]

→

[
X X I X
X X 0 X

]
→

[
X X I X
X I 0 X

]

→

[
X 0 I X
X I 0 X

]

in SF1



Second standard form (SF2)

(SF2) A0 =

[ n n

n E0 0
n −X0 I

]
, B0 =

[ n n

n −Y0 I
n F0 0

]
.



Second standard form (SF2)

(SF2) A0 =

[ n n

n E0 0
n −X0 I

]
, B0 =

[ n n

n −Y0 I
n F0 0

]
.

Essentially Gaussian elimination (assuming involved inversions
exist):

[A ′ |B′] =

[
X X X X
X X X X

]
→

[
X X X X
X I X X

]

→

[
X 0 X X
X I X X

]
→

[
X 0 X I
X I X X

]

→

[
X 0 X I
X I X 0

]

in SF2
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To keep in mind ...

To generate a sequence {Ai − λBi} such that

maintain respective standard form, and

at the same time satisfy

Ai

[
I
X

]
= Bi

[
I
X

]
M

2i
for i = 0,1, . . .

When the spectral radius ρ(M ) < 1, {M 2i
} goes to 0

quadratically.



To keep in mind ...

To generate a sequence {Ai − λBi} such that

maintain respective standard form, and

at the same time satisfy

Ai

[
I
X

]
= Bi

[
I
X

]
M

2i
for i = 0,1, . . .

When the spectral radius ρ(M ) < 1, {M 2i
} goes to 0

quadratically.

Guidance – doubling transformation theorem:

rank([A⊥,B⊥]) = ℓ, [A⊥,B⊥]

[
B

−A

]
= 0,

Ã := A⊥A , B̃ := B⊥B,

A Z = BZM ⇒ Ã Z = B̃ZM2.



DA for SF1

To construct Ai − λBi with

Ai =

[ m n

m Ei 0
n −Xi I

]
, Bi =

[ m n

m I −Yi

n 0 Fi

]
.

Enough to know how to go from step i to step i + 1.



DA for SF1

To construct Ai − λBi with

Ai =

[ m n

m Ei 0
n −Xi I

]
, Bi =

[ m n

m I −Yi

n 0 Fi

]
.

Enough to know how to go from step i to step i + 1.

To find Ai⊥, Bi⊥ ∈ C(m+n)×(m+n) such that

rank([Ai⊥,Bi⊥]) = m + n, [Ai⊥,Bi⊥]

[
Bi

−Ai

]
= 0.



DA for SF1

To construct Ai − λBi with

Ai =

[ m n

m Ei 0
n −Xi I

]
, Bi =

[ m n

m I −Yi

n 0 Fi

]
.

Enough to know how to go from step i to step i + 1.

To find Ai⊥, Bi⊥ ∈ C(m+n)×(m+n) such that

rank([Ai⊥,Bi⊥]) = m + n, [Ai⊥,Bi⊥]

[
Bi

−Ai

]
= 0.

Can again perform Gaussian-like block eliminations















Im −Yi

0 Fi

−Ei 0
Xi −In















L1
→















Im −Yi

0 Fi

0 −EiYi

0 −In + XiYi















L2
→















Im −Yi

0 Fi

0 −EiYi

0 −In















L3
→















Im −Yi

0 0
0 0
0 −In















L4
→















Im −Yi

0 −In
0 0
0 0















.



DA for SF1 (cont’d)

Post-process the last m + n rows of L4L3L2L1 to give

Ai⊥ =

[
Ei (Im − Yi Xi)

−1 0
−Fi(In − Xi Yi)

−1Xi In

]
, Bi⊥ =

[
Im −Ei(Im − Yi Xi)

−1Yi

0 −Fi(In − XiYi )
−1

]
.



DA for SF1 (cont’d)

Post-process the last m + n rows of L4L3L2L1 to give

Ai⊥ =

[
Ei (Im − Yi Xi)

−1 0
−Fi(In − Xi Yi)

−1Xi In

]
, Bi⊥ =

[
Im −Ei(Im − Yi Xi)

−1Yi

0 −Fi(In − XiYi )
−1

]
.

Finally
Ai+1 = Ai⊥Ai , Bi+1 = Bi⊥Bi

to give

Ei+1 = Ei (Im − Yi Xi)
−1Ei , (1a)

Fi+1 = Fi(In − Xi Yi)
−1Fi , (1b)

Xi+1 = Xi + Fi(In − Xi Yi)
−1XiEi , (1c)

Yi+1 = Yi + Ei (Im − Yi Xi)
−1YiFi . (1d)



DA for SF1 (cont’d)

Post-process the last m + n rows of L4L3L2L1 to give

Ai⊥ =

[
Ei (Im − Yi Xi)

−1 0
−Fi(In − Xi Yi)

−1Xi In

]
, Bi⊥ =

[
Im −Ei(Im − Yi Xi)

−1Yi

0 −Fi(In − XiYi )
−1

]
.

Finally
Ai+1 = Ai⊥Ai , Bi+1 = Bi⊥Bi

to give

Ei+1 = Ei (Im − Yi Xi)
−1Ei , (1a)

Fi+1 = Fi(In − Xi Yi)
−1Fi , (1b)

Xi+1 = Xi + Fi(In − Xi Yi)
−1XiEi , (1c)

Yi+1 = Yi + Ei (Im − Yi Xi)
−1YiFi . (1d)

At convergence, Xi goes to some solution X .



DA for SF2

To construct Ai − λBi with

Ai =

[ n n

n Ei 0
n −Xi I

]
, Bi =

[ n n

n −Yi I
n Fi 0

]
.

Enough to know how to go from step i to step i + 1.



DA for SF2

To construct Ai − λBi with

Ai =

[ n n

n Ei 0
n −Xi I

]
, Bi =

[ n n

n −Yi I
n Fi 0

]
.

Enough to know how to go from step i to step i + 1.

To find Ai⊥, Bi⊥ ∈ C(m+n)×(m+n) such that

rank([Ai⊥,Bi⊥]) = m + n, [Ai⊥,Bi⊥]

[
Bi

−Ai

]
= 0.



DA for SF2

To construct Ai − λBi with

Ai =

[ n n

n Ei 0
n −Xi I

]
, Bi =

[ n n

n −Yi I
n Fi 0

]
.

Enough to know how to go from step i to step i + 1.

To find Ai⊥, Bi⊥ ∈ C(m+n)×(m+n) such that

rank([Ai⊥,Bi⊥]) = m + n, [Ai⊥,Bi⊥]

[
Bi

−Ai

]
= 0.

Can again perform Gaussian-like block eliminations















−Yi In
Fi 0
Ei 0

−Xi In















L1
→















Xi − Yi 0
Fi 0
Ei 0

−Xi In















L2
→















In 0
Fi 0
Ei 0

−Xi In















L3
→















In 0
0 0
0 0
0 In















L4
→















In 0
0 In
0 0
0 0















.



DA for SF2 (cont’d)

Post-process the last 2n rows of L4L3L2L1 to give

Ai⊥ =

[
Ei(Xi − Yi)

−1 0
−Fi(Xi − Yi)

−1 I

]
, Bi⊥ =

[
I Ei (Xi − Yi)

−1

0 −Fi(Xi − Yi)
−1

]
.



DA for SF2 (cont’d)

Post-process the last 2n rows of L4L3L2L1 to give

Ai⊥ =

[
Ei(Xi − Yi)

−1 0
−Fi(Xi − Yi)

−1 I

]
, Bi⊥ =

[
I Ei (Xi − Yi)

−1

0 −Fi(Xi − Yi)
−1

]
.

Finally
Ai+1 = Ai⊥Ai , Bi+1 = Bi⊥Bi

to give

Ei+1 = Ei (Xi − Yi)
−1Ei , (2a)

Fi+1 = Fi(Yi − Xi )
−1Fi , (2b)

Xi+1 = Xi + Fi(Xi − Yi )
−1Ei , (2c)

Yi+1 = Yi + Ei (Yi − Xi)
−1Fi . (2d)



DA for SF2 (cont’d)

Post-process the last 2n rows of L4L3L2L1 to give

Ai⊥ =

[
Ei(Xi − Yi)

−1 0
−Fi(Xi − Yi)

−1 I

]
, Bi⊥ =

[
I Ei (Xi − Yi)

−1

0 −Fi(Xi − Yi)
−1

]
.

Finally
Ai+1 = Ai⊥Ai , Bi+1 = Bi⊥Bi

to give

Ei+1 = Ei (Xi − Yi)
−1Ei , (2a)

Fi+1 = Fi(Yi − Xi )
−1Fi , (2b)

Xi+1 = Xi + Fi(Xi − Yi )
−1Ei , (2c)

Yi+1 = Yi + Ei (Yi − Xi)
−1Fi . (2d)

At convergence, Xi goes to some solution X .
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Primary and Dual

In a DA, Xi , if it does, converges to a solution of “Primary
equation”. What about Yi? “Dual” (to the primary equation) is
the key for answering that.
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Framework:

(primary) A0

[
I
X

]
= B0

[
I
X

]
M ,



Primary and Dual

In a DA, Xi , if it does, converges to a solution of “Primary
equation”. What about Yi? “Dual” (to the primary equation) is
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Primary and Dual

In a DA, Xi , if it does, converges to a solution of “Primary
equation”. What about Yi? “Dual” (to the primary equation) is
the key for answering that.

Framework:

(primary) A0

[
I
X

]
= B0

[
I
X

]
M ,

(dual) Â0

[
I
Y

]
= B̂0

[
I
Y

]
N .

Let Πm,n =

[
0 In
Im 0

]
.



Case: SF1

(SF1) A0 =

[ m n

m E0 0
n −X0 I

]
, B0 =

[ m n

m I −Y0

n 0 F0

]
.



Case: SF1

(SF1) A0 =

[ m n

m E0 0
n −X0 I

]
, B0 =

[ m n

m I −Y0

n 0 F0

]
.

Define
Â0 := ΠT

m,nB0Πm,n, B̂0 := ΠT
m,nA0Πm,n

to give

Â0 =

[ n m

n F0 0
m −Y0 I

]
, B̂0 =

[ n m

n I −X0

m 0 E0

]
.



Case: SF1

(SF1) A0 =

[ m n

m E0 0
n −X0 I

]
, B0 =

[ m n

m I −Y0

n 0 F0

]
.

Define
Â0 := ΠT

m,nB0Πm,n, B̂0 := ΠT
m,nA0Πm,n

to give

Â0 =

[ n m

n F0 0
m −Y0 I

]
, B̂0 =

[ n m

n I −X0

m 0 E0

]
.

reciprocal relationship in eigenvalues

If (λ, z) is an eigenpair of A0 − λB0, then (1/λ,ΠT
m,nz) is an

eigenpair of Â0 − λB̂0 and vice versa.



Case: SF1 (cont’d)

(primary) A0

[
I
X

]
= B0

[
I
X

]
M ; (dual) Â0

[
I
Y

]
= B̂0

[
I
Y

]
N .



Case: SF1 (cont’d)

(primary) A0

[
I
X

]
= B0

[
I
X

]
M ; (dual) Â0

[
I
Y

]
= B̂0

[
I
Y

]
N .

Plug in A0 and B0 to get

E0 = (I − Y0X)M , X − X0 = F0XM ,

F0 = (I − X0Y )N , Y − Y0 = E0YN .



Case: SF1 (cont’d)

(primary) A0

[
I
X

]
= B0

[
I
X

]
M ; (dual) Â0

[
I
Y

]
= B̂0

[
I
Y

]
N .

Plug in A0 and B0 to get

E0 = (I − Y0X)M , X − X0 = F0XM ,

F0 = (I − X0Y )N , Y − Y0 = E0YN .

Eliminate M and N to get

primary: X = X0 + F0X(I − Y0X)−1E0,

dual: Y = Y0 + E0Y (I − X0Y )−1F0.



Case: SF2

(SF2) A0 =

[ n n

n E0 0
n −X0 I

]
, B0 =

[ n n

n −Y0 I
n F0 0

]
.



Case: SF2

(SF2) A0 =

[ n n

n E0 0
n −X0 I

]
, B0 =

[ n n

n −Y0 I
n F0 0

]
.

Define
Â0 := ΠT

n,nB0, B̂0 := ΠT
n,nA0

to give

Â0 =

[ n n

n F0 0
n −Y0 I

]
, B̂0 =

[ n n

n −X0 I
n E0 0

]
.



Case: SF2

(SF2) A0 =

[ n n

n E0 0
n −X0 I

]
, B0 =

[ n n

n −Y0 I
n F0 0

]
.

Define
Â0 := ΠT

n,nB0, B̂0 := ΠT
n,nA0

to give

Â0 =

[ n n

n F0 0
n −Y0 I

]
, B̂0 =

[ n n

n −X0 I
n E0 0

]
.

reciprocal relationship in eigenvalues

If (λ, z) is an eigenpair of A0 − λB0, then (1/λ, z) is an
eigenpair of Â0 − λB̂0 and vice versa.



Case: SF2 (cont’d)

(primary) A0

[
I
X

]
= B0

[
I
X

]
M ; (dual) Â0

[
I
Y

]
= B̂0

[
I
Y

]
N .



Case: SF2 (cont’d)

(primary) A0

[
I
X

]
= B0

[
I
X

]
M ; (dual) Â0

[
I
Y

]
= B̂0

[
I
Y

]
N .

Plug in A0 and B0 to get

E0 = (X − Y0)M , X − X0 = F0M ,

F0 = (Y − X0)N , Y − Y0 = E0N .



Case: SF2 (cont’d)

(primary) A0

[
I
X

]
= B0

[
I
X

]
M ; (dual) Â0

[
I
Y

]
= B̂0

[
I
Y

]
N .

Plug in A0 and B0 to get

E0 = (X − Y0)M , X − X0 = F0M ,

F0 = (Y − X0)N , Y − Y0 = E0N .

Eliminate M and N to get

primary: X = X0 + F0(X − Y0)
−1E0,

dual: Y = Y0 + E0(Y − X0)
−1F0.



Case: SF2 (cont’d)

(primary) A0

[
I
X

]
= B0

[
I
X

]
M ; (dual) Â0

[
I
Y

]
= B̂0

[
I
Y

]
N .

Plug in A0 and B0 to get

E0 = (X − Y0)M , X − X0 = F0M ,

F0 = (Y − X0)N , Y − Y0 = E0N .

Eliminate M and N to get

primary: X = X0 + F0(X − Y0)
−1E0,

dual: Y = Y0 + E0(Y − X0)
−1F0.

self-dual-ness

“primary” is “dual”.



DA on Primary and Dual

What happen if DA is applied to A0 − λB0, generating

Xi , Yi , Ei , Fi

and to Â0 − λB̂0, generating

X̂i , Ŷi , Êi , F̂i?



DA on Primary and Dual

What happen if DA is applied to A0 − λB0, generating

Xi , Yi , Ei , Fi

and to Â0 − λB̂0, generating

X̂i , Ŷi , Êi , F̂i?

DA on primary and dual

For all i ≥ 0,

X̂i = Yi , Ŷi = Xi ,

Êi = Fi , F̂i = Ei .
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General

When a DA is applied to both A0 − λB0 and Â0 − λB̂0, two
sequences {Ai − λBi}

∞

i=0 and {Âi − λB̂i}
∞

i=0 are produced, assuming
no breakdown occurs.
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General

When a DA is applied to both A0 − λB0 and Â0 − λB̂0, two
sequences {Ai − λBi}

∞

i=0 and {Âi − λB̂i}
∞

i=0 are produced, assuming
no breakdown occurs.

The sequences are essentially “identical”. Moreover,

Ai

[
I
X

]
= Bi

[
I
X

]
M

2i
, Âi

[
I
Y

]
= B̂i

[
I
Y

]
N

2i
for i = 0, 1, . . ..

Certain conditions on ρ(M ) and ρ(N ) should be imposed.

DA computes special solutions X = Φ and Y = Ψ to Primary and
Dual.



Case: SF1

Ai =

[ m n

m Ei 0
n −Xi I

]
, Bi =

[ m n

m I −Yi

n 0 Fi

]
,

Âi =

[ n m

n Fi 0
m −Yi I

]
, B̂i =

[ n m

n I −Xi

m 0 Ei

]
,



Case: SF1

Ai =

[ m n

m Ei 0
n −Xi I

]
, Bi =

[ m n

m I −Yi

n 0 Fi

]
,

Âi =

[ n m

n Fi 0
m −Yi I

]
, B̂i =

[ n m

n I −Xi

m 0 Ei

]
,

Ei = (I − YiΦ)M
2i
, Φ− Xi = FiΦM

2i
,

Fi = (I − XiΨ)N
2i
, Ψ − Yi = EiΨN

2i
.



Case: SF1

Ai =

[ m n

m Ei 0
n −Xi I

]
, Bi =

[ m n

m I −Yi

n 0 Fi

]
,

Âi =

[ n m

n Fi 0
m −Yi I

]
, B̂i =

[ n m

n I −Xi

m 0 Ei

]
,

Ei = (I − YiΦ)M
2i
, Φ− Xi = FiΦM

2i
,

Fi = (I − XiΨ)N
2i
, Ψ − Yi = EiΨN

2i
.

Convergence Theorem

Suppose that there are solutions X = Φ and Y = Ψ to Primary and Dual such that
ρ(M ) · ρ(N ) < 1, and suppose that DA executes without any breakdown. Then Xi
and Yi converge to Φ and Ψ quadratically, and moreover,

lim sup
i→∞

‖Xi − Φ‖1/2i
≤ ρ(M ) · ρ(N ), lim sup

i→∞

‖Yi − Ψ‖1/2i
≤ ρ(M ) · ρ(N ).



Case: SF2

Ai =

[ n n

n Ei 0
n −Xi I

]
, Bi =

[ n n

n −Yi I
n Fi 0

]
,

Âi =

[ n n

n Fi 0
n −Yi I

]
, B̂i =

[ n n

n −Xi I
n Ei 0

]
,



Case: SF2

Ai =

[ n n

n Ei 0
n −Xi I

]
, Bi =

[ n n

n −Yi I
n Fi 0

]
,

Âi =
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n Fi 0
n −Yi I
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, B̂i =
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2i
,
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Case: SF2

Ai =

[ n n

n Ei 0
n −Xi I

]
, Bi =

[ n n

n −Yi I
n Fi 0

]
,

Âi =

[ n n

n Fi 0
n −Yi I

]
, B̂i =

[ n n

n −Xi I
n Ei 0

]
,

Ei = (Φ− Yi)M
2i
, Φ− Xi = FiM

2i
,

Fi = (Ψ − Xi )N
2i
, Ψ − Yi = EiN

2i
.

Convergence Theorem

Suppose that there are solutions X = Φ and Y = Ψ to Primary and Dual such that
ρ(M ) · ρ(N ) < 1, and suppose that DA executes without any breakdown. Then Xi
and Yi converge to Φ and Ψ quadratically, and moreover,

lim sup
i→∞

‖Xi − Φ‖1/2i
≤ ρ(M ) · ρ(N ), lim sup

i→∞

‖Yi − Ψ‖1/2i
≤ ρ(M ) · ρ(N ).
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What if ρ(M ) · ρ(N ) = 1, the critical case?

Complicated but still possible to have linear convergence at the
respectable rate 1/2.

More to come ...
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CARE: −XGX + AHX + XA + H = 0

A − λB := H − λI2n ≡

[
A −G
−H −AH

]
− λI2n,

[
A ′

B′

]
=

[
I2n −γI2n

I2n γI2n

] [
H

I2n

]
(γ > 0),

P(A ′ − λB
′) = A0 − λB0 in SF1 and then apply DA.

(a) All I − XiYi and I − YiXi are nonsingular;
(b) 0 � X0 � Xi � Xi+1 � Φ, 0 � Y0 � Yi � Yi+1 � Ψ and

lim sup
i→∞

‖Φ− Xi‖
1/2i

≤ ρ(M )2, lim sup
i→∞

‖Ψ − Yi‖
1/2i

≤ ρ(N )2,

where
ρ(M ) = ρ((I − Y0Φ)

−1E0) = ρ(N ) = ρ((I − X0Ψ)
−1EH

0 );
(c) eig(A − GΦ) ⊂ C−, eig(−HΨ − AH) ⊂ C+, and

eig(H ) = eig(A − GΦ) ∪ eig(−HΨ − AH).



MARE: XDX − AX − XB + C = 0

Assume

W =

[
B −D

−C A

]
is a nonsingular or an irre-

ducible singular M-matrix.
(3)

MARE with (3) has a unique minimal nonnegative solution Φ,
i.e.,

0 ≤ Φ ≤ X for any other nonnegative solution X .

Known in applied probability, stochastic fluid models, but rigorous matrix proof by C.

Guo (2000):



MARE: XDX − AX − XB + C = 0

Assume

W =

[
B −D

−C A

]
is a nonsingular or an irre-
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i.e.,
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Guo (2000):



MARE: XDX − AX − XB + C = 0

A − λB := H − λIm+n ≡

[
B −D
C −AH

]
− λIm+n,

[
A ′

B′

]
=

[
Im+n −βIm+n

Im+n αIm+n

] [
H

Im+n

]
(α ≥ max

i
Aii , β ≥ max

i
Bii),

P(A ′ − λB
′) = A0 − λB0 in SF1 and then apply DA.

(a) All I − XiYi and I − YiXi are nonsingular M-matrices for all
i ≥ 0;

(b) 0 ≤ X0 ≤ Xi ≤ Xi+1 ≤ Φ, 0 ≤ Y0 ≤ Yi ≤ Yi+1 ≤ Ψ and

lim sup
i→∞

‖Φ− Xi‖
1/2i

≤ ρ(M )2, lim sup
i→∞

‖Ψ − Yi‖
1/2i

≤ ρ(N )2,

where
ρ(M ) = ρ((I − Y0Φ)

−1E0) = ρ(N ) = ρ((I − X0Ψ)
−1EH

0 );
(c) eig(B − DΦ) ⊂ C−, eig(−A − ΦD) ⊂ C−, and

eig(H ) = eig(B − DΦ) ∪ eig(−A − ΦD).

Moreover ...
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Fast Train Eigenvalue Problem

P(λ)z ≡ (λ2AT + λQ + A)z = 0.

Framework of solvent approach:

1 Compute the stabilizing solution Φ of the matrix equation
X + ATX−1A = Q. Then

P(λ) = λ2AT + λQ + A = (λAT + X )X−1(λX + A).

2 Solve the (linear) eigenvalue problems for matrix pencils
λAT + X and λX + A.



Fast Train Eigenvalue Problem
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
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Numerous notorious numerical difficulties:
most eigenvalues are 0 and ∞, 2(m − 1)k in all;
problem size n can range from 103 to 105

most seriously, badly scaled finite eigenvalues:
10−50 ∼ 1050 or to an even greater extreme
all finite nonzero eigenvalues and eigenvectors are to be
computed
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k 0 . . . 0 H1

k 0 . . . 0 0
...

...
...
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k 0 . . . 0 0


.

Numerous notorious numerical difficulties:
most eigenvalues are 0 and ∞, 2(m − 1)k in all;
problem size n can range from 103 to 105

most seriously, badly scaled finite eigenvalues:
10−50 ∼ 1050 or to an even greater extreme
all finite nonzero eigenvalues and eigenvectors are to be
computed

Cleverly implemented solvent approach based on DA gets it
done!
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MARE: XDX − AX − XB + C = 0

W =

[ m n

m B −D
n −C A

]
,

and W is a nonsingular or an irreducible singular M-matrix.

B =




3 −1

3
. . .
. . . −1

−1 3



∈ R

n×n, C = 2In, A = ξB, D = ξC,

where ξ > 0 is a parameter.

Quadratic convergence for ξ 6= 1 and linear convergence
otherwise.



MARE ξ = 1 (cont’d)
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Fast Train Eigenvalue Problem

P(λ)z ≡ (λ2AT + λQ + A)z = 0, with

Q =




k k k ··· k

k H0 HT
1

k H1 H0 HT
1

k H1
. . . . . .

...
. . . . . . HT

1
k H1 H0



, A =




k ··· k k

k 0 . . . 0 H1

k 0 . . . 0 0
...

...
...

...
k 0 . . . 0 0


.

Can prove that it is equivalent to
P̂(λ̂)y := (λ̂2HT

1 + λ̂H0 + H1)y = 0: λ = λ̂m.

P̂(λ) = (λHT
1 + Φ̂)Φ̂−1(λΦ̂+ H1) for a solution Φ̂ of

X̂ + HT
1 X̂−1H1 = H0



Fast Train Eigenvalue Problem (cont’d)
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Fast Train Eigenvalue Problem (cont’d)
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Summary

Three types of nonlinear matrix equations (NMEs) from
various applications

Eigen-connections of NMEs to matrix pencils A − λB

A coherent general theory of doubling algorithms, actively
researched in last decade or so

Overwhelming favorable numerical evidences
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