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1D - Problem setting
0000

Fractional Diffusion Equations (FDEs)

We are interested in the following space-fractional diffusion equation (FDE)

ou(x,t) 0%u(x,t) 0%u(x,t)
ot 04 X O_Xx

=di(x,t) +d_(x,t) + f(x, t),

where
@ « € (1,2) is the fractional derivative order,
@ di(x,t) = 0 are the diffusion coefficients,
@ (x,t) € (L,R) x (0, T], with the initial-boundary conditions

{ u(L,t) =u(R,t) =0, tel0,T],
u(x,0) = wo(x), x € [L,R].
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Anomalous diffusion

« = 2 = parabolic PDE

Fractional space derivatives are used to model anomalous
diffusion or dispersion, where a particle plume spreads at a
rate inconsistent with the classical Brownian motion model.

Replacing the second derivative in a diffusion or dispersion
model with a fractional derivative it leads to enhanced
diffusion (super-diffusion).

Applications: hydrology, finance, image processing, . ...
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Fractional Diffusion Equations (FDEs)

%x;(t) are defined by the shifted Griinwald formula

O+
[(x=L)/Ax]
0%u(x,t) ) (o)
Tx A — (k—1)Ax,t
6+Xa A)(er:)Jr Axe pr) &k U(X ( ) X, )7
L(R—x)/Ax]
0%u(x,t) )
W B AXI—TH- Axe o gk U(X + (k - l)AX7 t)a
where gk(a) are the alternating fractional binomial coefficients
« -1 k
5" = (_1)k( p ) = %a(a—l)m(a—kﬂ) k=0,1,...
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Ad

iscretization

Fix two positive integers N, M, and define the following partition of
[L, R] > [0, T],

xi=L+ibx, Ax=%8 =0, N+1,
tm=mAt, At=L, m=0,...,M,

© discretization in time by an implicit Euler method

@ discretization in space of the fractional derivatives by the shifted
Griinwald formula

y
consistent and unconditionally stable method 2]

[1] Meerschaert, Tadjeran, J. Comput. Appl. Math., 2004

[2] Meerschaert, Tadjeran, Appl. Numer. Math., 2006
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Matrix form of the discretized problem

(I/M,NI + Dim) Tan + D™ TCZ:N) utm = Z/M,Nu(mfl) + Axaf(m)7

@ T, n lower Hessenberg Toeplitz matrix

_g((,y) géa) o 0 0
@ e ()
& &1 & 0 0
Ta,N = -
0
Kol “o
Lat™ ey ol g
o DY = diag(d{"™,...,d\") with d\") = di (x;, tm)
@ vumN AAXt
° fim,

u™ e RN, with f,.('") = f(xi, tm), and u,-('") ~ U(Xi, tm)
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Spectral analysis

Preliminaries: symbol

Defl Let f € L'[—m, 7] with Fourier coefficients

L7 fo)edo, jez.

T 2r .
Then the Toeplitz matrix of size n X n generated by f is
To(f) = [firj]ii
@ The symbol f describes the spectrum of T,(f) for n large enough:

{Ta(F)}pen ~x (F, =, 7])
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Spectral analysis

S (m)
Symbol and spectral distribution of {M""*N}Neﬂ

The coefficient matrix

M = vl + D Taw + DTy

is a symmetric Toeplitz matrix in the case of constant and equal diffusion
coefficients (D;m) =d-I,d>0)

If UM,N = 0(1) then
(MO}~ (@ pa(®), [-, 7)),

where

fa(=0) = fa(0) + 1o (6)

) +
20 . N «
Z g/fi)lelke — o (1 . e.e) '

Pa(0) = fa(0

is a real-valued continuous function.
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Comparison between the

symbol of the Laplacian

operator £(0) = 2 — 2 cos(0)
(blue bullet line) with p,(0)
for « = 1.2 (red solid line),
a = 1.5 (black dotted line)
and ( dashed
line) in a neighborhood of 0.
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Variable coefficients case

Generalized Localy Toeplitz (GLT) matrices®) combine diagonal and Toeplitz
matrices (first proposal in 1)

M = vmnl + DV Ton + DTy

If vmn = 0(1) and d+(x) := d+(x, tm) Riemann integrable for a fixed tn, then
(M} ~o (ha(x,0), [L,R] x [~ 7).

ho(x,8) = ds (x)fa(0) + d_(x)fa(—6), (x,0) € [L, R] x [—m, 7],
If dy (x) = d_(x), we also have {Mf;;;} ~x (ha(x,0),[L, R] x [~m,7]).

[3] Serra-Capizzano, LAA, 2006

[4] Tilli, LAA, 1998
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2D FDEs

ou(x.y,t) d (X,y, t)[)(’u(x,y,t) +d_ (X,y, )Oau(x,y,t)

ot 04 xe 0_x<

U(X7.y’ ) =0’

(x,y,t
bew (o, 7550 e (x,y, 72500 4 flx,y, ¢

(x,y,t
u(x,y,0) = to(x, ), (x

y)

Using the second-order accurate CN-WSGD* schemel® the coefficient matrix is

(m) (m) _ At At

Moy n ('”+A B A ) " Axe T 2Aﬁ’N NV
A(’" D™ (I, @ Tamy) + D (I, @ T ),
A(m) E(m)(TBN2®IN1)+E(m)(TﬁN2®IN1)

We can compute the symbol of MEZ-)B) N

% Crank-Nicolson in time and a second order approximation of the Riemann-Liouville fractional derivatives called
Weighted and Shifted Griinwald Difference

[5] W. Tian, H. Zhou, W. Deng, Math. Comp., 2015
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Preconditioners

Preconditioners

@ Matrix-vector product with MEZ-,)B),N in O(N log(N)).

@ Circulant preconditioner CANNOT give a proper clustering in the
multidimensional problems also in the constant coefficient setting due to
the negative results in (o1,

@ The preconditioner P2<",(,) = ME;")Z)_N, i.e., shifted Laplacian,

o The condition number of the preconditioned matrix Pérr,(,)/\/lfxm,z,
is asymptotical to N277, with v = max{a, 8} s.t. /
0 <2 —~ <117l = the number of iterations of a conjugate
gradient type method grows as O(N°z") [&]
= PQ(",(,) is a good choice when « or 3 are close to 2.

@ only five nonzero diagonals, but the Gaussian elimination is
computationally too expensive = Multigrid methods

[6] Serra-Capizzano, Tyrtyshnikov, SIMAX, 1999
[7] Serra S., Calcolo, 1995

[8] Axelsson O., Lindskog G., Numer. Math., 1986
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Multigrid methods

Algebraic interpretation of Multigrid methods

Multigrid Idea

Project the system in a subspace, solve the resulting system in this subspace
and interpolate the solution in order to improve the previous approximation.

o
Multigrid components

The Multigrid combines two iterative methods:

Smoother: a classic iterative method,

Coarse Grid Correction: projection of the error equation, solution of the
restricted problem, interpolation.

Even if the two components have not a good convergence, their combination
could results in a very fast iterative method if they are spectrally
complementary.
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Multigrid methods

Multigrid methods

Multigrid for 1D constant coefficients FDE was proposed inl
@ Jacobi smoother and linear interpolation projector.

@ The two grid convergence analysis agrees with results for Toeplitz
matrices in[111

@ The numerical results show a linear convergence rate also for
@ V-cycle,
@ variable coefficients,
o the coarser matrices are obtained by rediscretization instead of
the Galerkin approach.

[9] Pang, Sun, J. Comput. Phys., 2012
[10] Fiorentino, Serra-Capizzano Calcolo, 1991

[11] Chan et al., SISC, 1998
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Multigrid methods

Our symbol analysis for Multigrid methods

: (m)
Using the symbol of M(a,ﬁ),N

@ Two-grid convergence analysis for the 2D problem[*?] proving: smoothing
condition for Jacobi and approximation condition for linear interpolation.

@ Constant case: The V-cycle optimality requires(*!]

. p(0) _ 5

éi“o F0) = ¢ < 0, 6eV(), (2)
where V(0) = {(0,0 + ), (0 + 7,0),(0 + 7,0 + m)}, p is the symbol of
the linear interpolation, and f is the symbol of the FDE. Under the
assumption AAX? = o(1), and constant diffusion coefficients, the (2) holds
with ¢ = 0 = the projector is robust (geometric multigrid).

@ Nonconstant case: When the diffusion coefficients are uniformly bounded
and positive the optimality of the TGM can be proved using*.

[12] Dehghan et al., manuscript
[13] Arico, Donatelli, Numer. Math., 2007

[14] Serra-Capizzano, Tablino-Possio, Calcolo, 2014
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Multigrid methods

Galerkin and geometric Multigrid methods

@ Galerkin approach:
T
Ak+1 = PrAkPy
where Ax and Py are the coefficient matrix and the projection matrix at
the recursion level k.

@ Pro: It is robust and the theory is well-defined
o Converse: Setup phase for computing all Ak, which could be
computational expensive

@ Geometric approach: Ay rediscretization of the same FDE at each
recursion level.

@ Pro: Cheap and easy to compute
@ Converse: Be careful to scaling and less robust than Galerkin,
but ¢ = 0 helps!
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Numerical results

@ We choose Ax = Ay = At, such that

1 2Ax® a1 N—w
—=——=2A — 0
r At x

@ Compute the average number of iterations as ZM 1 Iter(m), where
Iter(m) is the number of iterations at time tm

@ GMRES with tollerance 1077

Example from™: o = 1.8, 3 =1.9

de(x,y,t) =41+ t)x*(1+ y), d_(x,y,t) =41+ t)(1 —x)*(1 +y),
er(x,y,t) = 41+ t)(1 + x)y”, e (x,y,t) =41+ t)(1+x)(1 —y)~.

on the spatial domain Q = [0, 1] x [0,1] and time interval [0, T] = [0, 1].
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Preconditioners

@ Py the proposal in ™ based on ILU for the inverse of a band
preconditioner (7 bandwidth at blocks with blocks with bandwidth 7)

@ P, one iteration of Galerkin multigrid applied to ME;"%)N = O(N)

@ Puycm one iteration of geometric multigrid applied to the coefficient

. (m
matrix M(a,ﬁ%,\,

@ The multigrid methods use one step of Jacobi as pre- and post-smoother,
while the grid transfer operator is the bilinear interpolation.

[15] Jin, Lin, Zhao, Commun. Comput. Phys. 2015.

M. Donatelli Spectral analysis and numerical methods for FDEs



Numerical results
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Number of iterations

Ny GMRES(20) Piu P> Prem
2% 48.750 11.000 18.063 9.000
25 81.594 12.406 15.813 9.000
26 157.750 14.250 11.531 10.000
27 273.914 17.055 12.000 9.891
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Example 2

@ a=183=16

@ Diffusion coefficients

di(x,y,1) =TB—a)(1+x)*(1+y)
d-(x.y,t) = T3 - a)3=x)"(3~y)
er(x,y,t) = TB = B) (L +x)*(1 +y)”
e-(x,y,t) =T33 X3 -y)”

@ Spatial domain Q = [0,2] x [0, 2] and time interval [0, T] = [0, 1].

@ The source term and the initial condition are fixed such that the exact
solution is known.
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Number of iterations

N1 GMRES P2 PMGM PMGM Error
(Galerkin)
2% 37.000 21.000 10.000 10.000 9.3706 x 102
25 73.000 18.781 11.000 11.000 2.4747 x 1072
26 137.000 17.000 11.000 11.000 6.3630 x 1073
27 251.000 17.000 10.000 10.000 1.6053 x 1073

M. Donatelli Spectral analysis and numerical methods for FDEs



Conclusions
[ 1]

Conclusions

Summarizing
@ Symbol based analysis for asymptotic eigenvalue/singular value
distribution for variable coefficient FDEs.

@ Preconditioning: To preserve the structure can be more useful than to
preserve the order of the zero of the symbol.

@ Multigrid methods preserve the structure without needing to match the
order of the zero of the symbol

Future work

@ Alternative discretizations like finite volumes!*%]

@ Applications in imaging, block problems, etc.

[16] Pan, Ng, Wang, SISC, 2016
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@ M. DONATELLI, M. MAZzA, S. SERRA-CAPIZZANO,
Spectral analysis and structure preserving preconditioners for fractional
diffusion equations,
J. Comput. Phys., 307 (2016), pp. 262-279.

@ M. DEHGHAN, M. DONATELLI, M. MAzzA, H. MOGHADERI,
Multigrid preconditioners for two-dimensional space-fractional diffusion
equations,
manuscript (2016).

THANKS!
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