An Alternating Modulus Nonnegative Least Squares Method for Nonnegative Matrix Factorization

Ning Zheng² Ken Hayami^{1,2} Nobutaka Ono^{1,2}

1. National Institute of Informatics, Japan

2. SOKENDAI (The Graduate University for Advanced Studies), Japan

Numerical Linear Algebra and Applications (NL2A) CIRM Luminy, France October 24 - 28, 2016

Outline

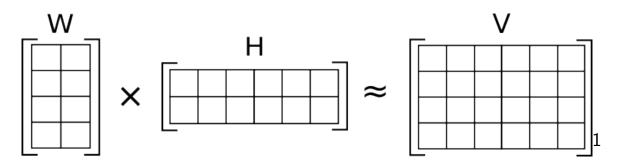
- 1. Problem
- 2. Alternating Nonnegative Least Squares Method
 - Multiplicative update method
 - Projection Gradient method
- 3. Alternating Modulus Nonnegative Least Squares Method
- 4. Numerical Results and Conclusion

Consider the Nonnegative Matrix Factorization (NMF)

$$\min f(W, H) := \frac{1}{2} \|V - WH\|_F^2,$$

- $V \in \mathbf{R}^{m \times n}$ is a given nonnegative matrix;
- $W \in \mathbf{R}^{m \times r}$ and $H \in \mathbf{R}^{r \times n}$ are unknown nonnegative matrices;
- Frobenius norm $||A||_F^2 = \sum_{i,j} a_{ij}^2$;
- $r \ll \min(m, n)$.

The NMF seeks a low rank approximation of a given nonnegative matrix.



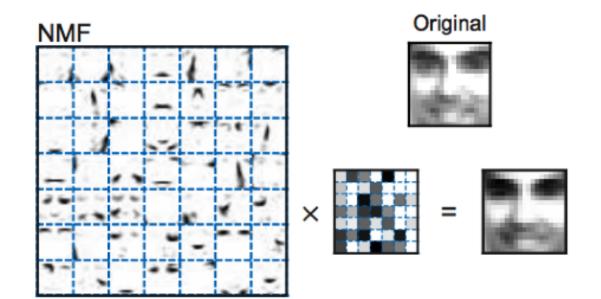
¹https://en.wikipedia.org/wiki/Non-negative_matrix_factorization

NMF problems arise in many scientific computing and engineering applications, e.g.,

- Computer vision,
- Spectral data analysis,
- Text mining,
- Document clustering,
- Chemometrics,
- Audio signal separation,
- Recommender systems,
- Image classification, etc.

Image Classification: Face Recognition

Extract features or individual components like nose, eyes and mouth from a face: (Lee and Seung, Nature, 99')



• NMF is non-convex. Let (W^*, H^*) be a pair of local minimizer or stationary point and $D \ge 0$ is a nonsingular matrix

$$f(W^*, H^*) = \frac{1}{2} \|V - W^* H^*\|_F^2 = \frac{1}{2} \|V - W^* D D^{-1} H^*\|_F^2 = f(W^* D, D^{-1} H^*).$$

• Alternating nonnegative least squares (ANLS) algorithm or two-block coordinate descent method

0. For
$$k = 0, 1, 2, ...$$
 until convergence
1. $H^{k+1} = \operatorname{argmin} \|V - W^k H\|_F^2$ subject to $H \ge 0$
2. $W^{k+1} = \operatorname{argmin} \|V - W H^{k+1}\|_F^2$ subject to $W \ge 0$

• The subproblems 1 and 2 are nonnegative constrained least squares (NNLS) problems, which are convex.

• (Grippo and Siandrone, 00') Any limit point of the sequence generated by the optimal solutions of each of the two subproblems is a stationary point of NMF.

- Gradient descent method for the subproblems: the objective function fdecreases if one goes from x in the direction of the negative gradient of f at x.
- \bullet The gradient of $f(W\!,H)$ with respect to W and H are

$$\nabla_H f(W, H) = W^{\mathsf{T}}(WH - V)$$
$$\nabla_W f(W, H) = (WH - V)H^{\mathsf{T}}.$$

• Merit: monotonic decrease

$$f(W^{k+1}, H^k) \le f(W^k, H^k) \quad \text{and} \quad f(W^{k+1}, H^{k+1}) \le f(W^{k+1}, H^k)$$

• Demerit: the gradient descent method may suffer from the zigzag phenomenon when approaching the local minimizer if the condition number is bad.

Gradient descent method 1: multiplicative update (MU) (Lee and Seung, 01').
 It can be derived from the element-wise update

$$H_{ij} = H_{ij} - \eta_{ij} [\nabla_H f(W, H)]_{ij} = H_{ij} - \eta_{ij} [W^{\mathsf{T}} W H]_{ij} + \eta_{ij} [W^{\mathsf{T}} V]_{ij},$$

$$W_{ij} = W_{ij} - \xi_{ij} [\nabla_W f(W, H)]_{ij} = W_{ij} - \xi_{ij} [W H H^{\mathsf{T}}]_{ij} + \xi_{ij} [V H^{\mathsf{T}}]_{ij},$$

▷ Zero the potentially negative part $H_{ij} - \eta_{ij}[W^{\mathsf{T}}WH]_{ij} = 0$, $W_{ij} - \xi_{ij}[WHH^{\mathsf{T}}]_{ij} = 0$,

$$\eta_{ij} = \frac{H_{ij}}{[W^{\mathsf{T}}WH]_{ij}} \quad \text{and} \quad \xi_{ij} = \frac{W_{ij}}{[WHH^{\mathsf{T}}]_{ij}}$$

▷ We have

$$H_{ij} = \frac{H_{ij}[W^{\mathsf{T}}V]_{ij}}{[W^{\mathsf{T}}WH]_{ij}} \quad \text{and} \quad W_{ij} = \frac{W_{ij}[VH^{\mathsf{T}}]_{ij}}{[WHH^{\mathsf{T}}]_{ij}}.$$

Gradient descent method 2: projected gradient (PG) (Bertsekas, 76').
 It can be derived from

 $H^{k+1} = P(H^k - \eta[\nabla_H f(W, H^k)]) \text{ and } W^{k+1} = P(W^k - \xi[\nabla_H f(W^k, H)])$

 \triangleright The orthogonal projection operator P(X) is the matrix whose (i, j)th component is the maximum of X_{ij} and 0.

 \triangleright The choice of step size η and ξ are based on the Armijo condition or sufficient decrease condition on each column of H^k and each row of W^k , respectively.

 \triangleright Take $j {\rm th}$ column of H^{k+1} for example, set $0 < \beta < 1, \ 0 \leq \mu < 1$ and

$$h_j^{k+1} = P(h_j^k - \beta^m \eta_j^* [\nabla_H f(W, H^k)]_j),$$

and find the smallest integer $m \ge 0$ that satisfies the Armijo condition

$$\|v_j - W^k h_j^{k+1}\|_2^2 \le \|v_j - W^k h_j^k\|_2^2 + 2\mu [\nabla_H f(W, H^k)]_j^{\mathsf{T}} (h_j^{k+1} - h_j^k)$$

Hayami - NL2A - October 27, 2016

• Other iterative methods for the subproblem NNLS

$$\begin{split} H^{k+1} &= \mathrm{argmin} \|V - W^k H\|_F^2 \quad \text{subject to} \quad H \geq 0 \\ W^{k+1} &= \mathrm{argmin} \|V - W H^{k+1}\|_F^2 \quad \text{subject to} \quad W \geq 0 \end{split}$$

can be applied for NMF:

- Active set gradient descent (Lawson and Hanson, 74'; Kim and Park, 08');
 Block principal pivoting method (Kim and Park, 11');
- ▷ A new active set method (Hager and Zhang, 06'; Zhang, etc., 14');
- Possible new strategy

▷ Gradient projection conjugate gradient (GPCG) (Moré and Toraldo, 89')

• New strategy

Modulus-type inner outer iteration method

▷ Hybrid modulus active set method (Zheng, Hayami and Yin, SIMAX, 16')

New Strategy

Nonnegativity: $h_j \ge 0$ \downarrow Variable transformation $h_j = g(\mathbf{z}_j),$ \downarrow Apply iterative methods on \mathbf{z}_j to obtain an unconstrained solution sequence $\{\mathbf{z}_j^k\}_{k=0}^{+\infty}$ \downarrow Update $h_j^k = g(\mathbf{z}_j^k)$ to obtain nonnegative constrained solution sequence $\{h_j^k\}_{k=0}^{+\infty}$

- Reflective Newton method (Coleman and Li, 96');
- Nonnegativity enforcement: $g(z) = e^{z}$ (Hanke and Nagy, 00');
- Modulus: $g(z) = z_j + |z_j|$ (Van Bokhoven; Bai,10).

• Consider the solution of NNLS problem

$$H^{k+1} = \operatorname{argmin} \|V - W^k H\|_F^2$$
 subject to $H \ge 0$.

• Set $H = [h_1, h_2, ..., h_n]$ and $V = [v_1, v_2, ..., v_n]$. If each column of H is updated independently, we only need to consider

$$\min \|v_j - W^k h_j\|_2^2 \quad \text{subject to} \quad h_j \ge 0,$$

where j = 1, 2, ..., n.

• Kuhn-Kurush-Tucker (KKT) conditions

$$h_j \ge 0, \quad [\nabla_H f(W^k, H)]_j = (W^k)^{\mathsf{T}} (W^k h_j - v_j) \ge 0 \quad \text{and} \quad h_j^{\mathsf{T}} [\nabla_H f(W^k, H)]_j = 0.$$

• Modulus-type inner outer iteration:

For j = 1, 2, ..., n, set $h_j = z_j + |z_j|$ and $[\nabla_H f(W^k, H)]_j = \Omega(|z_j| - z_j)$, the KKT conditions are equivalent to an implicit fixed-point equation

$$(\Omega + (W^k)^{\mathsf{T}} W^k) z_j = (\Omega - (W^k)^{\mathsf{T}} W^k) |z_j| + (W^k)^{\mathsf{T}} v_j.$$

Note that the fixed point iteration

$$(\boldsymbol{\Omega} + (\boldsymbol{W}^k)^{\mathsf{T}} \boldsymbol{W}^k) \boldsymbol{z}_j^{i+1} = (\boldsymbol{\Omega} - (\boldsymbol{W}^k)^{\mathsf{T}} \boldsymbol{W}^k) |\boldsymbol{z}_j^i| + (\boldsymbol{W}^k)^{\mathsf{T}} \boldsymbol{v}_j$$

is the normal equation of the unconstrained least squares problem

$$\min \left\| \begin{bmatrix} W^k \\ \Omega^{1/2} \end{bmatrix} z_j^{i+1} - \begin{bmatrix} -W^k |z_j^i| + v_j \\ \Omega^{1/2} |z_j^i| \end{bmatrix} \right\|_2$$

Set $Z = [z_1, z_2, ..., z_n]$, we have the following modulus-type inner outer iteration method for

$$\min \|V - W^k H\|_F^2 \quad \text{subject to} \quad H \ge 0.$$

0. For i = 0, 1, 2, ... until convergence 1. Solve Z^{i+1} from

$$(\Omega + (W^k)^{\mathsf{T}} W^k) Z^{i+1} = (\Omega - (W^k)^{\mathsf{T}} W^k) |Z^i| + (W^k)^{\mathsf{T}} V,$$

or

$$\min \left\| \begin{bmatrix} W^k \\ \Omega^{1/2} \end{bmatrix} Z^{i+1} - \begin{bmatrix} -W^k |Z^i| + V \\ \Omega^{1/2} |Z^i| \end{bmatrix} \right\|_2.$$

2. Compute
$$H^{i+1} = Z^{i+1} + |Z^{i+1}|$$
.

CG for Inner Matrix System

- The solution of the normal matrix equation is required.
- We first review that for the solution of normal equation

$$\min \|Ax - b\|_2 \quad \Longleftrightarrow \quad A^{\mathsf{T}}Ax = A^{\mathsf{T}}b,$$

the CGLS method (Hestenes, Stiefel, 52') is proposed as follows.

0. Choose initial
$$x^0$$
, $r^0 = b - Ax^0$, $s^0 = A^{\mathsf{T}}r^0$ and $p^0 = s^0$.
1. For $k = 0, 1, 2, ...$ until convergence
2. $\alpha_k = (s^k, s^k)/(Ap^k, Ap^k)$
3. $x^{k+1} = x^k + \alpha_k p^k$
4. $r^{k+1} = r^k - \alpha_k Ap^k$
5. $s^{k+1} = A^{\mathsf{T}}r^{k+1}$
6. $\beta_{k+1} = (s^{k+1}, s^{k+1})/(s^k, s^k)$
7. $p^{k+1} = s^{k+1} + \beta_{k+1}p^k$

CG for Inner Matrix System

• Now we consider the solution of normal equation with multiple right hand sides

 $\min \|AX - B\|_F \quad \Longleftrightarrow \quad A^{\mathsf{T}}AX = A^{\mathsf{T}}B,$

the CGLS method can be derived as follows.

Choose initial X^0 , $R^0 = B - AX^0$, $S^0 = A^{\mathsf{T}}R^0$ and $P^0 = S^0$. 0. For $k = 0, 1, 2, \ldots$ until convergence 1 $\Gamma_k = \operatorname{diag}((S^k)^{\mathsf{T}}(S^k))./\operatorname{diag}((AP^k)^{\mathsf{T}}(AP^k))$ 2 $X^{k+1} = X^k + P^k \Gamma_k$ 3. $R^{k+1} = R^k - A P^k \Gamma_k$ 4. $S^{k+1} = A^{\mathsf{T}} R^{k+1}$ 5. $\Lambda_{k+1} = diag((S^{k+1})^{\mathsf{T}}(S^{k+1}))./diag((S^{k})^{\mathsf{T}}(S^{k}))$ 6 $P^{k+1} = S^{k+1} + P^k \Lambda_{k+1}$ 7.

• Convergence theorem

If W^k is full column rank, modulus-type inner outer iteration algorithm converges when the inner system is solved exactly, or iteratively with

$$\|e^k\|_{\Omega} \leq \gamma^k \|\varepsilon^k\|_{\Omega}$$
 and $\gamma^k < \frac{\alpha(1-\delta)}{\tau+c}$ for $k \geq k_0$

where e^k and ε^k are stopping criteria of inner iteration and outer iteration, respectively, and k_0 is an integer, $0 \le \alpha < 1$,

$$\begin{aligned} \tau &= \| (\Omega + (W^k)^{\mathsf{T}} W^k)^{-1} \|_{\Omega^{1/2}, 2} \| \Omega + (W^k)^{\mathsf{T}} W^k \|_{\Omega^{1/2}, 2} \\ \delta &= \| (\Omega + (W^k)^{\mathsf{T}} W^k)^{-1} (\Omega - (W^k)^{\mathsf{T}} W^k) \|_{\Omega^{1/2}, 2} \\ c &= \| (\Omega + (W^k)^{\mathsf{T}} W^k)^{-1} \|_{\Omega^{1/2}, 2} \| (\Omega - (W^k)^{\mathsf{T}} W^k) \|_{\Omega^{1/2}, 2}. \end{aligned}$$

• Alternating modulus least squares (AMLS) method for NMF

0. For
$$k = 0, 1, 2, \ldots$$
 until convergence

- 1. Solve $\min ||V W^k H||_F^2$ subject to $H \ge 0$ using modulus method
- 2. Solve $\min \|V WH^{k+1}\|_F^2$ subject to $W \ge 0$ using modulus method

• Merit:

▷ Easy to implement

▷ Transform the nonnegative constrained least squares problem to a series of unconstrained least squares problems, which can be solved efficiently by CGLS, LSQR, BA-GMRES, etc (Morikuni and Hayami, 13').

• Demerit: the convergence rate of the fixed-point iteration is at best linear.

Numerical Experiments

- Compare the proposed modulus (Mod) method with the existing methods including multiplicative update (MU) method, projected gradient (PG) method, projected gradient method with Armijo condition (PGA).
- The testing problems contain

Synthetic data: Consider matrix V is randomly generated by the normal distribution with mean 0 and standard deviation 1

$$V_{ij} = |N(0,1)|.$$

The initial matrices are also constructed randomly. The size of the problem is (m, r, n) = (100, 20, 500).

Image data: ORL face image database. (m, r, n) = (10304, 25, 400).

Hayami - NL2A - October 27, 2016

Numerical Experiments

- MATLAB 7.8 with machine precision $\epsilon = 1.1 \times 10^{-16}$.
- The initial matrices were chosen to be random matrices. For the modulus-type iteration methods, the parameter matrix was chosen to be $\Omega = \omega I$, where ω is a positive parameter.
- The stopping criterion for the outer iteration of all methods is chosen as

$$\frac{|f(W^{k+1}, H^{k+1}) - f(W^k, H^k)|}{f(W^0, H^0)} < tol = 10^{-8}$$

• In order to perform a fair comparison among different methods, the parameters are chosen as

$$\mu=0.1, \quad \beta=0.9 \quad {\rm and} \quad \omega=1$$

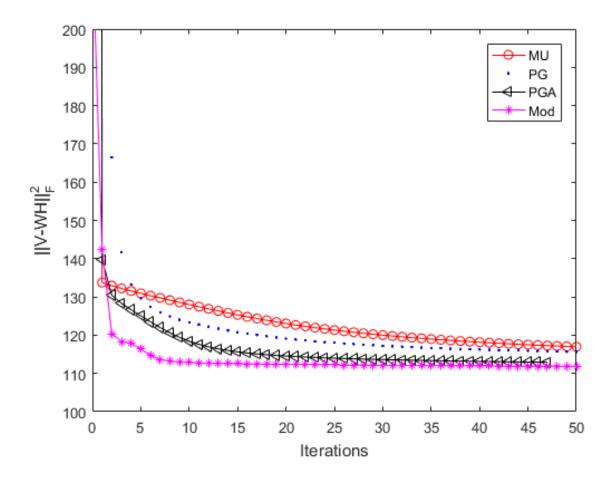
• The maximum number of iteration steps is restricted to be 5,000.

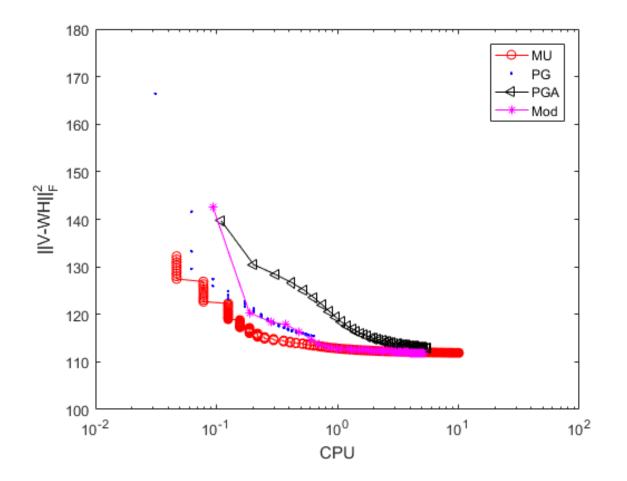
Synthetic data

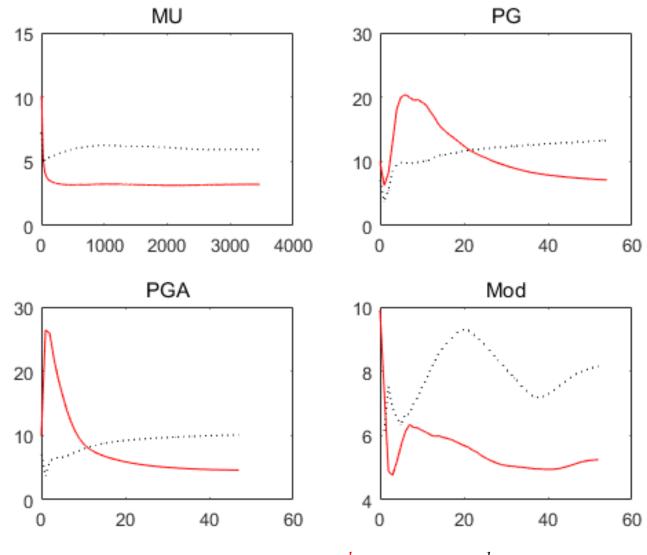
Methods	Iterations	f(W,H)	CPU
MU	3468	111.90	10.09
PG	54	115.47	0.64
PGA	47	112.93	5.52
Mod	52	111.88	5.14

Comparison of the iterative methods for random problem.

Synthetic data: iterations







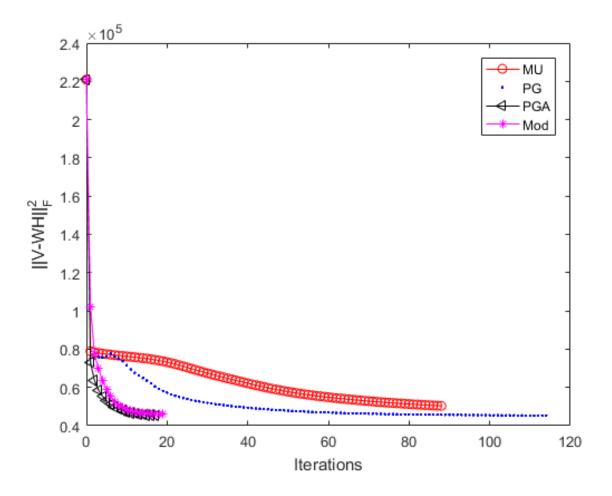
Iterations vs. condition numbers of W^k (red line) and H^k (black dot).

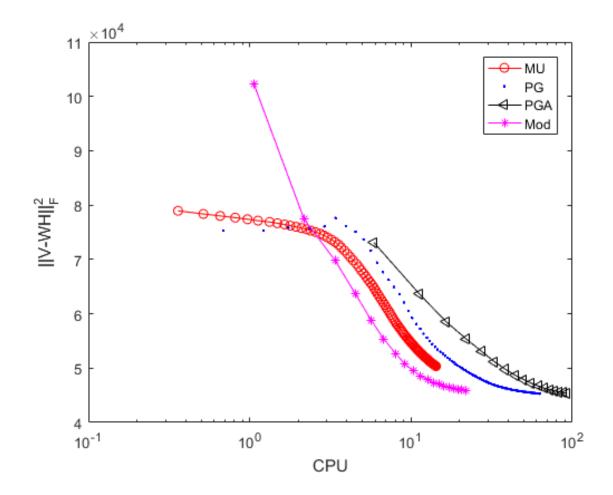
ORL facedata problem

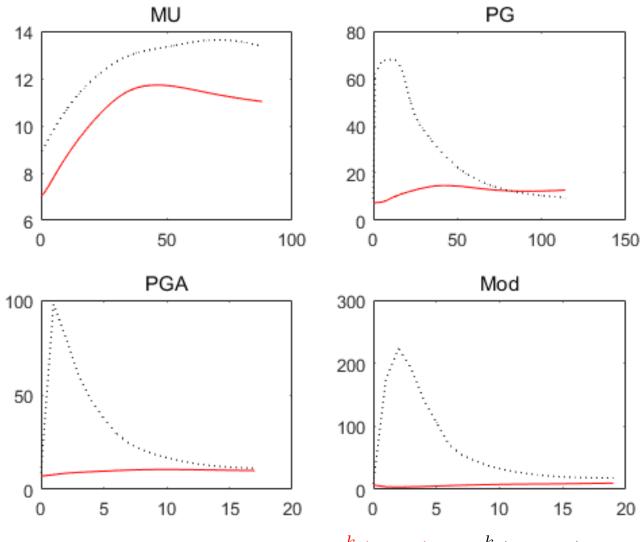
Methods	Iterations	f(W,H)	CPU
MU	88	50346.85	14.28
PG	114	45296.18	63.02
PGA	17	45372.30	92.58
Mod	19	45900.87	21.83

Comparison of the iterative methods for ORL facedata problem.

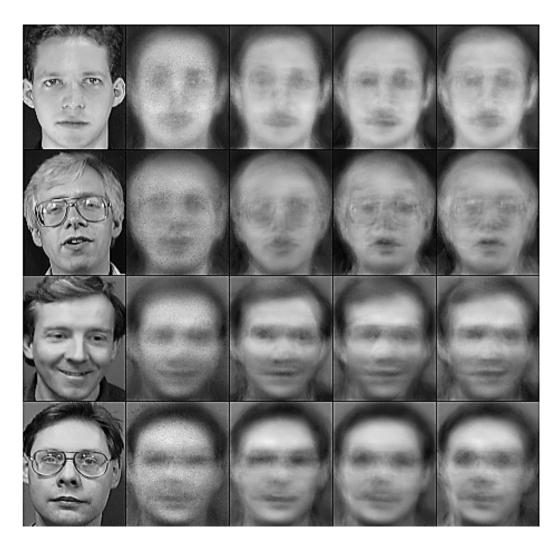
ORL facedata problem: iterations







Iterations vs. condition numbers of W^k (red line) and H^k (black dot).



From left column to right column: original images, MU, PG, PGA, Mod

Concluding Remarks

Alternating nonnegative least squares method

Modulus method for the subproblems

- Competitive among the previous methods
- The optimal modulus-type inner outer iteration method can be further exploited

Future Work: Sparse NMF

• Add penalty terms to the NMF objective function (Hoyer, 02')

$$\min \frac{1}{2} \|V - WH\|_F^2 + \alpha \|W\|_F^2 + \beta \|H\|_F^2,$$

where α and β are positive parameters.

• Minimize the (generalized) Kullback-Leibler divergence between V and WH (Lee and Seung, 99')

$$\min \sum_{i=1}^{n} \sum_{j=1}^{m} \left(V_{ij} \log \frac{V_{ij}}{(WH)_{ij}} - V_{ij} + (WH)_{ij} \right)$$

Future Work: Sparse NMF

Sparsity constraint with Frobenius norm:

$$\min \|V - WH\|_F^2 + \alpha \|W\|_F^2 + \beta \|H\|_F^2,$$

Alternating nonnegative least squares method

$$\min \|V - W^{k}H\|_{F}^{2} + \beta \|H\|_{F}^{2} = \min \left\| \begin{bmatrix} V \\ 0 \end{bmatrix} - \begin{bmatrix} W^{k} \\ \sqrt{\beta}I \end{bmatrix} H \right\|_{F}^{2}$$
$$:= \min \|\bar{V} - \bar{W}^{k}H\|_{F}^{2}$$
$$\min \|V - WH^{k+1}\|_{F}^{2} + \alpha \|W\|_{F}^{2} = \min \|[V \quad 0] - W[H^{k+1} \quad \sqrt{\alpha}I]\|_{F}^{2}$$
$$:= \min \|\tilde{V} - W\tilde{H}^{k+1}\|_{F}^{2},$$

where I is an identity matrix.

Future Work: Sparse NMF

Sparsity constraint with L1-norm:

$$\min \|V - WH\|_F^2 + \alpha \sum_{i=1}^m \|w_i\|_1^2 + \beta \sum_{j=1}^n \|h_j\|_1^2,$$

where w_i^{T} and h_j are *i*th row vector of W and *j*th column vector of W, respectively. Alternating nonnegative least squares method

$$\begin{split} \min \|V - W^{k}H\|_{F}^{2} + \beta \sum_{j=1}^{n} \|h_{j}\|_{1}^{2} &= \min \left\| \begin{bmatrix} V \\ 0 \end{bmatrix} - \begin{bmatrix} W^{k} \\ \sqrt{\beta} e^{\mathsf{T}} \end{bmatrix} H \right\|_{F}^{2} \\ &:= \min \|\bar{V} - \bar{W}^{k}H\|_{F}^{2} \\ \min \|V - WH^{k+1}\|_{F}^{2} + \alpha \sum_{i=1}^{m} \|w_{i}\|_{1}^{2} &= \min \|[V \quad 0] - W[H^{k+1} \quad \sqrt{\alpha} e]\|_{F}^{2} \\ &:= \min \|\tilde{V} - W\tilde{H}^{k+1}\|_{F}^{2}, \end{split}$$

where e is a column vector with all components equal to one.

Thank You!

Hayami - NL2A - October 27, 2016