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Outline

Review some dynamic indices

Introduce a new block matrix formulation

Show some numerical results

Caterina Fenu (AICES RWTH-Aachen University) Block matrix formulations for evolving networks



Evolving networks
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Evolving networks

We have:

M ordered time points t1 < t2 < · · · < tM .

M networks G [k] =
(
V ,E [k]

)
with associated adjacency

matrices A[k], with k = 1, . . . ,M.

Dynamic indices already defined.

We want:

Unify the definitions already given.

Find a better way to compute them.
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Dynamic walks

A dynamic walk of length ` from node i1 to node i`+1 consists
of a sequence of edges i1 → i2, i2 → i3, . . . , i` → i`+1 and a
nondecreasing sequence of times tr1 ≤ tr2 ≤ · · · ≤ tr` such

that A
[rm]
im,im+1

6= 0.

The (i , j)th element of the product A[r1]A[r2] · · ·A[r`] counts
the number of dynamic walks of length ` from node i to node
j, where the mth step takes place at time trm .
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Dynamic Communicability Matrix

Penalizing each walk of length ` by a factor a` and summing for all
the possible length we obtain the (i , j)th element of the matrix
product

Q[`] = (I − aA[1])−1(I − aA[2])−1 · · · (I − aA[`])−1.

Thus, Q[`]
ij is a summary on how well information can be passed

from node i to node j.

Row and column sums

C
[`]
broadcast = Q[`]1 and C

[`]
receive = Q[`]T1

are called the broadcast and receive communicabilies.

[Grindrod, Parsons, Higham, Estrada (2011)]
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Running Dynamic Communicability Matrix

We can recursively define the matrix S [j] , starting from S [0] = 0,
as

S [j] =
(
I + e−b∆tjS [j−1]

)(
I − aA[j]

)−1
− I , j = 1, . . . ,M,

where ∆tj = tj − tj−1.

Running versions of the broadcast and receive communicabilities
are then given by the row/column sums of the matrix S [j]:

S [j]1 and S [j]T1.

[Grindrod, Higham, (2012)]
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Nodal betweenness

The nodal betweenness of node r is defined as

NBr :=
1

(n − 1)2 − (n − 1)

∑∑
i 6=j 6=r

(Q[M])ij − (Q̄[M]
r )ij

(Q[M])ij
,

where

Q̄[M]
r =

M∏
s=1

(
I − aĀ

[s]
r

)−1

and Ā
[k]
r denote the matrix obtained from A[k] by removing all the

edges involving node r .

[Alsayed, Higham, (2015)]
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Temporal betweenness

The temporal betweenness of time point q is defined as

TB[M,q] :=
1

(n − 1)2 − (n − 1)

∑∑
i 6=j

(Q[M])ij − (Q̂[M,q])ij
(Q[M])ij

,

where

Q̂[M,q] =
M∏
s=1

(
I − aÂ[s,q]

)−1
and Â[k,q] = (1− δkq)A[k].

[Alsayed, Higham, (2015)]
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To update or not to update?

Can we update the running receive and broadcast
communicabilities at time step tj using the same information at
time step tj−1?
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To update or not to update?

Can we update the running receive and broadcast
communicabilities at time step tj using the same information at
time step tj−1?

1TS [j] = 1T
[(

I + e−b∆tjS [j−1]
)(

I − aA[j]
)−1
− I

]
S [j]1 =

[(
I + e−b∆tjS [j−1]

)(
I − aA[j]

)−1
− I

]
1
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To update or not to update?
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First result

Lemma

For the running dynamic communicability matrix S [j] we have

S [j] =

j∑
i=1

(
1− e−b∆ti

)
e−b

∑j
`=i+1 ∆t`Q[i ,j] − I ,

where Q[i ,j] =
∏j

s=i

(
I − aA[s]

)−1
and ∆t1 =∞.
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Block representation

We want to define a block-matrix representation of the data
{A[k]}Mk=1 that transform the network sequence into an
“equivalent” large, static network with adjacency matrix of
dimension Mn.

We have two main requirements for such a representation.

We would like to be able to interpret this static network in
terms of the interactions represented by the original data.

We would like to be able to recover the dynamic centrality
measures already discussed by applying standard matrix
functions to this larger network.
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Block representation

We can define a matrix B ∈ RMn×Mn as

B :=


αA[1] β2I

αA[2] β3I
. . .

. . .

αA[M−1] βM I

αA[M]

 .

Where {β`}`=2,M and α are parameters.
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Block representation

Theorem

The dynamic communicability matrices Q[i ,j] and the running
dynamic communicability matrices S [j] can be computed by
applying the function f (x) = (1− x)−1 to the matrix B.

In particular:

the dynamic communicability matrices Q[i ,j] can be obtained
from the block [f (B)]ij setting β` = 1, ` = 2, . . . ,M and
α = a;

the running dynamic communicability matrices S [j] are
obtained starting from the blocks on the jth block-column
[f (B)]·j setting β` = e−b∆t` , α = a .
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Block representation

Theorem

Let Ā
[k]
r denote the matrix obtained from A[k] by removing all the

edges involving node r and let {Â[k,q]}Mk=1 be the adjacency matrix
sequence obtained replacing A[q] with 0. Then, for
f (x) = (1− x)−1,

NBr =
1

(n − 1)2 − (n − 1)

∑∑
i 6=j 6=r

[f (B)]ij1M −
[
f (B̄r )

]ij
1M

[f (B)]ij1M
,

TB[M,q] =
1

(n − 1)2 − (n − 1)

∑∑
i 6=j

[(f (B)]ij1M − [(f (B̂ [q])]ij1,M−1

[f (B)]ij1M
.

where [(f (B)]ij`,k denotes the (i , j)th element of the (`, k)th block
of the matrix f (B).
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Block representation

Theorem

The matrices B̄r and B̂ [q] are given by

B̄r =
M⊕
i=1

(αĀ[i ]) + diag([I , . . . , I ], 1)

B̂ [q] =
M⊕

q 6=i=1

(αA[i ]) + diag([I , . . . , I ], 1)
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Block representation

We will focus on the computation of running broadcast and receive
communicabilities since we need to store the whole matrix S [j−1] in
order to obtain the running dynamic communicability matrix S [j].

Setting β` = e−b∆t` and α = a, we obtain

S [j]1n = (d⊗ In)T f (B)(ej ⊗ 1M)− 1n

S [j]T1n = (ej ⊗ In)T f (B)T (d⊗ 1n)− 1n,

where d = [1, 1− β2, . . . , 1− βM ]T , 1M and 1n are vectors of all
ones in RM and Rn, respectively.
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Bilinear form

We are interested in computation of quantities of the form

uT f (B)v, u, v ∈ RMn,

with u, v unit vectors and f (B) = (I − B)−1 nonsymmetric.
In particular, (u = d⊗ ei , v = ej ⊗ 1M) and
(u = ej ⊗ ei , v = d⊗ 1n), i = 1, . . . , n, for the broadcast and
receive running communicabilities of node i , respectively.

In particular, we use the nonsymmetric block Lanczos algorithm
and pairs of block Gauss and anti-Gauss quadrature rules.

If U = [u 1] and V = [v 1], then we want to approximate the
quantities

UT f (B)V , U,V ∈ RMn×2.
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Resolution of a sparse linear system

We need to compute the quantities

uT (I − B)−1v, u, v ∈ RMn.

This can be done by solving the sparse linear system (I − B)x = v
and then computing the scalar product uTx.

The linear system can be solved either directly or iteratively. The
peculiarity of the block formulation allows us to have at hand a
regular matrix splitting. In fact, we have I ≥ 0, B ≥ 0 and
ρ(B) < 1. Therefore, the iterative method

x(k+1) = Bx(k) + v,

with given starting vector x(0), converges to the solution x.
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Computational tasks

We analyze the following methods:

original is the original approach proposed in [Grindrod,
Higham (2012)].

quadrules is the approach based on the Gauss and anti-Gauss
quadrature rules.

linsolv is the method that solves the big linear system
(I − B)x = v using the MATLAB “backslash”.

iterative is the iterative approach based on the regular matrix
splitting I − B.

lsqr is the method based on the solution of the linear
system obtained by using the lsqr MATLAB function.
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Computational tasks

We want to test the performance of the methods when the size of
the matrix B increases.

As a first approach, we independently sample M times from
the same static network model with a fixed number of nodes
n. This can be done in MATLAB by using the package
CONTEST by Taylor and Higham.

As a second approach, we generate the M matrices by using
the evolving network model proposed and analyzed in
[Grindrod, Higham, Parsons (2012)]. Here, the network
sequence corresponds to the sample path of a discrete time
Markov chain.
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Computational tests (Pref network model)
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Computational tests

As a second set of numerical experiments we make use of the
triadic closure model developed in [Grindrod, Higham, Parsons
(2012)].

Starting from an Erdös-Rényi network model with a given edge
density, we generate a sequence of M matrices in which the
network at time point k + 1 is built starting from the network at
the previous time point. In particular, the expected value of A[k+1]

given A[k] is

F(A[k]) = (1− ω̃)A[k] + (1T1− A[k]) ◦ (δ1T1 + ε(A[k])2),

where ω̃ ∈ (0, 1) is the death rate, δ1 + ε(A[k])2 is the birth rate,
with 0 < δ � 1 and 0 < ε(n − 2) < 1− δ, and 1 is the vector of
all ones.
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Computational tests (ω̃ = δ = 20/n2 and ε = 5/n2)
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Conclusions

We introduced a block-matrix representation that allows us to
recover previously defined dynamic centralities and to
compute/approximate them faster than the original methods.

Thank you
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