On applying the block Arnoldi process to the solution of a particular Sylvester-observer equation

L. Elbouyahyaoui¹, M. Heyouni², K. Jbilou³ and A. Messaoudi⁴

¹ C.R.M.E.F, Taza, (Morocco)

² ENSA, UMP Ecole Nationale des Sciences Appliquées Université Mohammed Premier, Oujda, (Morroco) mohammed.heyouni@gmail.com

³ LMPA, Université du Littoral Côte d'Opale, (France)

⁴ Ecole Normale Supérieure, Mohammed V University in Rabat, (Morocco)

October 27, 2016

Image: A math a math

Consider the LTI (linear time invariant) system

$$\begin{cases} \dot{\hat{x}}(t) &= A^{T} \hat{x}(t) + B \hat{u}(t), \quad \hat{x}(0) = \hat{x}_{0} \\ \hat{y}(t) &= C^{T} \hat{x}(t), \qquad t \ge 0 \end{cases}$$
(1)

- The state $\hat{x}(t) \in \mathbb{R}^n$.
- The input $\hat{u}(t) \in \mathbb{R}^p$ and the output $\hat{y}(t) \in \mathbb{R}^q$.
- The matrices $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times p}$, $C \in \mathbb{R}^{n \times q}$.

Luenberger Problem :

• We want to approximate $\hat{x}(t)$ by another state x(t).

Image: A match a ma

Luenberger idea :

Introduce the new control system

$$\begin{cases} \dot{x}(t) &= \widehat{H}^{T} x(t) + G^{T} \, \hat{y}(t) + X^{T} B \, \hat{u}(t), \quad x(0) = x_{0} \\ y(t) &= C^{T} x(t), \quad t \ge 0, \end{cases}$$

where $\widehat{H} \in \mathbb{R}^{q \times q}$, $G \in \mathbb{R}^{q \times q}$ and $X \in \mathbb{R}^{n \times q}$ are to be determined.

Letting

$$e(t) := x(t) - X^T \hat{x}(t),$$

we verify that

$$\dot{e}(t) := \frac{d}{dt}(e(t)) = \widehat{H}^{T} e(t) - (AX - X \widehat{H} - C G) \widehat{x}(t).$$
(3)

・ロン ・回 と ・ ヨン・

(2)

• If A and \widehat{H} have no eigenvalue in common (i.e., $\sigma(A) \cap \sigma(\widehat{H}) = \emptyset$), then the Sylvester equation

$$AX - X\hat{H} = CG, \tag{4}$$

Image: A math a math

has a unique solution X. In this case (3) implies that $\dot{e}(t) = \hat{H}^T e(t)$, and then

$$e(t) = exp(\widehat{H}^{\mathsf{T}} t) e(0) = exp(\widehat{H}^{\mathsf{T}} t) (x_0 - X^{\mathsf{T}} \widehat{x}_0).$$

• Moreover, if \widehat{H} is stable, (i.e., $\Re(\lambda) < 0$, $\forall \lambda \in \sigma(\widehat{H})$), then $e(t) := x(t) - X^T \hat{x}(t)$ converges to zero as t increases.

Proposed approach

To obtain x(t), one can first choose the matrices G and \hat{H} and then solve the Sylvester equation (4).

Previous works

 small problems : P. Van Dooren : [1984], B. N. Datta and collaborators : Bischof, Purkyastha [1996], Hetti [1997], Sarkissian [2000], Carvalho [2001], ...

Iarge problems :

- B. N. Datta and Y. Saad [1991], D. Calvetti, B. Lewis, L. Reichel [2001], (rank(C) = 1, Arnoldi process).
- B. N. Datta, M. Heyouni and K. Jbilou : [2010]. (rank(C) = r, Global Arnoldi process).

< ロ > < 同 > < 三 > < 三

We use the block Arnoldi process and describe another generalization of the Datta-Saad method for solving (4) for a large and sparse matrix A and with $rank(C) = r \ge 1$.

• we choose $G = I_q$ and suppose that $C = \tilde{C} \mathbb{E}_m^T \in \mathbb{R}^{n \times mr}$, with

$$\mathbb{E}_m^T = [0_r, \dots, 0_r, I_r] \in \mathbb{R}^{r \times mr}, \ \ rank(\tilde{C}) = r \ \text{and} \ q = mr.$$

• Equation (4) becomes

$$AX - X \widehat{H} = [\mathbf{0}_{n \times r}, \dots, \mathbf{0}_{n \times r}, \widetilde{C}] = \widetilde{C} \mathbb{E}_m^T;$$
(5)

where $A \in \mathbb{R}^{n \times n}$, $\tilde{C} \in \mathbb{R}^{n \times r}$ are given, while $\hat{H} \in \mathbb{R}^{mr \times mr}$ and $X \in \mathbb{R}^{n \times mr}$ are to be determined such that

- \widehat{H} is stable, (i.e. $\Re(\lambda) < 0, \forall \lambda \in \sigma(\widehat{H})$).
- $\sigma(\widehat{H}) \cap \sigma(A) = \emptyset$.
- (\widehat{H}^T, I) is controllable, (i.e., $[I, \widehat{H} \lambda I_q]$ is of maximal rank for every $\lambda \in \mathbb{R}$).

Tools : Let $A \in \mathbb{R}^{n \times n}$ and $V \in \mathbb{R}^{n \times r}$

Matrix valued polynomial : Let P_{m,r} be the set of r × r matrix-valued polynomials of degree m, i.e., for ψ_i ∈ ℝ^{r×r} and i = 1,..., m

$$\psi = (\psi_i) \in \mathbb{P}_{m,r} \Longleftrightarrow \psi(t) = \sum_{i=0}^m t^i \psi_i,$$

• The \circ notation : For $\psi = (\psi_i) \in \mathbb{P}_{m,r}$

$$\psi(A) \circ V = \sum_{i=0}^{m} A^{i} V \psi_{i}.$$

- Block Krylov subspace : $\mathbb{K}_m(A, V) = \operatorname{colspan}([V, A V, \dots, A^{m-1} V]).$
 - $\mathbb{K}_m(A, V)$ is spanned by the *mr* columns of $V, AV, \dots, A^{m-1}V$.
 - $Z \in \mathbb{K}_m(A, V) \iff Z = \sum_{i=1}^m A^{i-1} V \Omega_i$, with $\Omega_i \in \mathbb{R}^{r \times r}$, i = 1, ..., m. $\mathbb{K}_m(A, V) = \{\mathcal{P}(A) \circ V, \ \mathcal{P} \in \mathbb{P}_{m-1,r}\}$.

< □ > < 同 > < 回 > < Ξ > < Ξ

Algorithm 1 The block Arnoldi process

- 1. $[V_1, H_{1,0}] = QR(V)$; % QR decomposition of V
- 2. For $j = 1, \ldots, m$ do
- 3. $W = A V_j$,
- 4. for $i=1,2,\ldots,j$ do
- 5. $H_{i,j} = V_i^T W;$
- $\mathbf{6.} \qquad \mathbf{W} = \mathbf{W} \mathbf{V}_i \, \mathbf{H}_{i,j} \, ;$
- 7. endfor
- 8. $[V_{j+1}, H_{j+1,j}] = QR(W)$; % QR decomposition of W
- 9. EndFor
 - $\mathbb{V}_m = [V_1, \ldots, V_m] \in \mathbb{R}^{n \times mr}$ is orthonormal, i.e., $\mathbb{V}_m^T \mathbb{V}_m = I_{mr}$.
 - $\mathbb{H}_m = [H_{i,j}]$ is a $mr \times mr$ block upper Hessenberg matrix.
 - $\mathbb{E}_m = [\mathbf{0}_r, \dots, \mathbf{0}_r, \mathbf{I}_r]^T \in \mathbb{R}^{mr \times r}$

$$A \mathbb{V}_{m} = \mathbb{V}_{m} \mathbb{H}_{m} + V_{m+1} H_{m+1,m} \mathbb{E}_{m}^{T},$$

$$= \mathbb{V}_{m} \mathbb{H}_{m} + [\mathbf{0}_{n \times r}, \dots, \mathbf{0}_{n \times r}, V_{m+1} H_{m+1,m}].$$
(6)
(7)

(日) (同) (日) (日)

Observe the similarity between (8) and (9)

$$AX - X\widehat{H} = \widetilde{C}\mathbb{E}_m^T = [\mathbf{0}_{n \times r}, \dots, \mathbf{0}_{n \times r}, \widetilde{C}].$$
(8)

and

$$A \mathbb{V}_m - \mathbb{V}_m \mathbb{H}_m = V_{m+1} H_{m+1,m} \mathbb{E}_m^T = [0_{n \times r}, \dots, 0_{n \times r}, V_{m+1} H_{m+1,m}].$$
(9)

Hence, to solve the Sylvester-Observer equation (8), we propose to

- find a block V₁ such that V_{m+1} is equal to C
 (up to a multiplicative r × r matrix coefficient).
- transform \mathbb{H}_m into a matrix \widehat{H} such that $\sigma(\widehat{H}) = \{\mu_1, \dots, \mu_{mr}\}$ with $\Re(\mu_j) < 0$.
- take $X = \mathbb{V}_m$ (up to a matrix coefficient).

Image: A math a math

Proposition

The orthonormal matrices $V_i \in \mathbb{R}^{n \times r}$ generated by the block Arnoldi process are such that

$$V_{i+1} = \mathcal{P}_i(A) \circ V_1, \text{ for } i = 0, \dots, m.$$
 (10)

where \mathcal{P}_i is an $\mathbf{r} \times \mathbf{r}$ matrix-valued polynomial of degree *i*.

Proposition

Let \mathcal{P}_i , (i = 1, ..., m), be the $r \times r$ matrix-valued polynomial of degree *i* given by (10). Then, up to a multiplicative scalar $\rho_i \in \mathbb{R}$, the determinant of the matrix-valued polynomial $\mathcal{P}_i(t)$ is the characteristic polynomial of the block upper Hessenberg matrix \mathbb{H}_i , i.e.,

 $\det(\mathcal{P}_i(t)) = \rho_i \det(\mathbb{H}_i - t I_{ir}).$

For a similar result see [Simoncini and Gallopulous, LAA (1996)]

(a)

• Hence, since \mathbb{H}_m must be transformed by an eigenvalue assignment algorithm into \widehat{H} , in order to have the pre-assigned spectrum $\{\mu_1, \ldots, \mu_{mr}\}$, we propose to look for a polynomial \mathcal{P}_m such that

$$\mathcal{P}_m(A) \circ Y = \widetilde{C}, \tag{11}$$

< ロ > < 同 > < 三 > < 三

with

$$\det(\mathcal{P}_m(t)) = \rho \prod_{j=1}^{mr} (t - \mu_j).$$
(12)

• Once the block Y is computed, we apply the block Arnoldi process to the pair (A, Y) to get $\mathbb{V}_m = [V_1, \dots, V_m]$.

To solve the block linear system (11) satisfying (12) :

- Let $\widetilde{C} = [\widetilde{c}_1, \widetilde{c}_2, \dots, \widetilde{c}_r]$, with $\widetilde{c}_i \in \mathbb{R}^n$ for $i = 1, \dots, r$.
- Define $\Gamma = \bigcup_{i=1}^{r} \Gamma_i$ with $\Gamma_i = \{\mu_{i+jr}\}_{j=0,1,\dots,m-1}$ and $\mu_{i+jr} \neq \mu_{i+kr}$ for $j \neq k$.
- For i = 1, ..., r, we denote by $p_m^{(i)}$ the polynomial of degree m defined by

$$p_m^{(i)}(t) = \prod_{\mu \in \Gamma_i} (t - \mu) = \prod_{j=0}^{m-1} (t - \mu_{i+jr}).$$
(13)

• Take
$$\mathcal{P}_m(t) = \operatorname{diag}\left(\rho_m^{(1)}(t), \ldots, \rho_m^{(r)}(t)\right).$$

We verify that

$$\mathcal{P}_m(A) \circ Y = \widetilde{C} \iff \left[p_m^{(1)}(A) y_1, \dots, p_m^{(r)}(A) y_r \right] = [\widetilde{c}_1, \dots, \widetilde{c}_r]$$

イロト 不得下 イヨト イヨト

• For i = 1, ..., r, let $y_i \in \mathbb{R}^n$ be the solution of the following linear system

$$p_m^{(i)}(A) y_i = \widetilde{c}_i, \tag{14}$$

To solve the above systems, we proceed as in the Datta-Saad method

• Let
$$y_i = f^{(i)}(A) \, \widetilde{c}_i$$
 where $f^{(i)}(t) = \frac{1}{p_m^{(i)}(t)} = \prod_{j=0}^{m-1} \frac{1}{(t - \mu_{i+jr})}$

• Denoting by $[p_m^{(i)}]'(t)$ the derivative of $p_m^{(i)}(t)$, we show that

$$y_{i} = \sum_{j=0}^{m-1} \frac{1}{[p_{m}^{(i)}]'(\mu_{i+j\,r})} z_{j}^{(i)}, \text{ with } [p_{m}^{(i)}]'(\mu_{i+j\,r}) = \prod_{\substack{k=0\\k\neq j}}^{m-1} (\mu_{i+j\,r} - \mu_{i+kr}), \quad (15)$$

where $z_j^{(i)}$ for j = 0, ..., m-1 are solutions of the shifted linear systems

$$(\boldsymbol{A} - \mu_{i+j\,r} \boldsymbol{I}) \boldsymbol{z}_j^{(i)} = \widetilde{\boldsymbol{c}}_i, \quad \text{ for } i = 1, \dots, r.$$
(16)

Now, we have

$$A\mathbb{V}_m - \mathbb{V}_m \mathbb{H}_m = V_{m+1} H_{m+1,m} \mathbb{E}_m^T = [\mathbf{0}_{n \times r}, \dots, \mathbf{0}_{n \times r}, V_{m+1} H_{m+1,m}].$$

- The eigenvalues of \mathbb{H}_m do not necessarily coincide with the chosen scalars $\{\mu_k\}_{k=1,...,mr}$.
- Idea : Transform \mathbb{H}_m into (a stable matrix) \widehat{H} so that $\sigma(\widehat{H}) = \{\mu_1, \dots, \mu_{mr}\}$.
 - Define : $L_1 = \mathbb{E}_1 H_{1,0} = (H_{1,0}^T, 0_r, \dots, 0_r), \quad L_{i+1} = \mathbb{H}_m L_i L_i \widehat{\Lambda}_i, (i = 1, \dots, m+1)$ with $\widehat{\Lambda}_i = \operatorname{diag}(\mu_{1+(i-1)r}, \mu_{2+(i-1)r}, \dots, \mu_{r+(i-1)r})$

• Let
$$S = L_{m+1}$$
, $\alpha = \prod_{i=1}^{m-1} H_{i+1,i}^{-1}$

• Let $\widehat{H}_m = \mathbb{H}_m - S H_{1,0}^{-1} \alpha \mathbb{E}_m^T.$ (17)

The eigenvalues of
$$\widehat{H}_m$$
 are μ_1, \ldots, μ_{mr} .

Image: A math a math

Proposition

Let $\mathbb{V}_{m+1} = [\mathbb{V}_m, V_{m+1}]$, \mathbb{H}_m be respectively the Krylov and the upper block Hessenberg matrices constructed by the block Arnoldi process. Set also

$$\beta_m = \left(V_{m+1}^T \widetilde{C}\right)^{-1} H_{m+1,m},\tag{18}$$

Then the matrix \widehat{H}_m can be expressed as

$$\widehat{H}_m = \mathbb{H}_m - F \mathbb{E}_m^T, \tag{19}$$

where $F := \mathbb{V}_m^T \widetilde{C} \beta_m$. Moreover, the matrix \widehat{H}_m satisfies the Arnoldi-like relation

$$A \mathbb{V}_m - \mathbb{V}_m \,\widehat{H}_m = \widetilde{C} \,\beta_m \,\mathbb{E}_m^T.$$
⁽²⁰⁾

Remarks

- From a computational viewpoint, (19) is more convenient than (17)
- Another expression for $\beta_m : \beta_m = \prod_{i=0}^{m-1} H_{i+1,i}^{-1}$.

・ロト ・回ト ・ヨト ・ヨト

To recover the Sylvester-observer form

$$AX - X\widehat{H} = \left[\mathbf{0}_{n \times r}, \ldots, \mathbf{0}_{n \times r}, \widetilde{C}\right] = \widetilde{C} \mathbb{E}_{m}^{T},$$

• Define D as the last column block of the matrix $A \mathbb{V}_m - \mathbb{V}_m \widehat{H}_m$, i.e., $D = \widetilde{C} \beta_m$.

• Define the diagonal matrix

$$\Theta = \begin{pmatrix} I_r & 0_r & \dots & 0_r \\ 0_r & \ddots & \ddots & \vdots \\ \vdots & & I_r & 0_r \\ 0_r & \dots & 0_r & \beta_m^{-1} \end{pmatrix}.$$
 (21)

Then,

$$A \mathbb{V}_m \Theta - \mathbb{V}_m \Theta \Theta^{-1} \, \widehat{H}_m \Theta = \Big[\mathbf{0}_{n \times r}, \dots, \mathbf{0}_{n \times r}, \widetilde{C} \Big].$$

Take

$$X = \mathbb{V}_m \Theta \text{ and } \widehat{H} = \Theta^{-1} \widehat{H}_m \Theta.$$
 (22)

Image: A match a ma

Algorithm 2. The block Arnoldi alg. for multiple-output Sylvester-Observer equation

- Inputs : $A \in \mathbb{R}^{n \times n}$, $\widetilde{C} = (\widetilde{c}_1, \dots, \widetilde{c}_r) \in \mathbb{R}^{n \times r}$ and $\Gamma = \{\mu_1, \mu_2, \dots, \mu_{mr}\}$.
- *Output* : X, \hat{H} solution of the Sylvester-Observer equation.
- Step 1. Solve the linear problem $\mathcal{P}_m(A) \circ Y = \widetilde{C}$, i.e.,
 - Step 1.1. Solve $(A \mu_{i+j}, r \mid_{mr}) z_j^{(i)} = \tilde{c}_i$, for i = 1, ..., r and j = 0, ..., m 1. • Step 1.2. Compute $y_i = \sum_{j=0}^{m-1} \gamma_j z_j^{(i)}$; i = 1, ..., r, where $\gamma_j = \prod_{\substack{k=0 \ k-j}}^{m-1} \frac{1}{(\mu_{i+j,r} - \mu_{i+k,r})}$.
- Step 2. Define $Y = [y_1, \ldots, y_r]$; apply block Arnoldi to (A, Y) to get $\mathbb{H}_m = [H_{i,j}]$ and $\mathbb{V}_{m+1} = [V_1, \ldots, V_m, V_{m+1}]$;
- Step 3. Modify \mathbb{H}_m to get \widehat{H} such that $\sigma(\widehat{H}) = \{\mu_1, \mu_2, \dots, \mu_{mr}\}$, i.e.,
 - Step 3.1. Compute $\beta_m = \left(V_{m+1}^T \widetilde{C}\right)^{-1} H_{m+1,m} = \prod_{i=0}^{m-1} H_{i+1,i}^{-1}$ and $F = \mathbb{V}_m^T \widetilde{C} \beta_m$;
 - Step 3.2. Define $\widehat{H}_m = \mathbb{H}_m F \mathbb{E}_m^T$.
 - Step 3.3. Determine D the last block column of $A \mathbb{V}_m \mathbb{V}_m \widehat{H}_m$
 - Step 3.4. Construct $\Theta = \operatorname{diag}(I_r, \ldots, I_r, \beta_m^{-1}).$
- Step 4. Take $X = \mathbb{V}_m \Theta$, and $\widehat{H} = \Theta^{-1} \widehat{H}_m \Theta$.

イロト イヨト イヨト イヨ

- Experiments were performed on a laptop CORE i5 at 1.70GHz and 6.00Go of RAM.
- The algorithms were coded in Matlab R2014.a.
- The entries of the $n \times r$ matrix \tilde{C} were random values uniformly distributed on [0, 1].
- To solve mr linear systems , in Step 1.1 of Algorithm 2, we can use
 - a (preconditioned) Krylov method for shifted linear systems.
 - the Gaussian elimination method.

Image: A match a ma

• $\Gamma = \{z_k, \overline{z}_k\}$, with $\Re(z_k) = -7 * rand + min(real(eig(A))), \Im(z_k) = rand$

- $\widetilde{C} \in \mathbb{R}^{n \times r}$ is generated randomly.
- Gaussian elimination method is used to solve the *mr* linear systems.

イロト イヨト イヨト イヨト

A*X-X*\hat H-CG = 2.2253e-12, mu - sigma = 1.9788e-10, cond(X) = 2.1046e+01

・ロト ・回ト ・ヨト

・ロト ・回ト ・ヨト

- A=gallery('wathen',70,100), n = 21341, nnz(A₄) = 330361
- To test the influence of the pre-scripted set of eigenvalues Γ , we consider a set $\Gamma = \{\mu_1, \ldots, \mu_r\}$ of negative real values, $\Gamma = \Gamma^c = -c * \operatorname{rand}(mr, 1)$, where c is a positive integer.
- \widetilde{C} is generated randomly.
- Restarted Shifted FOM(50) is used to solve the linear systems. (Initial guess : $(Y_i)_0 = 0_{n \times r}$ Relative tolerance : $\varepsilon = 10^{-10}$).

m	r	С	SylvErr	EigErr	$\kappa(X)$
2	5	10	1.0410^{-10}	8.2410^{-09}	4.5910^{+00}
2	5	30	1.5510^{-13}	6.6510^{-12}	4.7010^{+00}
3	10	10	4.2510^{-09}	2.3910^{-08}	5.1710^{+00}
3	10	30	3.2410^{-10}	3.2210^{-09}	1.1010^{+01}
4	5	10	3.8510^{-06}	6.4110^{-05}	5.5410^{+00}
4	5	30	2.5110^{-09}	7.5510^{-06}	1.7310^{+01}

< □ > < 同 > < 回 > < Ξ > < Ξ

- A=gallery('wathen',70,100), n = 21341, $nnz(A_4) = 330361$
- To test the influence of the pre-scripted set of eigenvalues Γ , we consider a set $\Gamma = \{\mu_1, \ldots, \mu_r\}$ of negative real values, $\Gamma = \Gamma^c = -c * \operatorname{rand}(mr, 1)$, where c is a positive integer.
- \tilde{C} is generated randomly.
- Gaussian elimination is used to solve the linear systems.

m	r	С	SylvErr	EigErr	$\kappa(X)$
2	5	10	1.2210^{-13}	2.9710^{-13}	4.5910^{+00}
2	5	30	3.2510^{-14}	1.9110^{-13}	4.7010^{+00}
3	10	10	1.3310^{-11}	2.3910^{-09}	5.1710^{+00}
3	10	30	1.6210^{-12}	2.5710^{-10}	1.1010^{+01}
4	5	10	8.9210^{-09}	1.0010^{-05}	5.5410^{+00}
4	5	30	2.8210^{-10}	1.5610^{-07}	1.7310^{+01}

• • • • • • • • • • • •

Experiment 3 :

• A is of size $n = 20000 \ (p = n/2 = 10000)$

$$A = \begin{pmatrix} 0_p & I_p \\ & & \\ L & D \end{pmatrix}, \text{ where } L = \begin{pmatrix} I_1 & & \\ & \ddots & \\ & & I_p \end{pmatrix} \text{ and } D = \begin{pmatrix} d_1 & & \\ & \ddots & \\ & & d_p \end{pmatrix}.$$

- For $d_k = 2 \alpha_k$, $I_k = -(\alpha_k^2 + \beta_k^2)$ then : $\sigma(A) = \{\lambda_k, \bar{\lambda}_k\}_{k=1,...,p}$, where $\lambda_k = \alpha_k + i \beta_k$. (α_k , β_k were random values uniformly distributed in [-1, 1].)
- The μ_k are the zeros of the Chebyshev polynomial of 1st kind of degree mr for [a + i b, a i b], where $a = -1 + \min_{d \in \sigma(A)} \operatorname{Re}(d)$ and $b = \max_{d \in \sigma(A)} \operatorname{Im}(d)$.
- Gaussian elimination is used to solve the linear systems.

m	r	SylvErr	EigErr	$\kappa(X)$
3	10	6.9110^{-14}	3.2310^{-14}	2.8010^{+01}
5	4	1.0010^{-12}	2.1210^{-12}	4.8210^{+00}
5	6	2.9610^{-13}	2.2610^{-12}	5.4210^{+00}
6	10	9.9510^{-13}	5.1110^{-11}	3.9710^{+00}
8	6	8.8110^{-11}	8.6410^{-08}	4.4410^{+00}
8	10	8.9610^{-12}	1.0810^{-07}	4.6110^{+00}

- We used the block Arnoldi for solving the multi-output Sylvester-Observer equation arising in state-estimation in a linear time-invariant control system.
- The proposed method is suitable for large and sparse computing.
- The method can be considered as a generalization of the Arnoldi-method proposed earlier by Datta and Saad in the single-output case.

< □ > < 同 > < 回 > < Ξ > < Ξ

Thanks for your attention

A B +
 A B +
 A

Noticing the similarity between the particular Sylv. obs. eqt. (23)

$$A X - X \widehat{H} = \widetilde{C} \mathbb{E}_m^T = [\mathbf{0}_{n \times r}, \dots, \mathbf{0}_{n \times r}, \widetilde{C}].$$
(23)

and the global Arnoldi iteration (24)

 $A \mathcal{V}_{m} - \mathcal{V}_{m} (H_{m} \otimes I_{r}) = h_{m+1,m} V_{m+1} (e_{m} \otimes I_{r})^{T} = [0_{n \times r}, \dots, 0_{n \times r}, h_{m+1,m} V_{m+1}].$ (24)

To obtain a solution to the Sylvester-Observer equation (23), we applied the Datta-Saad approach the $m \times m$ upper Hessenberg matrix H_m , i.e.,

- find $V_1 \in \mathbb{R}^{n \times r}$ such that $V_{m+1} = \widetilde{C}$ (a part from a multiplicative scalar).
- transform H_m to \widehat{H}_m such that $\sigma(\widehat{H}_m) = \{\mu_1, \dots, \mu_m\}$ with $\Re(\mu_j) < 0$.
- take $\widehat{H} = (\widehat{H}_m \otimes I_r)$ and observe that $\sigma(\widehat{H}) = \{\mu_1, \dots, \mu_m\}$. multiplicity $(\mu_k) = r$.
- take $X = \mathcal{V}_m$ (a part from a multiplicative scalar).

イロト イロト イヨト イヨン