
Bidiagonalization with Parallel Tiled Algorithms

Mathieu Faverge1,2

Julien Langou3

Yves Robert2,4

Jack Dongarra2,5

October 26, 2016

1: Bordeaux INP, CNRS, INRIA et Université de Bordeaux, France
2: University of Tennessee, Knoxville TN, USA
3: University of Colorado Denver, USA
4: Laboratoire LIP, École Normale Supérieure de Lyon et INRIA, France
5: University of Manchester, UK

Context

I Computing singular values of matrices (GE2VAL)

I Use tiled algorithms

I Algorithms will execute over a runtime

I Consider the three-step approach:

1. from full to band (GE2BND)
2. from band to bidiagonal (BND2BD)
3. from bidiagonal to singular values (BD2VAL).

GE2VAL = GE2BND + BND2BD + BD2VAL

Three-step approach

GE2VAL = GE2BND + BND2BD + BD2VAL

GE2BND	 BND2BD	 BD2VAL	

Related work

B. Großer and B. Lang.
Efficient parallel reduction to bidiagonal form.
Parallel Comput., 25(8):969–986, Aug. 1999.

I Two-stage bidiagonalization (GE2BND + BND2BD) was first
proposed by Großer and Lang (PARCO, 1999)

I Experiments in parallel distributed using ScaLAPACK presenting
scalable algorithm and implementation of GE2BND and BND2BD

One comment

When singular vectors are requested,

I The two-step approach requires more memory than “direct”

I The two-step approach requires more FLOPS than “direct”.

For n-by-n matrix with reduction to bandwidth b:
Reduction of A Update of U Update of V

“direct” GE2BD 8
3n

3 2n3 2n3

GE2BND 8
3n

3 2n3 2n3

BND2BD 8n2b 2n3 2n3

One comment

When singular vectors are requested,

I The two-step approach requires more memory than “direct”

I The two-step approach requires more FLOPS than “direct”.

For n-by-n matrix with reduction to bandwidth b:
Reduction of A Update of U Update of V

“direct” GE2BD 8
3n

3 2n3 2n3

GE2BND 8
3n

3 2n3 2n3

BND2BD 8n2b 2n3 2n3

One comment

When singular vectors are requested,

I The two-step approach requires more memory than “direct”

I The two-step approach requires more FLOPS than “direct”.

For n-by-n matrix with reduction to bandwidth b:
Reduction of A Update of U Update of V

“direct” GE2BD 8
3n

3 2n3 2n3

GE2BND 8
3n

3 2n3 2n3

BND2BD 8n2b 2n3 2n3

Three-step approach

GE2VAL = GE2BND + BND2BD + BD2VAL

GE2BND	 BND2BD	 BD2VAL	

GE2BND: from full to band bidiagonal

GE2BND	

Band Tiled Bidiagonalization

Band Tiled Bidiagonalization

QR(1)	

factor	 update	

Band Tiled Bidiagonalization

Band Tiled Bidiagonalization

LQ(1)	 factor	
update	

Band Tiled Bidiagonalization

Band Tiled Bidiagonalization

QR(2)	

factor	 update	

Band Tiled Bidiagonalization

Band Tiled Bidiagonalization

Band Tiled Bidiagonalization

Band Tiled Bidiagonalization

Band Tiled Bidiagonalization

Band Tiled Bidiagonalization

Band Tiled Bidiagonalization

Band Tiled Bidiagonalization

Reduction Trees for QR

I The QR and LQ steps are done using a tiled algorithm, therefore, for
each step, we need to select a reduction tree.
(Any tree will do the job; we want to choose an appropriate one
given the context.)

I In previous work (2008-2014), we have studied reduction trees for
QR factorization on tiled matrix.

I Reduction trees are selected in order to

1. take into account the machine architecture, network topology, etc.
2. take into account the matrix size and shape
3. enable good pipelining of steps
4. favor the use of TS kernels instead of TT kernels,

Reduction Trees for QR: binomial tree

p = 15, q = 1

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Reduction Trees for QR: flat tree

p = 15, q = 1

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Reduction Trees for QR: binomial tree

p = 15, q = 1

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Reduction Trees for QR: binomial tree

p = 15, q = 2

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Reduction Trees for QR: binomial tree

p = 15, q = 2

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Reduction Trees for QR: binomial tree

p = 15, q = 2

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Reduction Trees for QR: binomial tree

p = 15, q = 4

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Reduction Trees for QR: flat tree

p = 15, q = 1

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Reduction Trees for QR: flat tree

p = 15, q = 2

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Reduction Trees for QR: flat tree

p = 15, q = 2

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Reduction Trees for QR: flat tree

p = 15, q = 3

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Reduction Trees for QR: flat tree

p = 15, q = 4

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Reduction Trees for QR: Fibonacci tree

p = 15, q = 1

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Reduction Trees for QR: Fibonacci tree

p = 15, q = 2

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Reduction Trees for QR: Fibonacci tree

p = 15, q = 2

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Reduction Trees for QR: Fibonacci tree

p = 15, q = 4

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Reduction Trees for QR: Greedy tree

p = 15, q = 1

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Reduction Trees for QR: Greedy tree

p = 15, q = 2

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Reduction Trees for QR: Greedy tree

p = 15, q = 3

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Reduction Trees for QR: Greedy tree

p = 15, q = 4

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Reduction Trees for QR: PLASMA tree

p = 15, q = 1

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Reduction Trees for QR: PLASMA tree

p = 15, q = 1

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Reduction Trees for QR: PLASMA tree

p = 15, q = 2

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Reduction Trees for QR: PLASMA tree

p = 15, q = 4

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Reduction Trees for QR
In previous work (2008-2014),

1. we wrote optimized kernels for performing the “sequential”
operations involved in these reduction trees;

2. we provided critical path lengths for many of these trees with various
weights;

3. when non-unit weights are considered, we proved that Greedy
“almost” has the shortest critical path length over all sequences of
reduction trees, and that the so-called Grasap algorithm was
optimal;

4. we produced implementation of these algorithms over various
runtimes (QUARK, PaRSEC)

5. we performed numerical experiments in shared memory and parallel
distributed

6. we produced open-source freely-available libraries with these
algorithms (PLASMA, DPLASMA)

Reduction Trees for QR
In previous work (2008-2014),

1. we wrote optimized kernels for performing the “sequential”
operations involved in these reduction trees;

2. we provided critical path lengths for many of these trees with various
weights;

3. when non-unit weights are considered, we proved that Greedy
“almost” has the shortest critical path length over all sequences of
reduction trees, and that the so-called Grasap algorithm was
optimal;

4. we produced implementation of these algorithms over various
runtimes (QUARK, PaRSEC)

5. we performed numerical experiments in shared memory and parallel
distributed

6. we produced open-source freely-available libraries with these
algorithms (PLASMA, DPLASMA)

Reduction Trees for QR
In previous work (2008-2014),

1. we wrote optimized kernels for performing the “sequential”
operations involved in these reduction trees;

2. we provided critical path lengths for many of these trees with various
weights;

3. when non-unit weights are considered, we proved that Greedy
“almost” has the shortest critical path length over all sequences of
reduction trees, and that the so-called Grasap algorithm was
optimal;

4. we produced implementation of these algorithms over various
runtimes (QUARK, PaRSEC)

5. we performed numerical experiments in shared memory and parallel
distributed

6. we produced open-source freely-available libraries with these
algorithms (PLASMA, DPLASMA)

Reduction Trees for QR
In previous work (2008-2014),

1. we wrote optimized kernels for performing the “sequential”
operations involved in these reduction trees;

2. we provided critical path lengths for many of these trees with various
weights;

3. when non-unit weights are considered, we proved that Greedy
“almost” has the shortest critical path length over all sequences of
reduction trees, and that the so-called Grasap algorithm was
optimal;

4. we produced implementation of these algorithms over various
runtimes (QUARK, PaRSEC)

5. we performed numerical experiments in shared memory and parallel
distributed

6. we produced open-source freely-available libraries with these
algorithms (PLASMA, DPLASMA)

Reduction Trees for QR
In previous work (2008-2014),

1. we wrote optimized kernels for performing the “sequential”
operations involved in these reduction trees;

2. we provided critical path lengths for many of these trees with various
weights;

3. when non-unit weights are considered, we proved that Greedy
“almost” has the shortest critical path length over all sequences of
reduction trees, and that the so-called Grasap algorithm was
optimal;

4. we produced implementation of these algorithms over various
runtimes (QUARK, PaRSEC)

5. we performed numerical experiments in shared memory and parallel
distributed

6. we produced open-source freely-available libraries with these
algorithms (PLASMA, DPLASMA)

Reduction Trees for QR
In previous work (2008-2014),

1. we wrote optimized kernels for performing the “sequential”
operations involved in these reduction trees;

2. we provided critical path lengths for many of these trees with various
weights;

3. when non-unit weights are considered, we proved that Greedy
“almost” has the shortest critical path length over all sequences of
reduction trees, and that the so-called Grasap algorithm was
optimal;

4. we produced implementation of these algorithms over various
runtimes (QUARK, PaRSEC)

5. we performed numerical experiments in shared memory and parallel
distributed

6. we produced open-source freely-available libraries with these
algorithms (PLASMA, DPLASMA)

Reduction Trees for QR
In previous work (2008-2014),

1. we wrote optimized kernels for performing the “sequential”
operations involved in these reduction trees;

2. we provided critical path lengths for many of these trees with various
weights;

3. when non-unit weights are considered, we proved that Greedy
“almost” has the shortest critical path length over all sequences of
reduction trees, and that the so-called Grasap algorithm was
optimal;

4. we produced implementation of these algorithms over various
runtimes (QUARK, PaRSEC)

5. we performed numerical experiments in shared memory and parallel
distributed

6. we produced open-source freely-available libraries with these
algorithms (PLASMA, DPLASMA)

Goal: extend this work from QR factorization to
Bidiagonalization

Related work

H. Ltaief, J. Kurzak, and J. Dongarra.
Parallel two-sided matrix reduction to band bidiagonal form on
multicore architectures.
IEEE Transactions on Parallel and Distributed Systems,
21(4):417–423, Apr. 2010.

I Contribution: First paper presenting tiled band bidiagonalization
over runtime.

I Only GE2BND step.

I Shared memory.

I Use Flat TS QR trees and Flat TS LQ trees.

I Algorithm currently in PLASMA.

I Square matrices.

Related work

H. Ltaief, P. Luszczek, and J. Dongarra.
High-performance bidiagonal reduction using tile algorithms on
homogeneous multicore architectures.
ACM Trans. Math. Softw., 39(3):16:1–16:22, May 2013.

I (Technical Report in 2011.)

I Contribution: Added a shared memory Band to Bidiagonal step
(BND2BD) so as to have GE2VAL=GE2BND+BND2BD+BD2VAL.

I Shared memory.

I Use Flat TS QR trees and Flat TS LQ trees for GE2BND.

I Algorithm currently in PLASMA.

I Contribution: Study trade-off of the bandwidth/tile size: small vs
large.

I Square matrices.

Related work

H. Ltaief, P. Luszczek, and J. Dongarra.
Enhancing parallelism of tile bidiagonal transformation on multicore
architectures using tree reduction.
In R. Wyrzykowski, J. Dongarra, K. Karczewski, and J. Waśniewski,
editors, Parallel Processing and Applied Mathematics: 9th
International Conference, PPAM 2011, Torun, Poland, September
11-14, 2011. Revised Selected Papers, Part I, pages 661–670.
Springer Berlin Heidelberg, 2012.

I Only GE2BND step.

I Shared memory.

I Contribution: Use Binomial TS QR trees and Flat TS LQ trees for
GE2BND.

I Rectangular matrices.

Related work

A. Haidar, H. Ltaief, P. Luszczek, and J. Dongarra.
A comprehensive study of task coalescing for selecting parallelism
granularity in a two-stage bidiagonal reduction.
In Parallel Distributed Processing Symposium (IPDPS), 2012 IEEE
26th International, pages 25–35, May 2012.

I Contribution: Improve the BND2BD step of Ltaief et al. (2013)

I Shared memory.

I Use Flat TS QR trees and Flat TS LQ trees for GE2BND.

I Square matrices.

Related work
A. Haidar, J. Kurzak, and P. Luszczek.
An improved parallel singular value algorithm and its implementation
for multicore hardware.
In Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, SC ’13, pages
90:1–90:12, New York, NY, USA, 2013. ACM.

I Contribution: Finally, in 2013, Haidar, Kurzak, and Luszczek [1]
consider the problem of computing singular vectors (GESVD) by
performing
GE2BND+BND2BD+BD2VAL+VAL2BD+BD2BND+BND2GE.
They show that the two-step approach (from full to band, then band
to bidiagonal) can be successfully used not only for computing
singular values, but also for computing singular vectors.

I Shared memory.

I Use Flat TS QR trees and Flat TS LQ trees for GE2BND.

I Square matrices.

Our work in context (1/3)

M. Faverge, J. Langou, Y. Robert, and J. Dongarra.
Bidiagonalization with parallel tiled algorithms.
Research Report 8969, INRIA, Oct. 2016.

I Only GE2BND step.
(We rely on previous work for BND2BD and BD2VAL.)

I Rectangular and square matrices. (Not just square.)

I Presentation and study of BiDiag with many types of reduction QR
and LQ trees. (Not just FlatTS.)

I Proof that, in the context of BiDiag, Binomial QR and LQ trees
provide the shortest critical path.

I Introduction and study of R-BiDiag in the context of tiled
algorithms.

Our work in context (1/3)

M. Faverge, J. Langou, Y. Robert, and J. Dongarra.
Bidiagonalization with parallel tiled algorithms.
Research Report 8969, INRIA, Oct. 2016.

I Only GE2BND step.
(We rely on previous work for BND2BD and BD2VAL.)

I Rectangular and square matrices. (Not just square.)

I Presentation and study of BiDiag with many types of reduction QR
and LQ trees. (Not just FlatTS.)

I Proof that, in the context of BiDiag, Binomial QR and LQ trees
provide the shortest critical path.

I Introduction and study of R-BiDiag in the context of tiled
algorithms.

Our work in context (1/3)

M. Faverge, J. Langou, Y. Robert, and J. Dongarra.
Bidiagonalization with parallel tiled algorithms.
Research Report 8969, INRIA, Oct. 2016.

I Only GE2BND step.
(We rely on previous work for BND2BD and BD2VAL.)

I Rectangular and square matrices. (Not just square.)

I Presentation and study of BiDiag with many types of reduction QR
and LQ trees. (Not just FlatTS.)

I Proof that, in the context of BiDiag, Binomial QR and LQ trees
provide the shortest critical path.

I Introduction and study of R-BiDiag in the context of tiled
algorithms.

Our work in context (1/3)

M. Faverge, J. Langou, Y. Robert, and J. Dongarra.
Bidiagonalization with parallel tiled algorithms.
Research Report 8969, INRIA, Oct. 2016.

I Only GE2BND step.
(We rely on previous work for BND2BD and BD2VAL.)

I Rectangular and square matrices. (Not just square.)

I Presentation and study of BiDiag with many types of reduction QR
and LQ trees. (Not just FlatTS.)

I Proof that, in the context of BiDiag, Binomial QR and LQ trees
provide the shortest critical path.

I Introduction and study of R-BiDiag in the context of tiled
algorithms.

Our work in context (1/3)

M. Faverge, J. Langou, Y. Robert, and J. Dongarra.
Bidiagonalization with parallel tiled algorithms.
Research Report 8969, INRIA, Oct. 2016.

I Only GE2BND step.
(We rely on previous work for BND2BD and BD2VAL.)

I Rectangular and square matrices. (Not just square.)

I Presentation and study of BiDiag with many types of reduction QR
and LQ trees. (Not just FlatTS.)

I Proof that, in the context of BiDiag, Binomial QR and LQ trees
provide the shortest critical path.

I Introduction and study of R-BiDiag in the context of tiled
algorithms.

Our work in context (1/3)

M. Faverge, J. Langou, Y. Robert, and J. Dongarra.
Bidiagonalization with parallel tiled algorithms.
Research Report 8969, INRIA, Oct. 2016.

I Only GE2BND step.
(We rely on previous work for BND2BD and BD2VAL.)

I Rectangular and square matrices. (Not just square.)

I Presentation and study of BiDiag with many types of reduction QR
and LQ trees. (Not just FlatTS.)

I Proof that, in the context of BiDiag, Binomial QR and LQ trees
provide the shortest critical path.

I Introduction and study of R-BiDiag in the context of tiled
algorithms.

Our work in context (2/3)

M. Faverge, J. Langou, Y. Robert, and J. Dongarra.
Bidiagonalization with parallel tiled algorithms.
Research Report 8969, INRIA, Oct. 2016.

I A detailed study of critical path lengths for few sequences of
reduction QR and LQ trees: FlatTS, FlatTT, Greedy with
BiDiag and R-BiDiag (so six different algorithms in total), which
shows that:

I The Greedy based schemes (BiDiag and R-BiDiag) are much
better than earlier proposed variants.

I On the one hand, BiDiagGreedy has a shorter critical path length
than R-BiDiagGreedy for square matrices; on the other hand,
R-BiDiagGreedy has a shorter critical path length than
BiDiagGreedy for tall and skinny matrices.

Our work in context (2/3)

M. Faverge, J. Langou, Y. Robert, and J. Dongarra.
Bidiagonalization with parallel tiled algorithms.
Research Report 8969, INRIA, Oct. 2016.

I A detailed study of critical path lengths for few sequences of
reduction QR and LQ trees: FlatTS, FlatTT, Greedy with
BiDiag and R-BiDiag (so six different algorithms in total), which
shows that:

I The Greedy based schemes (BiDiag and R-BiDiag) are much
better than earlier proposed variants.

I On the one hand, BiDiagGreedy has a shorter critical path length
than R-BiDiagGreedy for square matrices; on the other hand,
R-BiDiagGreedy has a shorter critical path length than
BiDiagGreedy for tall and skinny matrices.

Our work in context (2/3)

M. Faverge, J. Langou, Y. Robert, and J. Dongarra.
Bidiagonalization with parallel tiled algorithms.
Research Report 8969, INRIA, Oct. 2016.

I A detailed study of critical path lengths for few sequences of
reduction QR and LQ trees: FlatTS, FlatTT, Greedy with
BiDiag and R-BiDiag (so six different algorithms in total), which
shows that:

I The Greedy based schemes (BiDiag and R-BiDiag) are much
better than earlier proposed variants.

I On the one hand, BiDiagGreedy has a shorter critical path length
than R-BiDiagGreedy for square matrices; on the other hand,
R-BiDiagGreedy has a shorter critical path length than
BiDiagGreedy for tall and skinny matrices.

Our work in context (3/3)
M. Faverge, J. Langou, Y. Robert, and J. Dongarra.
Bidiagonalization with parallel tiled algorithms.
Research Report 8969, INRIA, Oct. 2016.

I A practical auto-adaptative tree (Auto) that self-tunes for
increased performance.
(Useful (1) when critical path length is not a major consideration
due to limited number of resources or (2) when intra-node
“communication” is expensive or (3) both.)

I Implementation of our algorithms within the DPLASMA
framework, which runs on top of the PaRSEC runtime system, and
which enables parallel distributed experiments on multicore nodes.

I Our final implementation for BiDiag has three level of trees. High
level for parallel distributed, middle level within a node, and low level
for enabling TS kernels. Optionally pre-processed by a QR
factorization.

I Experiments on a single multicore node (1 node, 24 cores), and on a
few multicore nodes of a parallel distributed shared-memory system
(25 nodes, 600 cores), on a variety of matrix sizes, matrix shapes
and core counts.

Our work in context (3/3)
M. Faverge, J. Langou, Y. Robert, and J. Dongarra.
Bidiagonalization with parallel tiled algorithms.
Research Report 8969, INRIA, Oct. 2016.

I A practical auto-adaptative tree (Auto) that self-tunes for
increased performance.
(Useful (1) when critical path length is not a major consideration
due to limited number of resources or (2) when intra-node
“communication” is expensive or (3) both.)

I Implementation of our algorithms within the DPLASMA
framework, which runs on top of the PaRSEC runtime system, and
which enables parallel distributed experiments on multicore nodes.

I Our final implementation for BiDiag has three level of trees. High
level for parallel distributed, middle level within a node, and low level
for enabling TS kernels. Optionally pre-processed by a QR
factorization.

I Experiments on a single multicore node (1 node, 24 cores), and on a
few multicore nodes of a parallel distributed shared-memory system
(25 nodes, 600 cores), on a variety of matrix sizes, matrix shapes
and core counts.

Our work in context (3/3)
M. Faverge, J. Langou, Y. Robert, and J. Dongarra.
Bidiagonalization with parallel tiled algorithms.
Research Report 8969, INRIA, Oct. 2016.

I A practical auto-adaptative tree (Auto) that self-tunes for
increased performance.
(Useful (1) when critical path length is not a major consideration
due to limited number of resources or (2) when intra-node
“communication” is expensive or (3) both.)

I Implementation of our algorithms within the DPLASMA
framework, which runs on top of the PaRSEC runtime system, and
which enables parallel distributed experiments on multicore nodes.

I Our final implementation for BiDiag has three level of trees. High
level for parallel distributed, middle level within a node, and low level
for enabling TS kernels. Optionally pre-processed by a QR
factorization.

I Experiments on a single multicore node (1 node, 24 cores), and on a
few multicore nodes of a parallel distributed shared-memory system
(25 nodes, 600 cores), on a variety of matrix sizes, matrix shapes
and core counts.

Our work in context (3/3)
M. Faverge, J. Langou, Y. Robert, and J. Dongarra.
Bidiagonalization with parallel tiled algorithms.
Research Report 8969, INRIA, Oct. 2016.

I A practical auto-adaptative tree (Auto) that self-tunes for
increased performance.
(Useful (1) when critical path length is not a major consideration
due to limited number of resources or (2) when intra-node
“communication” is expensive or (3) both.)

I Implementation of our algorithms within the DPLASMA
framework, which runs on top of the PaRSEC runtime system, and
which enables parallel distributed experiments on multicore nodes.

I Our final implementation for BiDiag has three level of trees. High
level for parallel distributed, middle level within a node, and low level
for enabling TS kernels. Optionally pre-processed by a QR
factorization.

I Experiments on a single multicore node (1 node, 24 cores), and on a
few multicore nodes of a parallel distributed shared-memory system
(25 nodes, 600 cores), on a variety of matrix sizes, matrix shapes
and core counts.

No overlap theorem

Theorem

For any sequence of QR and LQ steps (any reduction trees), no overlap
between QR and LQ steps is possible

It says that the critical path length of BiDiag is the sum of the critical
path lengths of the individual QR and LQ steps.

No overlap theorem

This theorem has theoretical and practical applications.
First, from a theoretical point of view, this makes critical path lengths of
BiDiag algorithms “easy” to compute.
More importantly,

I In theory, this means that the shortest critical path length of
BiDiag is obtained by minimizing the shortest critical path length
of each individual step.
⇒ This means that Binomial trees are optimal.

I In practice, this means that the smallest time of BiDiag is obtained
by minimizing the time of each individual step. This means that we
want to perform steps as far as possible (without consideration for
previous or future steps).
⇒ This leads to the Auto tree.

Optimality of BiDiagGreedy

Theorem

Overall BiDiag tiled algorithms, using binomial trees for LQ and QR
steps provides us with the shortest critical path.

Critical path analysis of BiDiag algorithms

Theorem

For a matrix of p-by-q tiles, the critical path lengths of
BiDiagFlatTS, BiDiagFlatTT, and BiDiagGreedy are such that

BiDiagFlatTS(p, q) = 12pq +O(max(p, q))

BiDiagFlatTT(p, q) = 6pq +O(max(p, q))

BiDiagGreedy(p, q) = 6q log2(p) + 6q log2(q) +O(max(p, q))

Critical path analysis of R-BiDiagGreedy algorithm

Theorem

For a matrix of p-by-q tiles, the critical path lengths of BiDiagGreedy
and R-BiDiagGreedy are such that

BiDiagGreedy(p, q) = 6q log2(p) + 6q log2(q) +O(max(p, q))

rBiDiagGreedy(p, q) ≤ 6d
√

2pe+ 12q log2(q) +O(max(p, q))

Switching between BiDiag and R-BiDiag

128 256 512

p

9000

9500

10000

10500

11000

11500

cr
iti

ca
l p

at
h

le
ng

th

q=100

crossover at q=567
/

s
(100)=5.67

BiDiagGreedy
R-BiDiagGreedy

Critical path lengths for BiDiagGreedy and R-BiDiagGreedy for
q = 100 as a function of p. We see that δs(100) = 5.67.

Switching between BiDiag and R-BiDiag

4 8 16 32 64

q from 4 to 100

1

2

3

4

5

6

7

8

9

10

/
=

 p
 /

q

/
s
(q), crossover point, BiDiagGreedy and R-BiDiagGreedy are the same

R-BiDiagGreedy is 5% better than BiDiagGreedy

BiDiagGreedy is 5% better than R-BiDiagGreedy

Values of δs where to switch as a function of q.

Shared Memory – GE2VAL – square – weak scalability experiment – overall performance

(M = 2, 000→ 40, 000)× (N = 2, 000), (NC = 24)

2000 5000 10000 15000 20000 25000 30000 35000 40000
M

0

50

100

150

200

250

300

350

400

450

500

 (
4*

(M
*N

2 -1
/3

*N
3))

 /
(t

im
e

(s
ec

))

Singular values computation
rectangular case, N=2000

DPLASMA (QR)
DPLASMA
PLASMA
MKL
elemental
scalapack

Shared Memory – GE2VAL – square – weak scalability experiment – overall performance

(M = 10, 000→ 100, 000)× (N = 10, 000), (NC = 24)

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
M

0

100

200

300

400

500

600

700

 (
4*

(M
*N

2 -1
/3

*N
3))

 /
(t

im
e

(s
ec

))

Singular values computation
rectangular case, N=10,000

DPLASMA (QR)
DPLASMA
PLASMA
MKL
elemental
scalapack

Shared Memory – GE2VAL – square – weak scalability experiment – overall performance

(M = N = 2, 000→ 30, 000), (NC = 24)

2000 5000 10000 15000 20000 25000 30000
M=N

0

50

100

150

200

250

300

350

 (
8

/ 3
 *

N3)
/ (

 ti
m

e
(s

ec
))

Singular values computation

square case

DPLASMA
PLASMA
MKL
elemental
scalapack

Parallel Distributed – GE2VAL – square – strong scalability experiment – time to solution

M = N = 30, 000, (NP = 1→ 25)

1 4 9 16 25

number of nodes

101

102

103

tim
e

(s
ec

)
N=30,000 -- GE2VAL

perfect scalability

perfect scalability

time for BND2BD

time for BND2BD + BD2VAL

elemental (GE2VAL)
scalapack (GE2VAL)
dplasma adaptatif (GE2BND) + plasma (BND2VAL)

Parallel Distributed – GE2VAL – rectangular – strong scalability experiment – overall performance

M = 1, 000, 000 – N = 10, 000 – (NP = 1→ 25)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 5 10 15 20 25

G
E
2

V
A

L
(G

Fl
o
p
/s

)

Nodes

DPLASMA
Elemental
Scalapack

Parallel Distributed – GE2VAL – rectangular – strong scalability experiment – overall performance

M = 2, 000, 000 – N = 2, 000 – (NP = 1→ 25)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 5 10 15 20 25

G
E
2

V
A

L
(G

Fl
o
p

/s
)

Nodes

DPLASMA
Elemental
Scalapack

Future work

I Improve PLASMA and ScaLAPACK BiDiag by adding a QR
factorization pre-processing when appropriate

I Compare with “basic” Level 3 BLAS “à la” LAPACK Band
Bidiagonalization algorithm (Großer and Lang, 1999)

I Obtain a scalable parallel distributed implementation of BND2BD
(e.g., Großer and Lang, 1999) and BD2VAL (e.g., ScaLAPACK) in
order to have a scalable parallel distributed GE2VAL solver

I Study when singular vectors are requested. (In particular in this
case, some BiDiag trees will be able to pipeline.)

I Extend these ideas to Symmetric Tridiagonalization

Future work

I Improve PLASMA and ScaLAPACK BiDiag by adding a QR
factorization pre-processing when appropriate

I Compare with “basic” Level 3 BLAS “à la” LAPACK Band
Bidiagonalization algorithm (Großer and Lang, 1999)

I Obtain a scalable parallel distributed implementation of BND2BD
(e.g., Großer and Lang, 1999) and BD2VAL (e.g., ScaLAPACK) in
order to have a scalable parallel distributed GE2VAL solver

I Study when singular vectors are requested. (In particular in this
case, some BiDiag trees will be able to pipeline.)

I Extend these ideas to Symmetric Tridiagonalization

Future work

I Improve PLASMA and ScaLAPACK BiDiag by adding a QR
factorization pre-processing when appropriate

I Compare with “basic” Level 3 BLAS “à la” LAPACK Band
Bidiagonalization algorithm (Großer and Lang, 1999)

I Obtain a scalable parallel distributed implementation of BND2BD
(e.g., Großer and Lang, 1999) and BD2VAL (e.g., ScaLAPACK) in
order to have a scalable parallel distributed GE2VAL solver

I Study when singular vectors are requested. (In particular in this
case, some BiDiag trees will be able to pipeline.)

I Extend these ideas to Symmetric Tridiagonalization

Future work

I Improve PLASMA and ScaLAPACK BiDiag by adding a QR
factorization pre-processing when appropriate

I Compare with “basic” Level 3 BLAS “à la” LAPACK Band
Bidiagonalization algorithm (Großer and Lang, 1999)

I Obtain a scalable parallel distributed implementation of BND2BD
(e.g., Großer and Lang, 1999) and BD2VAL (e.g., ScaLAPACK) in
order to have a scalable parallel distributed GE2VAL solver

I Study when singular vectors are requested. (In particular in this
case, some BiDiag trees will be able to pipeline.)

I Extend these ideas to Symmetric Tridiagonalization

Future work

I Improve PLASMA and ScaLAPACK BiDiag by adding a QR
factorization pre-processing when appropriate

I Compare with “basic” Level 3 BLAS “à la” LAPACK Band
Bidiagonalization algorithm (Großer and Lang, 1999)

I Obtain a scalable parallel distributed implementation of BND2BD
(e.g., Großer and Lang, 1999) and BD2VAL (e.g., ScaLAPACK) in
order to have a scalable parallel distributed GE2VAL solver

I Study when singular vectors are requested. (In particular in this
case, some BiDiag trees will be able to pipeline.)

I Extend these ideas to Symmetric Tridiagonalization

