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Setting (I): Rational eigenvalue problems (REPs)

Given a nonsingular rational matrix G(λ) ∈ F(λ)p×p (in practice F = R or
C) the rational eigenvalue problem (REP) consists in computing
numbers λ0 ∈ F and vectors x0 ∈ Fp such that

G(λ0)x0 = 0

REPs appear in different applications. Examples can be found for
instance in

1 Mehrmann & Voss. GAMM-Reports, 2004,
2 Su & Bai. SIMAX, 2011,
3 Mohammadi & Voss, submitted, 2016.

Example from Mehrmann & Voss, 2004: Damped vibration of a structure.

G(λ) = λ2M +K −
k∑
i=1

σi
λ+ σi

LiL
T
i ,

M,K ∈ Rp×p symmetric positive definite, Li ∈ Rp×ri , ri � p (rational
part with low rank common in applications), σi > 0.
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Setting (II): Solution via Linearization + QZ (or other method)

Su & Bai, SIMAX 2011

1 Su & Bai (2011) write (via easy manipulations) rational matrices as the
one in previous slide as

G(λ) = Dqλ
q +Dq−1λ

q−1 + · · ·+D0 + C(λE −A)−1B ∈ F(λ)p×p,

with E ∈ Fn×n nonsingular.
2 Then, they construct

L(λ) =



λE −A 0 0 . . . 0 B
−C λDq +Dq−1 Dq−2 · · · D1 D0

0 −Ip λIp · · · 0 0
...

. . .
. . .

...
...

...
. . .

. . .
...

0 −Ip λIp


,

3 and compute the eigenvalues of G(λ) as the eigenvalues of the pencil
L(λ). They can also recover eigenvectors (no eigenvectors in this talk).
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Setting (III): Open problems suggested by Su & Bai’s paper (SIMAX 2011)

Su & Bai’s paper is a pioneer contribution that introduces a new, robust,
and clear way to compute eigenvalues of REPs, but

the provided theory is not complete (although works well in most
practical scenarios). More precisely:

due to the lack of a key technical assumption on C(λE −A)−1B, it is not
guaranteed that all (finite) eigenpairs of the rational matrix G(λ) can be
obtained from the (finite) eigenpairs of the linearization L(λ);

in case of multiple eigenvalues, it is not proved that they have the same
partial multiplicities in the rational matrix G(λ) and in the linearization
L(λ);

only linearizations without eigenvalues at∞ are considered, and no
relation is established with the structure at infinite of the rational matrix
G(λ);

no rigorous definition is provided for “linearization” of a rational matrix
and/or the properties it must satisfy;

only nonsingular square rational matrices are considered.
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Setting (IV): Contribution by Alam & Behera (SIMAX 2016)

(Behera’s PhD Thesis 2014)

These authors take care of many of the open problems suggested by Su
& Bai’s paper.

They provide a clear definition of when a pencil, i.e., a linear matrix
polynomial, is a linearization of a square rational matrix that may be
regular or singular.

Their definition guarantees that the complete structures of finite zeros
and finite poles of the rational matrix are inside the linearization, which
allows us to get from the linearization the finite eigenvalues (those finite
zeros that are not poles) including partial multiplicities.

They provide many other examples of Fiedler-like linearizations of
rational matrices, apart from the unique one presented by Su & Bai.
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Setting (V): Some fundamental issues remain unsolved

Despite the very important advances made by Alam & Behera some
fundamental issues remain unsolved:

1 No connection is established at all between the structure at infinity of the
rational matrix and the one of the linearizations proposed so far, and the
available definition does not seem amenable for getting this.

2 Rectangular rational matrices have not been considered.

3 The available definition does not guarantee that the transfer function of
the linearization is “equivalent” to the original rational matrix. So, though
the eigenvalues are in the linearization, other interesting properties can
be missed.

In this scenario, our goals are...
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Goals of the talk

To provide a definition of strong linearization of an arbitrary rational
matrix that guarantees that the complete structures of finite and infinite
zeros and poles of the rational matrix are inside the linearization.

To emphasize that such definition guarantees that the “transfer” function
of any strong linearization is “equivalent” (finite and at infinity) to the
given rational matrix.

To present infinitely many examples of such strong linearizations
immediately constructible if the rational matrix is given in the form
mentioned before, i.e.,

G(λ) = Dqλ
q +Dq−1λ

q−1 + · · ·+D0 + C(λE −A)−1B ∈ F(λ)p×m,

or even if the polynomial part is expressed in some other important
different bases

G(λ) = Dqbq(λ) +Dq−1bq−1(λ) + · · ·+D0 + C(λE −A)−1B,

whenever C(λE −A)−1B is a minimal order state-space realization.
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Always in my mind: strong linearizations of polynomial matrices

Very active area of research in the last decade: closely related to
numerical algorithms for polynomial eigenproblems,

even in the large-scale setting via Arnoldi methods for such problems:
SOAR (Bai & Su, 2005), Q-Arnoldi (Meerbergen, 2008), TOAR (Su & Bai
& Lu, 2008, 2016), Chebyshev basis (Kressner & Roman, 2014), CORK
(Van Beeumen & Meerbergen & Michiels, 2015),...

A linearization for D(λ) = Dd λ
d + · · ·+D1λ+D0 is a matrix pencil

L(λ), such that,

U(λ)L(λ)V (λ) =

[
Is

D(λ)

]
(U(λ), V (λ) unimodular).

L(λ) is a “strong linearization” if, in addition, revL(λ) is a linearization
for revP (λ), where revD(λ) := D0 λ

d + · · ·+Dd−1 λ+Dd =λ
dD(1/λ).

D(λ) and L(λ) have the same finite and infinite elementary divisors.

Our definition of strong linearization for rational matrices is motivated by
and collapses to the one for polynomial matrices.
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Polynomial and strictly proper parts of a rational matrix

A rational matrix G(λ) is a matrix whose entries are rational functions
with coefficients in F.

Any rational matrix G(λ) can be uniquely expressed as

G(λ)=D(λ) +Gsp(λ),

where
1 D(λ) is a polynomial matrix (polynomial part), and
2 the rational matrix Gsp(λ) is strictly proper (strictly proper part),

i.e., lim
λ→∞

Gsp(λ) = 0.

This decomposition is often immediately available in applications
(Merhmann & Voss, 2004):

G(λ) = λ2M +K −
k∑
i=1

σi
λ+ σi

LiL
T
i ,
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The Smith-McMillan Form of a Rational Matrix

Definition

The Smith-McMillan form of a rational matrix G(λ) ∈ F(λ)p×m is the
following diagonal matrix obtained under unimodular transformations U(λ)
and V (λ):

U(λ)G(λ)V (λ) =



ε1(λ)

ψ1(λ)
. . . 0r×(m−r)

εr(λ)

ψr(λ)

0(p−r)×r 0(p−r)×(m−r)


.

ε1(λ), . . . , εr(λ), ψ1(λ), . . . , ψr(λ) are monic polynomials,

the so-called invariant fractions
εi(λ)

ψi(λ)
are irreducible and unique,

εj(λ) divides εj+1(λ), for j = 1, . . . , r − 1,

ψj+1(λ) divides ψj(λ), for j = 1, . . . , r − 1.
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Finite zeros, finite poles, and finite eigenvalues of a Rational Matrix

Definition (finite zeros, finite poles, finite eigenvalues)

Given the Smith-McMillan form of a rational matrix G(λ) ∈ F(λ)p×m:

U(λ)G(λ)V (λ) = diag
(
ε1(λ)

ψ1(λ)
, . . . ,

εr(λ)

ψr(λ)
, 0(p−r)×(m−r)

)
.

The finite zeros of G(λ) are the roots of εr(λ) and the finite poles of
G(λ) are the roots of ψ1(λ).

The finite eigenvalues of G(λ) are the finite zeros that are not poles.

Definition (structural indices)

Given any c ∈ F, one can write for each i = 1, . . . , r,

εi(λ)

ψi(λ)
= (λ− c)σi(c) ε̃i(λ)

ψ̃i(λ)
, with ε̃i(c) 6= 0, ψ̃i(c) 6= 0.

Then, the sequence of structural indices of G(λ) at c is

S(G, c) = (σ1(c) ≤ σ2(c) ≤ · · · ≤ σr(c)) .
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Example: sequences of structural indices at finite values

The matrix

G(λ) =



λ

λ− 1
1

λ− 1
(λ− 1)2

1 λ2

1 λ7


∈ C(λ)5×6

has the Smith-McMillan form

G(λ) ∼



1

λ− 1
1

λ− 1
1

1
(λ− 1)2λ 0


,

and the sequences of structural indices are (rank(G) = 5)

S(G, 1) = (−1,−1, 0, 0, 2),
S(G, 0) = (0, 0, 0, 0, 1).
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Poles and zeros at infinity of a Rational Matrix

Definition
Let G(λ) be a rational matrix. Then, the pole-zero structure of G(λ) at λ =∞
is the pole-zero structure of G(1/λ) at λ = 0.
More precisely, the sequence of structural indices of G(λ) at λ =∞ is the
sequence of structural indices of G(1/λ) at λ = 0.
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KEY PROPERTY on the smallest structural index at infinity

Proposition

Let us express the rational matrix G(λ) ∈ F(λ)p×m as

G(λ) = D(λ) +Gsp(λ), where

D(λ) is its polynomial part and Gsp(λ) is its strictly proper part.

1 If D(λ) 6= 0, then −deg(D) is the smallest structural index of G(λ) at
infinity.

2 If D(λ) = 0, then the smallest structural index of G(λ) at infinity is
positive.

KEY Remark
This proposition has an important impact on how to define strong
linearizations of rational matrices since rational matrices with
polynomial parts of different degrees cannot have the same structure at
infinity.
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The change of variable G(λ)→ G(1/λ) is not needed: biproper matrices

Definition (Biproper matrices)

A square rational matrix is biproper if

for all its entries, the degree of the numerator is smaller than or equal to
the degree of the denominator (that is, the entries are proper rational
functions), and

its determinant is a nonzero rational function whose numerator and
denominator have the same degree.

Theorem (Vardulakis, 1991; Amparan, Marcaica, Zaballa, 2015)

Let G(λ), R(λ) ∈ F(λ)p×m be two rational matrices. Then the following
statements are equivalent:

1 G(λ) and R(λ) have the same structural indices at∞.

2 There exist two biproper matrices B1(λ) and B2(λ) such that

G(λ) = B1(λ)R(λ)B2(λ) .
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Definition of strong linearizations (I)

Definition

Let G(λ) ∈ F(λ)p×m, let

g =

{
−degree of polynomial part of G(λ),
0 if G(λ) has not polynomial part,

and let
n = least order of strictly proper part of G(λ).

A strong linearization of G(λ) is a matrix pencil

L(λ) =

[
A1λ+A0 B1λ+B0

−(C1λ+ C0) D1λ+D0

]
∈ F[λ](n+(p+s))×(n+(m+s))

such that the following conditions hold:
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Definition of strong linearizations (II)

Definition (continuation)

A strong linearization of G(λ) is a matrix pencil

L(λ) =

[
A1λ+A0 B1λ+B0

−(C1λ+ C0) D1λ+D0

]
∈ F[λ](n+(p+s))×(n+(m+s))

such that the following conditions hold:

(a) if n > 0 then det(A1λ+A0) 6= 0, and

(b) if Ĝ(λ) = (D1λ+D0) + (C1λ+ C0)(A1λ+A0)
−1(B1λ+B0) and ĝ is the

corresponding quantity of Ĝ(λ) then:

(i) there exist unimodular matrices U1(λ), U2(λ) such that

U1(λ) diag(G(λ), Is)U2(λ) = Ĝ(λ), and

(ii) there exist biproper matrices B1(λ), B2(λ) such that

B1(λ) diag(λ
g G(λ), Is)B2(λ) = λĝ Ĝ(λ).

F. M. Dopico (U. Carlos III, Madrid) Strong linearizations of rational matrices October 25, 2016 20 / 32



Comment on condition (ii) of previous definition

A completely equivalent definition is obtained if condition (ii) in previous slide
is replaced by

(equivalent definition)

(ii)’ there exist unimodular matrices W1(λ), W2(λ) such that

W1(λ) diag

(
1

λg
G

(
1

λ

)
, Is

)
W2(λ) =

1

λĝ
Ĝ

(
1

λ

)
,

which most of the times can be written, if G(λ) has a polynomial part
D(λ) 6= 0 as

W1(λ) diag

(
λdeg(D)G

(
1

λ

)
, Is

)
W2(λ) = λ Ĝ

(
1

λ

)
.

This resembles the definition of strong linearizations of rational matrices
through “reversals”.
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Strong linearizations contain the complete zero/pole structure

Theorem (Spectral characterization of strong linearizations)

Let G(λ) ∈ F(λ)p×m and n be the least order of the strictly proper part of
G(λ). Let

L(λ) =

[
A1λ+A0 B1λ+B0

−(C1λ+ C0) D1λ+D0

]
∈ F[λ](n+(p+s))×(n+(m+s)) ,

with A1 invertible. Then L(λ) is a strong linearization of G(λ) if and only if
the following two conditions hold:

(I) G(λ) and L(λ) have the same number of left and the same number of
right minimal indices, and

(II) L(λ) preserves the finite and infinite structures of poles and zeros of
G(λ).
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The meaning of (II): “...preserves the finite and infinite structures...”

For simplicity, we assume that G(λ) has (non-zero) polynomial part, and that
D1 + C1A

−1
1 B1 6= 0 (these assumptions are not essential).

L(λ) =

[
A1λ+A0 B1λ+B0

−(C1λ+ C0) D1λ+D0

]
∈ F[λ](n+(p+s))×(n+(m+s)) versus G(λ)

1 The nontrivial invariant polynomials of A1λ+A0 are the nontrivial
denominators of the Smith-McMillan form of G(λ)
(eigenvalues of A1λ+A0 ≡ finite poles of G(λ)).

2 The nontrivial invariant polynomials of L(λ) are the nontrivial numerators
of the Smith-McMillan form of G(λ)
(eigenvalues of L(λ) ≡ finite zeros of G(λ)).

3 If r = rank(G(λ)), then n+ s+ r = rank(L(λ)). If 0 ≤ e1 ≤ · · · ≤ en+s+r
are the partial multiplicities of L(λ) at infinity, then ei = 0 for
i = 1, . . . , n+ s and

en+s+i − degree polynomial part of G(λ), i = 1, . . . , r,

are the structural indices at infinity of G(λ) (∞-structs. related by shift).
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of the Smith-McMillan form of G(λ)
(eigenvalues of L(λ) ≡ finite zeros of G(λ)).

3 If r = rank(G(λ)), then n+ s+ r = rank(L(λ)). If 0 ≤ e1 ≤ · · · ≤ en+s+r
are the partial multiplicities of L(λ) at infinity, then ei = 0 for
i = 1, . . . , n+ s and

en+s+i − degree polynomial part of G(λ), i = 1, . . . , r,

are the structural indices at infinity of G(λ) (∞-structs. related by shift).
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Outline

1 Basics on rational matrices with emphasis on structure at infinity

2 Definition of strong linearizations of rational matrices

3 Equivalent characterizations of strong linearizations

4 Explicit constructions of many strong linearizations
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Characterizations in terms of polynomial system matrices

Our definition of strong linearization of a rational matrix is based on
requiring the “equivalence” (finite and at infinity) between the original
rational matrix and the “transfer function” of the pencil called “strong
linearization”.

This approach guarantees that all the information of the original rational
problem, including the finite and infinite zero/pole structures, is recorded
in the “strong linearization”.

However, it is not easy to work directly with this definition.

Therefore, we have developed equivalent characterizations of strong
linearizations based on

1 polynomial system matrices of rational matrices and
2 two new classes of equivalence relations between them: transfer

system equivalence and transfer system equivalence at infinity.

No time to explain in detail.
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Starting data for our constructions (I)

(1) Polynomial (D(λ)) and strictly proper parts (Gsp(λ)) of the rational
matrix.

G(λ) = D(λ) +Gsp(λ) ∈ F(λ)p×m .

Given in many applications of REPs.

(2) A minimal order state-space realization of Gsp(λ):

Gsp(λ) = C(λIn −A)−1B .
That is to say:

rank
[
B AB A2B · · ·An−1B

]
= n, rank


C
CA
CA2

...
CAn−1

 = n.

“Almost” given in many applications of REPs where n� min{p,m} and
rankB = n and rankC = n. (If not, use algorithms: Rosenbrock’s
method (1970) stabilized by Van Dooren (1979, 1981) implemented in
SLICOT (1999). There are more...)
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Starting data for our constructions (II)

(3) A strong block minimal bases linearization of the polynomial part
D(λ) (D., Lawrence, Pérez, Van Dooren, 2016)

L(λ) =
[
M(λ) K2(λ)

T

K1(λ) 0

]
There are infinitely many very easily constructible: Paul’s Talk, Robol &
Vandebril & Van Dooren (2016), Lawrence & Pérez (2016), Fassbender
& Pérez & Shayanfar (2016),...

Some “easy” constant matrices K̂1 and K̂2 related to L(λ) are also
needed.
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Main result on constructing strong linearizations

Theorem
With the notation and hypotheses of previous slides, for any nonsingular
constant matrices X,Y ∈ Fn×n the linear polynomial matrix

L(λ) =

 X(λIn −A)Y XBK̂1 0

− K̂T
2 CY M(λ) K2(λ)

T

0 K1(λ) 0


is a strong linearization of G(λ).
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Example 1. Strong linearization based on Frobenius companion

linearization for polynomials

Given rational matrix:

G(λ) = Ddλ
d + · · ·+D1λ+D0 + C(λIn −A)−1B ∈ F(λ)p×m.

Strong linearization (Su & Bai (SIMAX, 2011) with minimal order
state-space requirement):

L(λ) =



λIn −A 0 0 · · · 0 B
−C λDd +Dd−1 Dd−2 · · · D1 D0

0 −Im λIm
...

. . .
. . .

...
. . . λIm

0 −Im λIm
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Example 2. Strong linearization based on Chebyshev colleague

linearization for polynomials

Given rational matrix:

G(λ) = Dd Ud(λ) + · · ·+D1 U1(λ) +D0 + C(λIn −A)−1B ∈ F(λ)p×m,

with polynomial part expressed in Chebyshev basis of the second kind.

Strong linearization:

L(λ) =



λIn −A 0 0 0 · · · B
−C 2λDd +Dd−1 Dd−2 −Dd Dd−3 · · · D0

0 −Im 2λIm −Im
...

. . .
. . .

. . .
... −Im 2λIm −Im
0 −Im 2λIm
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Example 3. Strong linearization based on another block Kronecker pencil

Given rational matrix:

G(λ) = λ5D5+λ
4D4+λ

3D3+λ
2D2+λD1+D0+C(λIn−A)−1B ∈ F(λ)p×m

Strong linearization:

L(λ) =


λIn −A 0 0 B 0 0

0 λP5 + P4 0 0 −Ip 0
0 0 λP3 + P2 0 λIp −Ip
−C 0 0 λP1 + P0 0 λIp
0 −Im λIm 0 0 0
0 0 −Im λIm 0 0
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