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Consider the LTI (linear time invariant) system
(1) = ATX(t)+Bi(t), %(0) =% )
(t) = CTx(1), t>0

<> X

@ The state X(t) € R".
@ The input @(t) € R” and the output §(t) € RY.

@ The matrices A € R"*", B € R"*?, C € R"*9.

Luenberger Problem :

@ We want to approximate X(t) by another state x(t)
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Luenberger idea :

Introduce the new control system

x(t) = HTx(t)+ G 9(t) + X" Ba(t), x(0)=x )
y(t) = CTx(1), t >0,
where H € R7%9, G € R7%9 and X € R"*9 are to be determined.
Letting
e(t) == x(t) — X" x(t),
we verify that
e(t) = S (e(t) = AT e(t) ~ (AX ~ X H — CG)x() 3)
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So

@ If A and H have no eigenvalue in common (i.e., o(A) N O’(I/:I) = (), then the

Sylvester equation N
AX —XH=CG, (4)

has a unique solution X. In this case (3) implies that é(t) = HT e(t), and then

e(t) = exp(H t) e(0) = exp(H' t) (xo — X %0).

@ Moreover, if H is stable, (i.e., R(A\) <0, VA € o(H)), then

e(t) == x(t) — X" %(t) converges to zero as t increases.

Proposed approach

To obtain x(t), one can first choose the matrices G and H and then solve the Sylvester
equation (4).
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Previous works

@ small problems : P. Van Dooren : [1984], B. N. Datta and collaborators : Bischof,
Purkyastha [1996], Hetti [1997], Sarkissian [2000], Carvalho [2001], ...

@ large problems :
o B. N. Datta and Y. Saad [1991], D. Calvetti, B. Lewis, L. Reichel [2001],
(rank(C) = 1, Arnoldi process).

o B. N. Datta, M. Heyouni and K. Jbilou : [2010]. (rank(C) = r, Global Arnoldi
process).
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We use the block Arnoldi process and describe another generalization of the Datta-Saad
method for solving (4) for a large and sparse matrix A and with rank(C) =r > 1.

@ we choose G = Iy and suppose that C = CEl € R™™  with

E) =[0,...,0,, ] € R™*™  rank(C)=r and g = mr.

@ Equation (4) becomes
AX = XH=[0nxr,...,0nxr, C] = CE]; (5)

where A € R™", C € R"™*" are given, while H e R™ ™ and X € R™™ are to be
determined such that

o His stable, (i.e. R(A) <0, VA € o(H)).
o o(H)Na(A) =0.

o (HT, 1) is controllable, (i.e., [/, H — A ly] is of maximal rank for every A € R).
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Tools : Let Ac R"*" and V € R"*"

@ Matrix valued polynomial : Let P, , be the set of r x r matrix-valued polynomials of
degree m, ie., fory; e R™*"and i=1,...,m

) = () € P, <= () = Y 'y,

i=0

@ The o notation : For ¢ = (¢i) € Pp,,

P(A)o V=) A Vi
i=0

@ Block Krylov subspace : Km(A, V) = colspan([V,AV,..., A" V]).

o Km(A, V) is spanned by the mr columns of V, AV, ... A™~1V.

m
0 ZEKn(A V) = Z=> AT'VQ;, withQ eR> i=1...,m
i=1

Km(A,V)={P(A)oV, PEPn_1,}.
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Algorithm 1 The block Arnoldi process
1. [Vi, Hio] = QR(V); % QR decomposition of V
2. For j=1,...,mdo

3. W=AV,

4 fori=1,2,...,jdo

5 Hij= V" W;

6 W=W-VH;;

7. endfor

8 [Vis1, Hiy1,j] = QR(W); % QR decomposition of W
9. EndFor

- Vm=[VW,..., Via] € R™™ is orthonormal, i.e., V] V., = I,
- Hn = [Hij] is a mr x mr block upper Hessenberg matrix.
-Em=10,...,0,,1]" € R™>"

AV, Vo Hm + Vg1 Hosa,m E;: (6)

Vm Hm + [On><r7 LR 7On><r7 Vm+1 Hm+1,m]~ (7)
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Observe the similarity between (8) and (9)
AX —XH=CE] =[0nxr,...,00:, Cl. (8)
and
AVm - Vm Hm = Vm+1 Hm+1,m E; = [0n><n DRI 0n><r» Vm+1 Hm+1,m]- (9)
Hence, to solve the Sylvester-Observer equation (8), we propose to

@ find a block V4 such that V1 is equal to C (up to a multiplicative r x r matrix
coefficient).

o transform H,, into a matrix H such that o(H) = {1, .. ., ftmr } with R(p;) < O.

@ take X = V,, (up to a matrix coefficient).

M. Heyouni (ENSAH, UMP) NL2A 2016, Luminy 2016, October 24-28 9/



To find Vi, we use

Proposition

The orthonormal matrices V; € R"*" generated by the block Arnoldi process are such that
Viga = Pi(A)o V4, fori=0,...,m. (10)

where P; is an r X r matrix-valued polynomial of degree i.

Proposition

Let P;, (i=1,...,m), be the r x r matrix-valued polynomial of degree i given by (10).
Then, up to a multiplicative scalar p; € R, the determinant of the matrix-valued
polynomial Pi(t) is the characteristic polynomial of the block upper Hessenberg matrix
H,‘, i.e.,

det(P,-(t)) = pi det(H,— —tl; )

For a similar result see [Simoncini and Gallopulous, LAA (1996)]
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@ Hence, since H,, must be transformed by an eigenvalue assignment algorithm into
H, in order to have the pre-assigned spectrum {u1,. .., tmr}, we propose to look for
a polynomial P, such that

Pm(A)o Y = C, (11)
with .

det(Pu(t)) = p [ [ (¢ = ). (12)

Jj=1

@ Once the block Y is computed, we apply the block Arnoldi process to the pair
(AY) toget Vi, = [V4, ..., Vil
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To solve the block linear system (11) satisfiying (12) :

o Let C = [c,@,...,¢], withg eR " fori=1,...,r.

o Define [= U F,- With F,- = {,Mi-%—jr}jzo,l,..‘,m—l and Mi+jr 75 Mitkr forj # k.

i=1

@ Fori=1,...,r, we denote by pg) the polynomial of degree m defined by
) m—1
p(t) = T (¢t —m) = T (= pinir)- (13)
ner; Jj=0

@ Take Ppn(t) = diag (p,(,})(t)7 AU p,(,f)(t)).

We verify that

Pu(A)oY =C = [p (AP (A v ] = [, E]
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@ Fori=1,...,r, let y; € R" be the solution of the following linear system

P(A)y =T, (14)

To solve the above systems, we proceed as in the Datta-Saad method

o Let y; = FO(A) G where F(t) =
Py (r) 1_! - ,ﬂr)

o Denoting by [p)]'(t) the derivative of p(t), we show that

m— m—1
Z 2, with [P] (iej o) = [T Guivjr = picie)s (15)
Jj=0 p'" ] (M'+J ’) k=0
k#j
where z fOI’J =0,. — 1 are solutions of the shifted linear systems
(A—u;+jrl)zj.(i) =%¢, fori=1...r. (16)
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Now, we have

AVp =V Hp = Vi Hm+1,m E; = [Onxr, ooy Onxry Vg Hm+1,m].

@ The eigenvalues of H,, do not necessarily coincide with the chosen scalars
{Hk}k:l,m,mr-

o Idea : Transform H,, into (a stable matrix) H so that a(lfl) ={pa,. ., pmr }-
o Define : Ly =E1Hio = (H{,0r,...,0r), Liz1=Hnli—LiA, (i=1,...,m+1)
with A; = diag(p14(i—1) rs B2 (i—1) r - - s Bt (i—1) r)

o Llet S=Lpi1, a=]]"7 HE

i=1 Mg
o Let N
Hm =Hpn — SHyd aE]. (17)
The eigenvalues of H,, are Wiy ey fomre
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Proposition

Let Vi1 = [Vim, Vint1], Hm be respectively the Krylov and the upper block Hessenberg
matrices constructed by the block Arnoldi process. Set also

B = (Va1 ©) " Hun1,m, (18)
Then the matrix Hp can be expressed as
Hn=H, — FET (19)

where F := V[ C Bm. Moreover, the matrix H,, satisfies the Arnoldi-like relation

AV, =V Hy = CBmE (20)

@ From a computational viewpoint, (19) is more convenient than (17)

m—1

@ Another expression for B, @ Bm = H H,+1 i
i=0
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To recover the Sylvester-observer form

AX —XH= [onx,,...,onx,,E] —CE!,

@ Define D as the last column block of the matrix AV,, — V,, FI,,,, ie., D= GB,,,.

@ Define the diagonal matrix

I, 0 ... O
o—| (21)
: I, 0,
0 ... 0, Bt
Then,
AV, O -V, 00 ' Hy O = [Onx,,...,om, c].
@ Take R R
X=V,0 and H=©"'H,©. (22)
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Algorithm 2. The block Arnoldi alg. for multiple-output Sylvester-Observer equation

@ Inputs: A€ R™", C= (C,..., &) eR™ and T = {1, 2, - -+, fhmr }-
@ Output : X, H solution of the Sylvester-Observer equation.

@ Step 1. Solve the linear problem Py (A)o Y = C ie.,
@ Step 1.1. Solve (Afu,-_*_jrlm,)zj('-) =¢,fori=1,...;randj=0,...,m—1.

m—1

—1
i 1
o Step 1.2. Compute y; = 'y-z.(') ;i=1,...,r, where v; = .
I Jz:; T ! H (Witjr = Hitkr)
k#j

@ Step 2. Define Y = [y1,...,y]; apply block Arnoldi to (A, Y) to get Hn» = [Hi ]
and Vm+1 = [\/17 ey Vm, Vm+1] ;

@ Step 3. Modify H,, to get H such that U(Fl) = {pa, p2, ..., fbmr }, i€,
m—1
~\ —1 ~
o Step 3.1. Compute Bm = (va+1 c) Hmstm = [ Hik, and F = V] C B
i=0
o Step 3.2. Define Hp = Hy — FET.
o Step 3.3. Determine D the last block column of AV, — V,, Hp,

o Step 3.4. Construct © = diag(/y,..., I, B;l).

o Step 4. Take X =V,,©, and H=©"1H,, ©.
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Numerical tests

@ Experiments were performed on a laptop CORE i5 at 1.70GHz and 6.00Go of RAM.
@ The algorithms were coded in Matlab R2014.a.
@ The entries of the n x r matrix C were random values uniformly distributed on [0, 1].

@ To solve mr linear systems , in Step 1.1 of Algorithm 2, we can use

o a (preconditioned) Krylov method for shifted linear systems.

@ the Gaussian elimination method.
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9@ A = sparse(B — tril(B, —5) — triu(B,7)), n = 1000, B = rand(n)

A= sparse(B-tril(B,~5)-triu(8,7), B = rand(n)

. o o o o
2
a
6 .
8 e e e s o 0 s e
e e e s e 0 s s 0 s
10 D I RN Y
12 D R
14 ER R R R
16 D R
18 e e e e 0 o e
e e e s e e
20 CECE
0 2 4 6 8 10 12 14 16 18 20
nz =189

o I = {zk, 2z}, with R(zx) = —7 x rand + min(real(eig(A))), S(zx) = rand
o CeER™ s generated randomly.

@ Gaussian elimination method is used to solve the mr linear systems.
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A*X-X*\hat H-CG = 2.2253e-12, mu - sigma = 1.9788e-10, cond(X) = 2.1046e+01
15 T T T T T

mu
sigma = eig(\hat H)
eig(A)

4
o

-15 1 1 1 1 ! !
-8 0 2 4 6

-2
n=1000,m=4,r=4
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A*X-X*\hat H-CG = 3.3125e-13, mu - sigma = 6.0940e-10, cond(X) = 7.5317e+01

15 T T T T T T
+ mu
O sigma = eig(\hat H)
+ eig(A)
1k i
&b
® & & o
2}
® ®
0.5F B
b
@ @
of & 1
® @
b
—05kF i
b
@ 2}
2} @ @@ ®
23]
1+ i
-15 L L L L L L L
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@ A=gallery(’wathen’,70,100), n = 21341, nnz(As) = 330361

@ To test the influence of the pre-scripted set of eigenvalues I', we consider a set
= {u1,...,pr} of negative real values, I = ' = —c *xrand(mr, 1), where c is a
positive integer.

o Cis generated randomly.

@ Restarted Shifted FOM(50) is used to solve the linear systems. (Initial guess :
(Y:)o = Onxr Relative tolerance : ¢ = 10_10).

m| r | c SylvErr EigErr K(X)

2 5 [10] 1.04107° | 824107 | 450107
2| 5 |30 15510713 | 6.65107% | 4.70107°
3|10 | 10 | 425107% | 2.39107% | 5.17107%
3|10 |30 | 3.24107% | 3.22107% | 1.1010%%
4 10 | 3.85107% | 6.41107% | 554101
4 | 5 (30251107 | 7.55107% | 1.73107"

M. Heyouni (ENSAH, UMP) NL2A 2016, Luminy 2016, October 24-28



Experiment 2 bis :

@ A=gallery(’wathen’,70,100), n = 21341, nnz(As) = 330361

@ To test the influence of the pre-scripted set of eigenvalues I', we consider a set
= {u1,...,pr} of negative real values, I = ' = —c *xrand(mr, 1), where c is a
positive integer.

o Cis generated randomly.

@ Gaussian elimination is used to solve the linear systems.

m| r c SylvErr EigErr K(X)

2 5 [10] 1221078 [ 2971072 | 459107
2| 5 (30325107 | 1.91107'% | 4.7010%%®
3|10 10 | 1.33107! | 2.39107% | 5.17107%
311030 | 1.62107'2 | 257107 | 1.1010™™
4 10 | 8.92107% | 1.00107% | 5.5410%%
4 | 5 |30 2821071° | 1.56107% | 1.7310™™
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Experiment 3 :

@ Ais of size n = 20000 (p = n/2 = 10000)

0, I
A =
L D

, Where L =

h

o

and D =

dh

dp

o For di = 2ay, Ik = —(ai + B2) then : 0(A) = { A, Ak bhet,... p, Where
A = ak + 1 Bk. (ak, Bk were random values uniformly distributed in [-1, 1].)

@ The py are the zeros of the Chebyshev polynomial of 1st kind of degree mr for
[a+12b, a—1b], where a = —1+ mingc,(a) Re(d) and b = maxgeq(a) Im(d).

@ Gaussian elimination is used to solve the linear systems.

m| r SylvErr EigErr K(X)

3 [10 ] 6.91107 | 3.2310° ™ | 2.8010™
5| 4 | 1.00107'% | 2.12107* | 4.82107%
5| 6 | 29610713 | 226107 | 5.42107%
6 | 10 | 9.95107 | 5.111071 | 3.9710*%
8 | 6 | 881107 | 8.64107% | 4.44107%°
8 | 10 | 8.9610712 | 1.08107% | 4.61107%
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Conclusion

@ We used the block Arnoldi for solving the multi-output Sylvester-Observer equation
arising in state-estimation in a linear time-invariant control system.

@ The proposed method is suitable for large and sparse computing.

@ The method can be considered as a generalization of the Arnoldi-method proposed
earlier by Datta and Saad in the single-output case.
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Thanks for your attention
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Comparing to the global Arnoldi process

Noticing the similarity between the particular Sylv. obs. eqt. (23)

AX —XH=CE! = [Onxr,...,00xr, Cl. (23)
and the global Arnoldi iteration (24)

Avm - vm (Hm & lr) = hm+1,m Vm+1 (em ® Ir)T = [Onxm ceey On><r7 hm+1,m Vm+1]- (24)

To obtain a solution to the Sylvester-Observer equation (23), we applied the Datta-Saad
approach the m x m upper Hessenberg matrix Hp, i.e.,

o find Vi € R™ such that Vi1 = C (a part from a multiplicative scalar).
o transform Hp, to Hp such that o(Hm) = {111, . .., ptm} with R(p;) < 0.

o take H = (Hn ® I,) and observe that o(H) = {ju1,.. ., jim}.
multiplicity(ux) = r.

@ take X = V,, (a part from a multiplicative scalar).
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