
An Alternating Modulus Nonnegative Least Squares Method

for Nonnegative Matrix Factorization

Ning Zheng2 Ken Hayami1,2 Nobutaka Ono1,2

1. National Institute of Informatics, Japan

2. SOKENDAI (The Graduate University for Advanced Studies), Japan

Numerical Linear Algebra and Applications (NL2A)

CIRM Luminy, France

October 24 - 28, 2016



Outline

1. Problem

2. Alternating Nonnegative Least Squares Method

• Multiplicative update method
• Projection Gradient method

3. Alternating Modulus Nonnegative Least Squares Method

4. Numerical Results and Conclusion

Hayami - NL2A - October 27, 2016 1/33



Consider the Nonnegative Matrix Factorization (NMF)

min f(W,H) :=
1

2
‖V −WH‖2F ,

• V ∈ Rm×n is a given nonnegative matrix;
• W ∈ Rm×r and H ∈ Rr×n are unknown nonnegative matrices;
• Frobenius norm ‖A‖2F =

∑
i,j a

2
ij;

• r � min(m,n).

The NMF seeks a low rank approximation of a given nonnegative matrix.

1

1https://en.wikipedia.org/wiki/Non-negative matrix factorization
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NMF problems arise in many scientific computing and engineering applications,
e.g.,

• Computer vision,

• Spectral data analysis,

• Text mining,

• Document clustering,

• Chemometrics,

• Audio signal separation,

• Recommender systems,

• Image classification, etc.
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Image Classification: Face Recognition

Extract features or individual components like nose, eyes and mouth from a face:
(Lee and Seung, Nature, 99’)
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• NMF is non-convex. Let (W ∗, H∗) be a pair of local minimizer or stationary
point and D ≥ 0 is a nonsingular matrix

f(W ∗, H∗) =
1

2
‖V −W ∗H∗‖2F =

1

2
‖V −W ∗DD−1H∗‖2F = f(W ∗D,D−1H∗).

• Alternating nonnegative least squares (ANLS) algorithm or two-block coordinate
descent method

0. For k = 0, 1, 2, . . . until convergence

1. Hk+1 = argmin‖V −W kH‖2F subject to H ≥ 0
2. W k+1 = argmin‖V −WHk+1‖2F subject to W ≥ 0

• The subproblems 1 and 2 are nonnegative constrained least squares (NNLS)
problems, which are convex.

• (Grippo and Siandrone, 00’) Any limit point of the sequence generated by the
optimal solutions of each of the two subproblems is a stationary point of NMF.
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• Gradient descent method for the subproblems: the objective function f
decreases if one goes from x in the direction of the negative gradient of f at x.

• The gradient of f(W,H) with respect to W and H are

∇Hf(W,H) = W T(WH − V )

∇Wf(W,H) = (WH − V )HT.

• Merit: monotonic decrease

f(W k+1, Hk) ≤ f(W k, Hk) and f(W k+1, Hk+1) ≤ f(W k+1, Hk)

• Demerit: the gradient descent method may suffer from the zigzag phenomenon
when approaching the local minimizer if the condition number is bad.
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• Gradient descent method 1: multiplicative update (MU) (Lee and Seung, 01’).

. It can be derived from the element-wise update

Hij = Hij − ηij[∇Hf(W,H)]ij = Hij − ηij[W TWH]ij + ηij[W
TV ]ij,

Wij = Wij − ξij[∇Wf(W,H)]ij = Wij − ξij[WHHT]ij + ξij[V H
T]ij,

. Zero the potentially negative part Hij − ηij[W TWH]ij = 0,
Wij − ξij[WHHT]ij = 0,

ηij =
Hij

[W TWH]ij
and ξij =

Wij

[WHHT]ij

. We have

Hij =
Hij[W

TV ]ij
[W TWH]ij

and Wij =
Wij[V H

T]ij
[WHHT]ij

.
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• Gradient descent method 2: projected gradient (PG) (Bertsekas, 76’).

. It can be derived from

Hk+1 = P (Hk − η[∇Hf(W,Hk)]) and W k+1 = P (W k − ξ[∇Hf(W k, H)])

. The orthogonal projection operator P (X) is the matrix whose (i, j)th
component is the maximum of Xij and 0.

. The choice of step size η and ξ are based on the Armijo condition or sufficient
decrease condition on each column of Hk and each row of W k, respectively.

. Take jth column of Hk+1 for example, set 0 < β < 1, 0 ≤ µ < 1 and

hk+1
j = P (hkj − βmη∗j [∇Hf(W,Hk)]j),

and find the smallest integer m ≥ 0 that satisfies the Armijo condition

‖vj −W khk+1
j ‖22 ≤ ‖vj −W khkj‖22 + 2µ[∇Hf(W,Hk)]T

j(h
k+1
j − hkj ).
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• Other iterative methods for the subproblem NNLS

Hk+1 = argmin‖V −W kH‖2F subject to H ≥ 0

W k+1 = argmin‖V −WHk+1‖2F subject to W ≥ 0

can be applied for NMF:

. Active set gradient descent (Lawson and Hanson, 74’; Kim and Park, 08’);

. Block principal pivoting method (Kim and Park, 11’);

. A new active set method (Hager and Zhang, 06’; Zhang, etc., 14’);

• Possible new strategy

. Gradient projection conjugate gradient (GPCG) (Moré and Toraldo, 89’)

• New strategy

. Modulus-type inner outer iteration method

. Hybrid modulus active set method (Zheng, Hayami and Yin, SIMAX, 16’)
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New Strategy

Nonnegativity: hj ≥ 0

↓
Variable transformation

hj = g(zj),

↓
Apply iterative methods on zj

to obtain an unconstrained solution sequence {zk
j}

+∞
k=0

↓
Update hkj = g(zk

j )

to obtain nonnegative constrained solution sequence {hkj}
+∞
k=0

• Reflective Newton method (Coleman and Li, 96’);
• Nonnegativity enforcement: g(z) = ez (Hanke and Nagy, 00’);
• Modulus: g(z) = zj + |zj| (Van Bokhoven; Bai,10).
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• Consider the solution of NNLS problem

Hk+1 = argmin‖V −W kH‖2F subject to H ≥ 0.

• Set H = [h1, h2, ..., hn] and V = [v1, v2, ..., vn]. If each column of H is updated
independently, we only need to consider

min ‖vj −W khj‖22 subject to hj ≥ 0,

where j = 1, 2, ..., n.
• Kuhn-Kurush-Tucker (KKT) conditions

hj ≥ 0, [∇Hf(W k, H)]j = (W k)T(W khj−vj) ≥ 0 and hT
j [∇Hf(W k, H)]j = 0.
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• Modulus-type inner outer iteration:

For j = 1, 2, ..., n, set hj = zj + |zj| and [∇Hf(W k, H)]j = Ω(|zj| − zj), the
KKT conditions are equivalent to an implicit fixed-point equation

(Ω + (W k)TW k)zj = (Ω− (W k)TW k)|zj|+ (W k)Tvj.

Note that the fixed point iteration

(Ω + (W k)TW k)zi+1
j = (Ω− (W k)TW k)|zij|+ (W k)Tvj

is the normal equation of the unconstrained least squares problem

min

∥∥∥∥[W k

Ω1/2

]
zi+1
j −

[
−W k|zij|+ vj

Ω1/2|zij|

]∥∥∥∥
2

.
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Set Z = [z1, z2, ..., zn], we have the following modulus-type inner outer iteration
method for

min ‖V −W kH‖2F subject to H ≥ 0.

0. For i = 0, 1, 2, . . . until convergence

1. Solve Zi+1 from

(Ω + (W k)TW k)Zi+1 = (Ω− (W k)TW k)|Zi|+ (W k)TV,

or

min

∥∥∥∥[W k

Ω1/2

]
Zi+1 −

[
−W k|Zi|+ V

Ω1/2|Zi|

]∥∥∥∥
2

.

2. Compute Hi+1 = Zi+1 + |Zi+1|.
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CG for Inner Matrix System

• The solution of the normal matrix equation is required.
• We first review that for the solution of normal equation

min ‖Ax− b‖2 ⇐⇒ ATAx = ATb,

the CGLS method (Hestenes, Stiefel, 52’) is proposed as follows.

0. Choose initial x0, r0 = b−Ax0, s0 = ATr0 and p0 = s0.
1. For k = 0, 1, 2, . . . until convergence

2. αk = (sk, sk)/(Apk, Apk)
3. xk+1 = xk + αkp

k

4. rk+1 = rk − αkAp
k

5. sk+1 = ATrk+1

6. βk+1 = (sk+1, sk+1)/(sk, sk)
7. pk+1 = sk+1 + βk+1p

k
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CG for Inner Matrix System

• Now we consider the solution of normal equation with multiple right hand sides

min ‖AX −B‖F ⇐⇒ ATAX = ATB,

the CGLS method can be derived as follows.

0. Choose initial X0, R0 = B −AX0, S0 = ATR0 and P 0 = S0.
1. For k = 0, 1, 2, . . . until convergence

2. Γk = diag((Sk)T(Sk))./diag((AP k)T(AP k))
3. Xk+1 = Xk + P kΓk

4. Rk+1 = Rk −AP kΓk

5. Sk+1 = ATRk+1

6. Λk+1 = diag((Sk+1)T(Sk+1))./diag((Sk)T(Sk))
7. P k+1 = Sk+1 + P kΛk+1
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• Convergence theorem

If W k is full column rank, modulus-type inner outer iteration algorithm converges
when the inner system is solved exactly, or iteratively with

‖ek‖Ω ≤ γk‖εk‖Ω and γk <
α(1− δ)
τ + c

for k ≥ k0

where ek and εk are stopping criteria of inner iteration and outer iteration,
respectively, and k0 is an integer, 0 ≤ α < 1,

τ = ‖(Ω + (W k)TW k)−1‖Ω1/2,2‖Ω + (W k)TW k‖Ω1/2,2

δ = ‖(Ω + (W k)TW k)−1(Ω− (W k)TW k)‖Ω1/2,2

c = ‖(Ω + (W k)TW k)−1‖Ω1/2,2‖(Ω− (W k)TW k)‖Ω1/2,2.
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• Alternating modulus least squares (AMLS) method for NMF

0. For k = 0, 1, 2, . . . until convergence

1. Solve min‖V −W kH‖2F subject to H ≥ 0 using modulus method

2. Solve min‖V −WHk+1‖2F subject to W ≥ 0 using modulus method

• Merit:

. Easy to implement

. Transform the nonnegative constrained least squares problem to a series of
unconstrained least squares problems, which can be solved efficiently by CGLS,
LSQR, BA-GMRES, etc (Morikuni and Hayami, 13’).

• Demerit: the convergence rate of the fixed-point iteration is at best linear.
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Numerical Experiments

• Compare the proposed modulus (Mod) method with the existing methods
including multiplicative update (MU) method, projected gradient (PG) method,
projected gradient method with Armijo condition (PGA).
• The testing problems contain

Synthetic data: Consider matrix V is randomly generated by the normal
distribution with mean 0 and standard deviation 1

Vij = |N(0, 1)|.

The initial matrices are also constructed randomly. The size of the problem is
(m, r, n) = (100, 20, 500).

Image data: ORL face image database. (m, r, n) = (10304, 25, 400).
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Numerical Experiments

• MATLAB 7.8 with machine precision ε = 1.1× 10−16.
• The initial matrices were chosen to be random matrices. For the modulus-type
iteration methods, the parameter matrix was chosen to be Ω = ωI, where ω is a
positive parameter.
• The stopping criterion for the outer iteration of all methods is chosen as

|f(W k+1, Hk+1)− f(W k, Hk)|
f(W 0, H0)

< tol = 10−8.

• In order to perform a fair comparison among different methods, the parameters
are chosen as

µ = 0.1, β = 0.9 and ω = 1

• The maximum number of iteration steps is restricted to be 5,000.

Hayami - NL2A - October 27, 2016 19/33



Synthetic data

Comparison of the iterative methods for random problem.

Methods Iterations f(W,H) CPU

MU 3468 111.90 10.09
PG 54 115.47 0.64

PGA 47 112.93 5.52
Mod 52 111.88 5.14
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Synthetic data: iterations
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Synthetic data: computational time
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Iterations vs. condition numbers of Wk (red line) and Hk (black dot).
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ORL facedata problem

Comparison of the iterative methods for ORL facedata problem.

Methods Iterations f(W,H) CPU

MU 88 50346.85 14.28
PG 114 45296.18 63.02

PGA 17 45372.30 92.58
Mod 19 45900.87 21.83
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ORL facedata problem: iterations
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ORL facedata problem: computational time
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Iterations vs. condition numbers of Wk (red line) and Hk (black dot).
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From left column to right column: original images, MU, PG, PGA, Mod
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Concluding Remarks

Alternating nonnegative least squares method
↓

Modulus method for the subproblems
↓

• Competitive among the previous methods

• The optimal modulus-type inner outer iteration method can be further exploited
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Future Work: Sparse NMF

• Add penalty terms to the NMF objective function (Hoyer, 02’)

min
1

2
‖V −WH‖2F + α‖W‖2F + β‖H‖2F ,

where α and β are positive parameters.

• Minimize the (generalized) Kullback-Leibler divergence between V and WH
(Lee and Seung, 99’)

min

n∑
i=1

m∑
j=1

(
Vij log

Vij
(WH)ij

− Vij + (WH)ij

)
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Future Work: Sparse NMF

Sparsity constraint with Frobenius norm:

min ‖V −WH‖2F + α‖W‖2F + β‖H‖2F ,

Alternating nonnegative least squares method

min ‖V −W kH‖2F + β‖H‖2F = min

∥∥∥∥[V0
]
−
[
W k
√
βI

]
H

∥∥∥∥2

F

:= min ‖V̄ − W̄ kH‖2F
min ‖V −WHk+1‖2F + α‖W‖2F = min

∥∥[V 0
]
−W

[
Hk+1

√
αI
]∥∥2

F

:= min ‖Ṽ −WH̃k+1‖2F ,

where I is an identity matrix.
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Future Work: Sparse NMF

Sparsity constraint with L1-norm:

min ‖V −WH‖2F + α

m∑
i=1

‖wi‖21 + β

n∑
j=1

‖hj‖21,

where wT
i and hj are ith row vector of W and jth column vector of W ,

respectively. Alternating nonnegative least squares method

min ‖V −W kH‖2F + β

n∑
j=1

‖hj‖21 = min

∥∥∥∥[V0
]
−
[
W k
√
βeT

]
H

∥∥∥∥2

F

:= min ‖V̄ − W̄ kH‖2F

min ‖V −WHk+1‖2F + α

m∑
i=1

‖wi‖21 = min
∥∥[V 0

]
−W

[
Hk+1

√
αe
]∥∥2

F

:= min ‖Ṽ −WH̃k+1‖2F ,

where e is a column vector with all components equal to one.
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Thank You!
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