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Consider the Nonnegative Matrix Factorization (NMF)
. 1 2
min f(W, H) := §||V — WH||%,

o V c R™*" is a given nonnegative matrix;
o W € R™*" and H € R"™ are unknown nonnegative matrices;

e Frobenius norm ||Al|% = D i afj;
e r < min(m,n).

The NMF seeks a low rank approximation of a given nonnegative matrix.
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Lhttps: / /en.wikipedia.org/wiki /Non-negative_matrix_factorization
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NMF problems arise in many scientific computing and engineering applications,
e.g.,

e Computer vision,

e Spectral data analysis,
e [ext mining,

e Document clustering,

e Chemometrics,

e Audio signal separation,
e Recommender systems,

e Image classification, etc.
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Image Classification: Face Recognition

Extract features or individual components like nose, eyes and mouth from a face:
(Lee and Seung, Nature, 99')
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e NMF is non-convex. Let (W*, H*) be a pair of local minimizer or stationary
point and D > 0 is a nonsingular matrix

FOV* H?) =S|IV = WH[} = S|V = W* DD H* |} = f(W*D, D~ H"),

e Alternating nonnegative least squares (ANLS) algorithm or two-block coordinate
descent method

0. For £k =0,1,2,... until convergence
1.  H*' = argmin||V — W*H||% subject to H > 0
2. WHFTL = argmin||V — WH**1||2, subject to W >0

e The subproblems 1 and 2 are nonnegative constrained least squares (NNLS)
problems, which are convex.

e (Grippo and Siandrone, 00") Any limit point of the sequence generated by the
optimal solutions of each of the two subproblems is a stationary point of NMF.
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e Gradient descent method for the subproblems: the objective function f
decreases if one goes from x in the direction of the negative gradient of f at x.

e The gradient of f(W, H) with respect to W and H are

Vaf(W,H)=WT(WH -V)
VwfW,H)=(WH - V)H".

e Merit: monotonic decrease
FOVETLHE) < f(WH HY) and  f(WHTLHPT) < f(WHEHHF)

e Demerit: the gradient descent method may suffer from the zigzag phenomenon
when approaching the local minimizer if the condition number is bad.
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e Gradient descent method 1: multiplicative update (MU) (Lee and Seung, 01').

> It can be derived from the element-wise update

Hij = Hij —nij[VNuf(W, H)|ij = Hij — i [WW H]ij + 0y [WV ],
Wi = Wi; = &iiIVw (W, H)|ij = Wy — §i;IWHH'];5 + &5V H]ij,

> Zero the potentially negative part H;; — n;;[W'WH];; =0,
Wiy — &IWHH'];; =0,

L Hij and & = Wi,
T = TWTWH];, T IWHHT;;
> We have o [WTV] W [VHT]
H,; = 1 1 d Wi = 1 ij.
T wWTwH]; o I WHH;;
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e Gradient descent method 2: projected gradient (PG) (Bertsekas, 76').

> It can be derived from
H* = P(HF — Vg f(W,H")]) and Wt = P(W" —£[Vy f(W* H)))

> The orthogonal projection operator P(X) is the matrix whose (¢, j)th
component is the maximum of X, and 0.

> The choice of step size n and £ are based on the Armijo condition or sufficient
decrease condition on each column of H* and each row of W¥, respectively.

> Take jth column of HE+L for example, set 0 < <1, 0< u <1 and
Wit = P(hf — 05 [V f(W, HY));),
and find the smallest integer m > 0 that satisfies the Armijo condition

lvj = WERSTHIS < Nluy = WERFIS + 2u[V e f(W, HP)] (R = BY).
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e Other iterative methods for the subproblem NNLS

H*T1 = argmin||V — W*H||% subjectto H >0
Wktl = argmin||V — WH**Y|2, subjectto W >0

can be applied for NMF:

> Active set gradient descent (Lawson and Hanson, 74'; Kim and Park, 08');
> Block principal pivoting method (Kim and Park, 11');
> A new active set method (Hager and Zhang, 06’; Zhang, etc., 14');

e Possible new strategy
> Gradient projection conjugate gradient (GPCG) (Moré and Toraldo, 89')
o New strategy

> Modulus-type inner outer iteration method
> Hybrid modulus active set method (Zheng, Hayami and Yin, SIMAX, 16")
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New Strategy

Nonnegativity: h; > 0
)
Variable transformation
hj = g(z;),
)

Apply iterative methods on z;
to obtain an unconstrained solution sequence {zéC g

1
Update h% = g(2%)
to obtain nonnegative constrained solution sequence {hf};ﬁ%

e Reflective Newton method (Coleman and Li, 96);
e Nonnegativity enforcement: g(z) = e® (Hanke and Nagy, 00);
e Modulus: g(z) = z; + |z;| (Van Bokhoven; Bai,10).
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e Consider the solution of NNLS problem
H* = argmin||V — W*H||% subject to H > 0.

e Set H = |hy, ha, ..., hy] and V = [v1,va, ..., v,]. If each column of H is updated
independently, we only need to consider

min |[v; — W¥h;||3 subject to h; >0,

where 7 =1,2,...,n.
e Kuhn-Kurush-Tucker (KKT) conditions

hj >0, [Vaf(WF H)j= W (W hj—v;) >0 and Rj[Vuf(W* H));=0.
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e Modulus-type inner outer iteration:

For j=1,2,...m, set h; = z; + |z;| and [V f(W* H)|; = Q(|zj] — z;), the
KKT conditions are equivalent to an implicit fixed-point equation

(Q+ (WH)TWE)zj = (@ — (WE)TWP)|z5] + (W*)To;.
Note that the fixed point iteration

(Q+ (WE)TWHR) 2 = (Q — (WF)TWF)|25] + (W) T
is the normal equation of the unconstrained least squares problem

Wk i [FWRE oy
0Lz % 91/2\2';\

min

2
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Set Z = |71, 23, ..+, 2n|, We have the following modulus-type inner outer iteration
method for
min ||V — WFH||% subject to H > 0.

0. For . =0,1,2,... until convergence
1. Solve Z't1 from

@+ (WETWHR) 2 = (Q — (WHTWH)| 27| + (WH)TV,

or
| TwW*T L, ~WFIZH+V
min [Q1/2] A . [ Q1’/2HZ@‘ ] ,
2. Compute H't! = 7'+l 4 | 7+,
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CG for Inner Matrix System

e The solution of the normal matrix equation is required.
e \We first review that for the solution of normal equation

min [[Az — b|ls <= A'Ax = A"D,

the CGLS method (Hestenes, Stiefel, 52') is proposed as follows.

Sk+1 — AT,,JH—l

Bk—l-l — (Sk+17 Sk—l_l)/(skv Sk)
PP =M+ Byt

0. Choose initial ¥, 7 = b — Az, s° = A™rY and p° = s°.
1. For £k =0,1,2,... until convergence

2. ap = (s, s )/(Ap Ap)

3. ghtl = $k + ayp”

4. rhtl =k qp ApF

5.

0.

/.
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CG for Inner Matrix System

e Now we consider the solution of normal equation with multiple right hand sides
min [|[AX — B||r <= A'AX =A'B,

the CGLS method can be derived as follows.

Choose initial XY, RO = B — AX? S%—= ATRY and P° = SY.
For £k =0,1,2,... until convergence

Iy, = diag((S*)7(S¥))./diag((AP*)T(AP"))

XFHl = XF 4 PrT,

RFt = RF — APFT,

Skz—l—l — ATRk—i—l

Ap1 = diag((S*THT(SHF)). /diag((S*)T(S*))

PFHL = G+l L PEA,

Noaswd EO

Hayami - NL2A - October 27, 2016 15/33



e Convergence theorem

If W* is full column rank, modulus-type inner outer iteration algorithm converges
when the inner system is solved exactly, or iteratively with

k<a(1_5) for k > kg
T+ cC

le¥le <"lle®lle and v

where e* and ¥ are stopping criteria of inner iteration and outer iteration,
respectively, and kg is an integer, 0 < a < 1,

o= Q4 WETWE) g o1+ (W TWE| 1
5 = Q@+ W Q= (W) W) g1e
c = [[(Q+ (Wk)TWk)_1H91/2,2H(Q — (Wk)TWk)HS21/2,2‘
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e Alternating modulus least squares (AMLS) method for NMF

0. For £k =0,1,2,... until convergence

1. Solve min||V — W*H]||% subject to H > 0 using modulus method

2. Solve min||V — W H**1||2, subject to W > 0 using modulus method
e Merit:

> Easy to implement
> Transform the nonnegative constrained least squares problem to a series of

unconstrained least squares problems, which can be solved efficiently by CGLS,
LSQR, BA-GMRES, etc (Morikuni and Hayami, 13").

e Demerit: the convergence rate of the fixed-point iteration is at best linear.
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Numerical Experiments

e Compare the proposed modulus (Mod) method with the existing methods
including multiplicative update (MU) method, projected gradient (PG) method,
projected gradient method with Armijo condition (PGA).

e [ he testing problems contain

Synthetic data: Consider matrix V' is randomly generated by the normal
distribution with mean 0 and standard deviation 1

Vi; = |N(0,1)].

The initial matrices are also constructed randomly. The size of the problem is
(m,r,n) = (100,20, 500).

Image data: ORL face image database. (m,r,n) = (10304, 25, 400).
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Numerical Experiments

e MATLAB 7.8 with machine precision € = 1.1 x 1071,

e The initial matrices were chosen to be random matrices. For the modulus-type
iteration methods, the parameter matrix was chosen to be 2 = wl, where w is a
positive parameter.

e The stopping criterion for the outer iteration of all methods is chosen as

[fWEAL T — f(W*, HY)|

tol = 1078,
W0, ) < for=19

e In order to perform a fair comparison among different methods, the parameters
are chosen as
=201, =09 and w=1

e The maximum number of iteration steps is restricted to be 5,000.
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Comparison of the iterative methods for random problem.

Synthetic data

Methods | Iterations | f(W,H) | CPU
MU 3468 111.90 | 10.09
PG 54 115.47 0.64
PGA 47 112.93 | 5.52
Mod 52 111.88 5.14

Hayami - NL2A - October 27, 2016

20/33



Synthetic data:

iterations
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Synthetic data: computational time

180

170

160

150

2
F

140 1

[IV-WH]|

130

120 1

10

—=— MU
PG

—4—PGA
—+— Mod

100
1072

Hayami - NL2A - October 27, 2016

22/33



15

10

30

20

10

MU

Hayami - NL2A - October 27, 2016

1000 2000 3000 4000
PGA
S
20 40 60

30

20

10

10

4

PG
;'{ \xﬂ .......................
IL"I-' ..... H'“'H_________—
0 20 40 -
Mod
L
1 —
’ < 40 80

Iterations vs. condition numbers of 17" (red line) and il (black dot).



ORL facedata problem

Comparison of the iterative methods for ORL facedata problem.

Methods | Iterations | f(W,H) | CPU
MU 88 50346.85 | 14.28
PG 114 45296.18 | 63.02
PGA 17 45372.30 | 92.58
Mod 19 45900.87 | 21.83
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ORL facedata problem: iterations
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ORL facedata problem:

computational time
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From left column to right column: original images, MU, PG, PGA, Mod
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Concluding Remarks

Alternating nonnegative least squares method

!

Modulus method for the subproblems

!

e Competitive among the previous methods

e The optimal modulus-type inner outer iteration method can be further exploited
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Future Work: Sparse NMF

e Add penalty terms to the NMF objective function (Hoyer, 02’)

1
min o ||V — WH|7 + |WI[E + Bl H|E.

where o« and [ are positive parameters.

e Minimize the (generalized) Kullback-Leibler divergence between V and W H
(Lee and Seung, 99')

mmzz (Vw log ‘;I)w Vi; + (WH), )

1=1 5=1
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Future Work: Sparse NMF

Sparsity constraint with Frobenius norm:

min |V — WH|7 + o|W|% + Bl H| %,

Alternating nonnegative least squares method

min ||V — W"H|% + Bl H|

min ||V — WH" |5 + af|[ W[5

where [ is an identity matrix.
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Future Work: Sparse NMF

Sparsity constraint with L1-norm:

m n
- 2 2 2
wmin ||V~ WH(E +a ) [lwil?+ 5[k
i=1 j=1
where w] and h; are ith row vector of W and jth column vector of W,
respectively. Alternating nonnegative least squares method

| o , % Wk .
win [V~ WHHIG +6 3l = i (0]~ | 5| ]
p
= min||V - WFH|%
minHV—WH’“HH%nLozZHwiH% = min [V O}—W[H"“Ll \/aew?
1=1

= min ||V — WH||2,
where e is a column vector with all components equal to one.
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Thank You!
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