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Introduction

Motivation: seismic oil&gas exploration

Conventional approach: FWI by nonlinear fitting of the simulated data via
multiple forward problem solutions. Challenges: computational grids
> 109; huge Jacobians; non-convex misfit functional.



Introduction

Other possible applications: ultrasound tomography

Malignant breast tumors can be distinguished by irregular boundary

Ultrasound screening for early detection of breast cancer

Conventional ultrasound imaging techniques are rather crude,
advanced methods originating in geophysics are in demand



Introduction

ROM as fast proxy for forward solver

One way to address high computational cost of the forward solvers is
to use their fast proxies constructed via parametric ROMs, e.g.,
reduced basis method. Mainly applied for parabolic problems, in
application to diffusive optical tomography (DOT), hydro-geology,
control-source electromagnetic method (CSEM) in exploration
geophysics, etc. 3

Wave problems: Mikhail Zaslasvsky yesterday, Jörn Zimmerling on
Friday.

3Ghattas,Lieberman, Wilcox, Daniel, White, de Sturler, Kilmer, Gugercin, Beattie,
Dr., Simoncini, Zaslavsky, etc.



Introduction

ROM as direct imaging tool

We pursue another approach, first emerged for the solution of the
electrical impedance tomography (EIT) problems: We construct the
reduced order model from the data (a.k.a. data driven ROM), and
then estimate the unknown PDE coefficients directly via the matrix of
the ROM state equation.
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the ROM state equation.

We will show that this is possible for a special class of ROMs
mimicking finite-volumes discretization of the underlying PDEs.



Introduction

ROM as direct imaging tool

We pursue another approach, first emerged for the solution of the
electrical impedance tomography (EIT) problems: We construct the
reduced order model from the data (a.k.a. data driven ROM), and
then estimate the unknown PDE coefficients directly via the matrix of
the ROM state equation.

We will show that this is possible for a special class of ROMs
mimicking finite-volumes discretization of the underlying PDEs.

Illustrate forgotten connections between classical algorithms of linear
algebra and inverse scattering.



Outline

1 Introduction

2 Discrete-time inverse hyperbolic problem
1D inverse problem with SISO data
Discrete formulation

3 Data-driven discrete-time reduced order model
Data-driven discrete-time ROM via Chebyshev moment problem
Data-driven QR transform
Galerkin back-projection imaging algorithm
Extension to multidimensional problems with MIMO data

4 Numerical images

5 Conclusions



Discrete-time inverse hyperbolic problem 1D inverse problem with SISO data

1D wave problem

We start with 1D wave equation on [0, 1]× t

−v2uxx + utt = 0, ut |t=0 = 0, u|t=0 = b, ux |x=0 = 0, u|x=1 = 0.

with regular enough variable wave speed v(x) > 0. After transition to
the travel time coordinates and symmetrization of the Laplace
operator (Liouville transform), we obtain

Au + utt = 0, ut |t=0 = 0, u|t=0 = b,

with Schödinger operator Au = −uxx − qu, where q = v0.5 d2

dx2
v−0.5.4

4Here and below we abuse notation by using the same variable notations for the
transformed equation.



Discrete-time inverse hyperbolic problem 1D inverse problem with SISO data

Continuous inverse problem

The solution can be written as u = cos(t
√
A)b.

We consider single input/single output (SISO) data (transfer function)

f (t) = 〈u(t), b〉 = 〈cos(t
√
A)b, b〉

assuming that b is smooth approximation of δ(x + 0), here 〈., .〉 is the
L2[0, 1]-inner product.

Problem

Inverse problem: f 7→ v .



Discrete-time inverse hyperbolic problem Discrete formulation

Discrete-time data

We choose time discretization step τ (corresponding the Nyquist
sampling rate of the signal) and consider discrete data

f (jτ), j = 0, . . . , 2n − 1

.

Problem

To image the wave-speed distribution on the scale of the minimal
wavelength.
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Data-driven discrete-time reduced order model Data-driven discrete-time ROM via Chebyshev moment problem

The discrete-time dynamic system

Let P = cos(τ
√
A) be so-called transition operator,

ui = u(iτ) = cos(iτ
√
A)b the snapshots of the solution, then the

data can be formally computed via discrete-time dynamic system

Ãui +
ui−1 − 2ui + ui+1

τ2
= 0,

u0 = b, u−1 = u0,

with Ã = 2
τ2

(I − P) = A + O(τ2),
so b∗uj = f (jτ), j = 0, . . . , 2n − 1.

The discrete-time dynamic system up to O(τ2) coincides with the
standard second-order time stepping scheme.



Data-driven discrete-time reduced order model Data-driven discrete-time ROM via Chebyshev moment problem

Formulation in terms of Chebyshev polynomials

The snapshots can be written as ui = u(iτ) = cos(iτ
√
A)b = Ti (P)b,

Tj are the Chebyshev polynomials of the first kind, P = cos(τ
√
A).

The Chebyshev polynomials appear from identities
cos(τ j

√
A) ≡ cos[j arccos(P)]b ≡ Tj(P).

So, the data can be written in terms of Chebyshev moment problem

f (τ j) = 〈cos(iτ
√
A)b, b〉 = 〈Tj(P)b, b〉, j = 0, . . . , 2n − 1.



Data-driven discrete-time reduced order model Data-driven discrete-time ROM via Chebyshev moment problem

Data-driven discrete-time ROM

Let U ∈ R∞,n be the semiinfinite snapshot matrix with columns ui ,
and U∗U,U∗ÃU ∈ Rn×n are resp. mass and stiffness matrices with
elements 〈ui , uj〉, 〈ui , Ãuj〉 resp.

Proposition (Dr., Mamonov, Thaler, Zaslavsky, SIIMS 2016)

The discrete-time ROM

U∗ÃUũi + U∗U
ũi−1 − 2ũi + ũi+1

τ2
= 0,

ũ0 = b̃, ũ−1 = ũ0,

satisfies data matching condition

b̃∗ũj = f (jτ), j = 0, . . . , 2n − 1,

here b̃ = U∗Ue1.



Data-driven discrete-time reduced order model Data-driven discrete-time ROM via Chebyshev moment problem

Hankel + Toeplitz algorithm for matrix pencil

For i , j element of U∗U we obtain

u∗i uj = b∗Ti (P)Tj(P)b = b∗ cos(iτ
√
A) cos(jτ

√
A)b =

0.5
{
b∗ cos[(i + j)τ

√
A)]b + b∗ cos[(i − j)τ

√
A)]b

}
=

0.5


Hankel︷ ︸︸ ︷

f [(i + j)τ ] +

Toeplitz︷ ︸︸ ︷
f [(i − j)τ ]


Similar formula for U∗ÃU = U∗ 2

τ2
(I − P)U∗.



Data-driven discrete-time reduced order model Data-driven QR transform

Resistivity imaging from reduced order system?

Mapping from true v to the ROM can be summarized via sequence:

v
measurement7→ f (jτ), j = 1, . . . , 2n − 1

data−drivenROM7→ U∗ÃU,U∗U

Approx. inverse mapping?

U∗ÃU,U∗U 7→ ṽ ≈ v

.

Need to infuse some geometric interpretation in the ROM. For that
we transform it to a form mimicking finite-difference time domain
discretization (FDTD) in both time and space.



Data-driven discrete-time reduced order model Data-driven QR transform

QR tri-diagonalization

Let R be the upper triangular matrix obtained from the Cholesky
decomposition RR∗ = (U∗U)−1 with natural row indexes from 1 to n. It is
the QR transform of U, yielding V = UR ∈ R∞,n, V∗V = I .

Proposition

The QR transform generates tridiagonal matrix

T = R∗(U∗ÃU)R = V∗ÃV,

so the ROM can be written in the FD form both in time and space

T ũi +
ũi−1 − 2ũi + ũi+1

τ2
= 0,

ũ0 = e1, ũ−1 = ũ0,

with data matching condition e∗1 ũj = f (jτ), j = 0, . . . , 2n − 1.



Data-driven discrete-time reduced order model Data-driven QR transform

Finite-difference inversion

Tridiagonal T can be interpreted as the finite-difference approximation
of A, so we can write the ROM state equation in the FDTD form5 as
vi
ĥi

(
wi+1,j−wi,j

v̂ihi
− wi,j−wi−1,j

v̂ihi−1

)
−wi,j−1−2wi,j+wi,j+1

τ2
= 0, i = 1, . . . ,

subject to some initial and boundary conditions, where hi ,ĥi are
respectively primary and dual grid steps, and v̂i , vi are the values of
the FD wave speed at respectively dual and primary nodes . Special
choice of grid (a.k.a. optimal grid) allowed earlier to obtain
reasonably good images for 1D and 2D EIT problems and works well
for 1D wave problems. 6. However, we have not been able to produce
competitive inversion results with the FD approach for 2D seismic
problems due to poor lateral resolution.

5The concept of the FD realization of ROMs originated in 1950s by Mark Krein.
6Borcea, Dr., Guevara Vasquez, Mamonov, Inside Out, 2010; Dr.,Mamonov, Thaler,

Zaslavsky, SIIMS 2016



Data-driven discrete-time reduced order model Galerkin back-projection imaging algorithm

Back-projection approach

Recall that Ã = A + O(τ2). So, neglecting O(τ2) term, T can be
viewed as Galerkin projection of A on basis V, i.e.,

T = V∗ÃV ≈ V∗AV,

so
A ≈ VT V∗.

We can compute T directly from the data (Hankel+Toeplitz,then
Cholesky), but don’t know V.
Let assume that V ≈ V0, where V0 is computed for some background
wave-speed distribution v0. If this holds, then from the data and
known background v0 we can compute

A ≈ V0T V∗0.

This assumption was originally motivated by similarity of T to the
stiffness matrix of piece-wise linear FE method. It turns out, that it is
the core of famous Marchenko-Gelfand-Levitan inversion algorithm.



Data-driven discrete-time reduced order model Galerkin back-projection imaging algorithm

Marchenko-Gelfand-Levitan-Krein in nutshell
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Left. Matrix U for a layered model. It is upper triangular due to
causality, with pronounced multiple reflections.

Right. Matrix V obtained after the Gram-Schmidt orthogonalization
of U’s columns (QR). The orthogonalization suppresses multiples.

Basic linear algebra: full rank upper triangular matrix + QR =
identity



Data-driven discrete-time reduced order model Galerkin back-projection imaging algorithm

Galerkin back-projection algorithm

We denote T0 = V∗0A0V0, where A0 = ∆ + q0 = ∆ + v0.50
d2

dx2
v−0.50 is

the Schroedinger operator corresponding the background wave-speed
v0. Then we define the Galerkin back-projection algorithm as

δq = diag−1 [V0V
∗
0] diag [V0(T − T0)V∗0].

By definition A− A0 = q − q0 = v0.5 d
dx v
−0.5 − v0.50

d
dx v
−0.5
0 , so

δq ≈ q − q0 = v0.5
d2

dx2
v−0.5 − v0.50

d2

dx2
v−0.50 .



Data-driven discrete-time reduced order model Extension to multidimensional problems with MIMO data

2D setting

We consider 2D inverse problem for acoustic wave eq. with an array
of m receivers. The shots are fired by moving the transmitter
consequently at the receiver positions, so the data are the elements of
the matrix-valued multi-input/multi-output (MIMO) transfer function

F (t) = F (t)∗ ∈ Rm×m,

sampled at t = jτ , j = 0, . . . , 2n − 1.



Data-driven discrete-time reduced order model Extension to multidimensional problems with MIMO data

Block-generalization

All SISO linear algebra is automatically extended to the MIMO case
by using m ×m matrices instead of numbers (with some instability
treatment), i.e., instead of tridiagonal T ∈ Rn×n we will have
block-tridiagonal matrix T ∈ Rmn×mn with m ×m blocks, etc.
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Numerical images

High contrast example: hydraulic fractures

True c Backprojection image I

Important application: acoustic monitoring of hydraulic fracturing

Multiple thin fractures (down to 1cm in width, here 10cm)

Very high contrasts: c = 4500m/s in the surrounding rock,
c = 1500m/s in the fluid inside fractures



Numerical images

High contrast example: hydraulic fractures

True c linearized (RTM) image

Important application: acoustic monitoring of hydraulic fracturing

Multiple thin fractures (down to 1cm in width, here 10cm)

Very high contrasts: c = 4500m/s in the surrounding rock,
c = 1500m/s in the fluid inside fractures

Strong reflections, any linearized image dominated with multiples



Numerical images

Large scale model: 2D Marmousi; 1D background

From top to bottom: 2D Marmousi model (section); background (1D
model); image.



Numerical images

Other possible applications: ultrasound tomography

True c Backprojection image

Ultrasound screening for early detection of breast cancer

Conventional ultrasound imaging techniques are rather crude,
advanced methods originating in geophysics are in demand
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Conclusions

Summary

We presented a linear algebraic framework of the solution of the
inverse hyperbolic problem by constructing ROM from data and then
imaging media directly via the the equivalent reduced order state
variable problem. Its sparsity pattern mimics the finite-volumes
discretization of the underlying PDE, so corresponding projection
formulation yields localizes basis weakly dependent on the PDE
coefficients.

Beautiful connection of reduced order models, QR tri-diagonalization
and celebrated approach of Marchenko-Gelfand-Levitan-Krein.

POD/balanced truncation type of approach for data
compression/regularization in progress, promising results.

Possible generalizations to other interpolatory formulations, e.g.,
frequency interpolation of diffusion problems via Löwner type
formulas.
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