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Consider the LTI (linear time invariant) system

{
˙̂x(t) = AT x̂(t) + B û(t), x̂(0) = x̂0
ŷ(t) = CT x̂(t), t ≥ 0

(1)

The state x̂(t) ∈ R
n.

The input û(t) ∈ R
p and the output ŷ(t) ∈ R

q.

The matrices A ∈ R
n×n, B ∈ R

n×p, C ∈ R
n×q.

Luenberger Problem :

We want to approximate x̂(t) by another state x(t).
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Luenberger idea :

Introduce the new control system

{
ẋ(t) = ĤT x(t) + GT ŷ(t) + XT B û(t), x(0) = x0
y(t) = CT x(t), t ≥ 0,

(2)

where Ĥ ∈ R
q×q, G ∈ R

q×q and X ∈ R
n×q are to be determined.

Letting
e(t) := x(t)− XT x̂(t),

we verify that

ė(t) :=
d

dt
(e(t)) = ĤT e(t)− (AX − X Ĥ − C G ) x̂(t). (3)
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So

If A and Ĥ have no eigenvalue in common (i.e., σ(A) ∩ σ(Ĥ) = ∅), then the
Sylvester equation

AX − X Ĥ = C G , (4)

has a unique solution X . In this case (3) implies that ė(t) = ĤT e(t), and then

e(t) = exp(ĤT t) e(0) = exp(ĤT t) (x0 − XT x̂0).

Moreover, if Ĥ is stable, (i.e., ℜ(λ) < 0, ∀ λ ∈ σ(Ĥ)), then

e(t) := x(t)− XT x̂(t) converges to zero as t increases.

Proposed approach

To obtain x(t), one can first choose the matrices G and Ĥ and then solve the Sylvester
equation (4).
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Previous works

small problems : P. Van Dooren : [1984], B. N. Datta and collaborators : Bischof,
Purkyastha [1996], Hetti [1997], Sarkissian [2000], Carvalho [2001], ...

large problems :

B. N. Datta and Y. Saad [1991], D. Calvetti, B. Lewis, L. Reichel [2001],
(rank(C) = 1, Arnoldi process).

B. N. Datta, M. Heyouni and K. Jbilou : [2010]. (rank(C) = r , Global Arnoldi
process).
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We use the block Arnoldi process and describe another generalization of the Datta-Saad
method for solving (4) for a large and sparse matrix A and with rank(C) = r ≥ 1.

we choose G = Iq and suppose that C = C̃ E
T
m ∈ R

n×mr , with

E
T
m = [0r , . . . , 0r , Ir ] ∈ R

r×mr , rank(C̃) = r and q = mr .

Equation (4) becomes

AX − X Ĥ = [0n×r , . . . , 0n×r , C̃ ] = C̃ E
T
m; (5)

where A ∈ R
n×n, C̃ ∈ R

n×r are given, while Ĥ ∈ R
mr×mr and X ∈ R

n×mr are to be
determined such that

Ĥ is stable, (i.e. ℜ(λ) < 0, ∀ λ ∈ σ(Ĥ)).

σ(Ĥ) ∩ σ(A) = ∅.

(ĤT , I ) is controllable, (i.e., [I , Ĥ − λ Iq ] is of maximal rank for every λ ∈ R).
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Tools : Let A ∈ R
n×n and V ∈ R

n×r

Matrix valued polynomial : Let Pm,r be the set of r × r matrix-valued polynomials of
degree m, i.e., for ψi ∈ R

r×r and i = 1, . . . ,m

ψ = (ψi ) ∈ Pm,r ⇐⇒ ψ(t) =

m∑

i=0

t i ψi ,

The ◦ notation : For ψ = (ψi ) ∈ Pm,r

ψ(A) ◦ V =

m∑

i=0

Ai V ψi .

Block Krylov subspace : Km(A,V ) = colspan(
[
V ,AV , . . . ,Am−1 V

]
).

Km(A,V ) is spanned by the m r columns of V ,AV , . . . ,Am−1V .

Z ∈ Km(A,V ) ⇐⇒ Z =
m∑

i=1

Ai−1 V Ωi , with Ωi ∈ R
r×r , i = 1, . . . ,m.

Km(A,V ) = {P(A) ◦ V , P ∈ Pm−1,r} .
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Algorithm 1 The block Arnoldi process

1. [V1,H1,0] = QR(V ) ; % QR decomposition of V

2. For j = 1, . . . ,m do

3. W = AVj ,

4. for i = 1, 2, . . . , j do

5. Hi,j = V T
i W ;

6. W = W − Vi Hi,j ;

7. endfor

8. [Vj+1,Hj+1,j ] = QR(W ) ; % QR decomposition of W

9. EndFor

- Vm = [V1, . . . ,Vm] ∈ R
n×mr is orthonormal, i.e., VT

m Vm = Imr .

- Hm = [Hi,j ] is a mr ×mr block upper Hessenberg matrix.

- Em = [0r , . . . , 0r , Ir ]
T ∈ R

mr×r

AVm = Vm Hm + Vm+1 Hm+1,m E
T
m, (6)

= Vm Hm + [0n×r , . . . , 0n×r ,Vm+1 Hm+1,m]. (7)
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Observe the similarity between (8) and (9)

AX − X Ĥ = C̃ E
T
m = [0n×r , . . . , 0n×r , C̃ ]. (8)

and
AVm − Vm Hm = Vm+1 Hm+1,m E

T
m = [0n×r , . . . , 0n×r ,Vm+1 Hm+1,m]. (9)

Hence, to solve the Sylvester-Observer equation (8), we propose to

find a block V1 such that Vm+1 is equal to C̃ (up to a multiplicative r × r matrix
coefficient).

transform Hm into a matrix Ĥ such that σ(Ĥ) = {µ1, . . . , µmr} with ℜ(µj) < 0.

take X = Vm (up to a matrix coefficient).
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To find V1, we use

Proposition

The orthonormal matrices Vi ∈ R
n×r generated by the block Arnoldi process are such that

Vi+1 = Pi (A) ◦ V1, for i = 0, . . . ,m. (10)

where Pi is an r × r matrix-valued polynomial of degree i .

Proposition

Let Pi , (i = 1, . . . ,m), be the r × r matrix-valued polynomial of degree i given by (10).
Then, up to a multiplicative scalar ρi ∈ R, the determinant of the matrix-valued
polynomial Pi (t) is the characteristic polynomial of the block upper Hessenberg matrix
Hi , i.e.,

det(Pi (t)) = ρi det(Hi − t Ii r ).

For a similar result see [Simoncini and Gallopulous, LAA (1996)]
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Hence, since Hm must be transformed by an eigenvalue assignment algorithm into
Ĥ, in order to have the pre-assigned spectrum {µ1, . . . , µmr}, we propose to look for
a polynomial Pm such that

Pm(A) ◦ Y = C̃ , (11)

with

det(Pm(t)) = ρ
mr∏

j=1

(t − µj). (12)

Once the block Y is computed, we apply the block Arnoldi process to the pair
(A,Y ) to get Vm = [V1, . . . ,Vm].
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To solve the block linear system (11) satisfiying (12) :

Let C̃ = [c̃1, c̃2, . . . , c̃r ], with c̃i ∈ R
n for i = 1, . . . , r .

Define Γ =

r⋃

i=1

Γi with Γi = {µi+jr}j=0,1,...,m−1 and µi+jr 6= µi+kr for j 6= k.

For i = 1, . . . , r , we denote by p
(i)
m the polynomial of degree m defined by

p(i)
m (t) =

∏

µ∈Γi

(t − µ) =

m−1∏

j=0

(t − µi+jr ). (13)

Take Pm(t) = diag
(
p
(1)
m (t), . . . , p

(r)
m (t)

)
.

We verify that

Pm(A) ◦ Y = C̃ ⇐⇒
[
p(1)
m (A) y1, . . . , p

(r)
m (A) yr

]
= [c̃1, . . . , c̃r ]

M. Heyouni (ENSAH, UMP) NL2A 2016, Luminy 2016, October 24-28 12 / 27



For i = 1, . . . , r , let yi ∈ R
n be the solution of the following linear system

p(i)
m (A) yi = c̃i , (14)

To solve the above systems, we proceed as in the Datta-Saad method

Let yi = f (i)(A) c̃i where f (i)(t) =
1

p
(i)
m (t)

=

m−1∏

j=0

1

(t − µi+jr )
.

Denoting by [p
(i)
m ]′(t) the derivative of p

(i)
m (t), we show that

yi =

m−1∑

j=0

1

[p
(i)
m ]′(µi+j r )

z
(i)
j , with [p(i)

m ]′(µi+j r ) =

m−1∏

k=0
k 6=j

(µi+j r − µi+kr ), (15)

where z
(i)
j for j = 0, . . . ,m − 1 are solutions of the shifted linear systems

(A− µi+j r I ) z
(i)
j = c̃i , for i = 1, . . . , r . (16)
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Now, we have

AVm − Vm Hm = Vm+1 Hm+1,m E
T
m = [0n×r , . . . , 0n×r ,Vm+1 Hm+1,m].

The eigenvalues of Hm do not necessarily coincide with the chosen scalars
{µk}k=1,...,mr .

Idea : Transform Hm into (a stable matrix) Ĥ so that σ(Ĥ) = {µ1, . . . , µmr}.

Define : L1 = E1 H1,0 = (HT
1,0, 0r , . . . , 0r ), Li+1 = Hm Li − Li Λ̂i , (i = 1, . . . ,m + 1)

with Λ̂i = diag(µ1+(i−1) r , µ2+(i−1) r , . . . , µr+(i−1) r )

Let S = Lm+1, α =
∏m−1

i=1 H−1
i+1,i .

Let
Ĥm = Hm − S H−1

1,0 αE
T
m. (17)

The eigenvalues of Ĥm are µ1, . . . , µmr .
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Proposition

Let Vm+1 = [Vm,Vm+1], Hm be respectively the Krylov and the upper block Hessenberg
matrices constructed by the block Arnoldi process. Set also

βm = (V T
m+1 C̃)−1 Hm+1,m, (18)

Then the matrix Ĥm can be expressed as

Ĥm = Hm − F E
T
m, (19)

where F := V
T
m C̃ βm. Moreover, the matrix Ĥm satisfies the Arnoldi-like relation

AVm − Vm Ĥm = C̃ βm E
T
m. (20)

Remarks

From a computational viewpoint, (19) is more convenient than (17)

Another expression for βm : βm =

m−1∏

i=0

H−1
i+1,i .
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To recover the Sylvester-observer form

AX − X Ĥ =
[
0n×r , . . . , 0n×r , C̃

]
= C̃ E

T
m,

Define D as the last column block of the matrix AVm − Vm Ĥm, i.e., D = C̃ βm.

Define the diagonal matrix

Θ =




Ir 0r . . . 0r

0r
. . .

. . .
...

... Ir 0r
0r . . . 0r β−1

m



. (21)

Then,

AVm Θ− Vm ΘΘ−1 Ĥm Θ =
[
0n×r , . . . , 0n×r , C̃

]
.

Take
X = Vm Θ and Ĥ = Θ−1 Ĥm Θ. (22)
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Algorithm 2. The block Arnoldi alg. for multiple-output Sylvester-Observer equation

Inputs : A ∈ R
n×n, C̃ = (c̃1, . . . , c̃r ) ∈ R

n×r and Γ = {µ1, µ2, . . . , µmr}.

Output : X , Ĥ solution of the Sylvester-Observer equation.

Step 1. Solve the linear problem Pm(A) ◦ Y = C̃ , i.e.,

Step 1.1. Solve (A− µi+j r Imr ) z
(i)
j

= c̃i , for i = 1, . . . , r and j = 0, . . . ,m − 1.

Step 1.2. Compute yi =

m−1∑

j=0

γj z
(i)
j

; i = 1, . . . , r , where γj =

m−1∏

k=0
k 6=j

1

(µi+j r − µi+k r )
.

Step 2. Define Y = [y1, . . . , yr ] ; apply block Arnoldi to (A,Y ) to get Hm = [Hi,j ]
and Vm+1 = [V1, . . . ,Vm,Vm+1] ;

Step 3. Modify Hm to get Ĥ such that σ(Ĥ) = {µ1, µ2, . . . , µmr}, i.e.,

Step 3.1. Compute βm =
(
VT
m+1 C̃

)−1
Hm+1,m =

m−1∏

i=0

H−1
i+1,i and F = V

T
m C̃ βm ;

Step 3.2. Define Ĥm = Hm − F E
T
m.

Step 3.3. Determine D the last block column of AVm − Vm Ĥm

Step 3.4. Construct Θ = diag(Ir , . . . , Ir , β
−1
m ).

Step 4. Take X = Vm Θ, and Ĥ = Θ−1 Ĥm Θ.
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Numerical tests

Experiments were performed on a laptop CORE i5 at 1.70GHz and 6.00Go of RAM.

The algorithms were coded in Matlab R2014.a.

The entries of the n× r matrix C̃ were random values uniformly distributed on [0, 1].

To solve mr linear systems , in Step 1.1 of Algorithm 2, we can use

a (preconditioned) Krylov method for shifted linear systems.

the Gaussian elimination method.
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Experiment 1 :

A = sparse(B− tril(B,−5)− triu(B, 7)), n = 1000, B = rand(n)

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

18

20

nz = 189

A = sparse(B−tril(B,−5)−triu(B,7),    B = rand(n)

Γ = {zk , z̄k}, with ℜ(zk) = −7 ∗ rand +min(real(eig(A))), ℑ(zk) = rand

C̃ ∈ R
n×r is generated randomly.

Gaussian elimination method is used to solve the m r linear systems.
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−8 −6 −4 −2 0 2 4 6
−1.5

−1

−0.5

0

0.5

1

1.5

n = 1000, m = 4, r = 4

A*X−X*\hat H−CG = 2.2253e−12, mu − sigma = 1.9788e−10, cond(X) = 2.1046e+01

 

 
mu
sigma = eig(\hat H)
eig(A)

M. Heyouni (ENSAH, UMP) NL2A 2016, Luminy 2016, October 24-28 20 / 27



−10 −8 −6 −4 −2 0 2 4 6
−1.5

−1

−0.5

0

0.5

1

1.5

n = 1000, m = 5, r = 6

A*X−X*\hat H−CG = 3.3125e−13, mu − sigma = 6.0940e−10, cond(X) = 7.5317e+01

 

 
mu
sigma = eig(\hat H)
eig(A)
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Experiment 2 :

A=gallery(’wathen’,70,100), n = 21341, nnz(A4) = 330361

To test the influence of the pre-scripted set of eigenvalues Γ, we consider a set
Γ = {µ1, . . . , µr} of negative real values, Γ = Γc = −c ∗ rand(mr , 1), where c is a
positive integer.

C̃ is generated randomly.

Restarted Shifted FOM(50) is used to solve the linear systems. (Initial guess :
(Yi )0 = 0n×r Relative tolerance : ε = 10−10).

m r c SylvErr EigErr κ(X )

2 5 10 1.04 10−10 8.24 10−09 4.59 10+00

2 5 30 1.55 10−13 6.65 10−12 4.70 10+00

3 10 10 4.25 10−09 2.39 10−08 5.17 10+00

3 10 30 3.24 10−10 3.22 10−09 1.10 10+01

4 5 10 3.85 10−06 6.41 10−05 5.54 10+00

4 5 30 2.51 10−09 7.55 10−06 1.73 10+01
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Experiment 2 bis :

A=gallery(’wathen’,70,100), n = 21341, nnz(A4) = 330361

To test the influence of the pre-scripted set of eigenvalues Γ, we consider a set
Γ = {µ1, . . . , µr} of negative real values, Γ = Γc = −c ∗ rand(mr , 1), where c is a
positive integer.

C̃ is generated randomly.

Gaussian elimination is used to solve the linear systems.

m r c SylvErr EigErr κ(X )

2 5 10 1.22 10−13 2.97 10−13 4.59 10+00

2 5 30 3.25 10−14 1.91 10−13 4.70 10+00

3 10 10 1.33 10−11 2.39 10−09 5.17 10+00

3 10 30 1.62 10−12 2.57 10−10 1.10 10+01

4 5 10 8.92 10−09 1.00 10−05 5.54 10+00

4 5 30 2.82 10−10 1.56 10−07 1.73 10+01

M. Heyouni (ENSAH, UMP) NL2A 2016, Luminy 2016, October 24-28 23 / 27



Experiment 3 :

A is of size n = 20000 (p = n/2 = 10000)

A =




0p Ip

L D


, where L =




l1
. . .

lp


 and D =




d1
. . .

dp


.

For dk = 2αk , lk = −(α2
k + β2

k) then : σ(A) = {λk , λ̄k}k=1,...,p, where
λk = αk + ı βk . (αk , βk were random values uniformly distributed in [-1, 1].)

The µk are the zeros of the Chebyshev polynomial of 1st kind of degree mr for
[a + ı b, a− ı b], where a = −1 + mind∈σ(A) Re(d) and b = maxd∈σ(A) Im(d).

Gaussian elimination is used to solve the linear systems.

m r SylvErr EigErr κ(X )

3 10 6.91 10−14 3.23 10−14 2.80 10+01

5 4 1.00 10−12 2.12 10−12 4.82 10+00

5 6 2.96 10−13 2.26 10−12 5.42 10+00

6 10 9.95 10−13 5.11 10−11 3.97 10+00

8 6 8.81 10−11 8.64 10−08 4.44 10+00

8 10 8.96 10−12 1.08 10−07 4.61 10+00
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Conclusion

We used the block Arnoldi for solving the multi-output Sylvester-Observer equation
arising in state-estimation in a linear time-invariant control system.

The proposed method is suitable for large and sparse computing.

The method can be considered as a generalization of the Arnoldi-method proposed
earlier by Datta and Saad in the single-output case.
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Thanks for your attention
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Comparing to the global Arnoldi process

Noticing the similarity between the particular Sylv. obs. eqt. (23)

AX − X Ĥ = C̃ E
T
m = [0n×r , . . . , 0n×r , C̃ ]. (23)

and the global Arnoldi iteration (24)

AVm − Vm (Hm ⊗ Ir ) = hm+1,m Vm+1 (em ⊗ Ir )
T = [0n×r , . . . , 0n×r , hm+1,m Vm+1]. (24)

To obtain a solution to the Sylvester-Observer equation (23), we applied the Datta-Saad
approach the m ×m upper Hessenberg matrix Hm, i.e.,

find V1 ∈ R
n×r such that Vm+1 = C̃ (a part from a multiplicative scalar).

transform Hm to Ĥm such that σ(Ĥm) = {µ1, . . . , µm} with ℜ(µj) < 0.

take Ĥ = (Ĥm ⊗ Ir ) and observe that σ(Ĥ) = {µ1, . . . , µm}.
multiplicity(µk) = r .

take X = Vm (a part from a multiplicative scalar).
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