1D - Problem setting 00000	Spectral analysis	2D problem O	Numerical methods 0 0000	Numerical results 00000	Conclusions 00

Spectral analysis and numerical methods for fractional diffusion equations

M. Dehghan · <u>M. Donatelli</u> · M. Mazza H. Moghaderi · S. Serra-Capizzano

Department of Science and High Technology, University of Insubria, Italy

Numerical Linear Algebra with Applications, CIRM Luminy, October 24–28, 2016

1D - Problem setting 00000	Spectral analysis	2D problem 0	Numerical methods 0 0000	Numerical results 00000	Conclusions 00

- 2 Spectral analysis
- 3 2D problem
- 4 Numerical methods
 - Preconditioners
 - Multigrid methods

5 Numerical results

6 Conclusions

1D - Problem setting ●0000	Spectral analysis	2D problem 0	Numerical methods 0 0000	Numerical results	Conclusions 00

Fractional Diffusion Equations (FDEs)

We are interested in the following space-fractional diffusion equation (FDE)

$$\frac{\partial u(x,t)}{\partial t} = d_+(x,t)\frac{\partial^{\alpha}u(x,t)}{\partial_+x^{\alpha}} + d_-(x,t)\frac{\partial^{\alpha}u(x,t)}{\partial_-x^{\alpha}} + f(x,t),$$

where

- $\alpha \in (1,2)$ is the fractional derivative order,
- $d_{\pm}(x,t) \ge 0$ are the diffusion coefficients,
- $(x, t) \in (L, R) \times (0, T]$, with the initial-boundary conditions

$$\begin{cases} u(L,t) = u(R,t) = 0, & t \in [0,T], \\ u(x,0) = u_0(x), & x \in [L,R]. \end{cases}$$

1D - Problem setting 0●000	Spectral analysis	2D problem 0	Numerical methods 0 0000	Numerical results	Conclusions 00

Anomalous diffusion

- $\alpha = 2 \Rightarrow$ parabolic PDE
- Fractional space derivatives are used to model anomalous diffusion or dispersion, where a particle plume spreads at a rate inconsistent with the classical Brownian motion model.
- Replacing the second derivative in a diffusion or dispersion model with a fractional derivative it leads to enhanced diffusion (super-diffusion).
- Applications: hydrology, finance, image processing,

1D - Problem setting 00●00	Spectral analysis	2D problem 0	Numerical methods 0 0000	Numerical results	Conclusions 00

Fractional Diffusion Equations (FDEs)

$$\begin{split} \frac{\partial^{\alpha} u(x,t)}{\partial_{\pm} x^{\alpha}} & \text{ are defined by the shifted Grünwald formula} \\ \frac{\partial^{\alpha} u(x,t)}{\partial_{+} x^{\alpha}} &= \lim_{\Delta x \to 0^{+}} \frac{1}{\Delta x^{\alpha}} \sum_{k=0}^{\lfloor (x-L)/\Delta x \rfloor} g_{k}^{(\alpha)} u(x-(k-1)\Delta x,t), \\ \frac{\partial^{\alpha} u(x,t)}{\partial_{-} x^{\alpha}} &= \lim_{\Delta x \to 0^{+}} \frac{1}{\Delta x^{\alpha}} \sum_{k=0}^{\lfloor (R-x)/\Delta x \rfloor} g_{k}^{(\alpha)} u(x+(k-1)\Delta x,t), \end{split}$$

where $g_k^{(\alpha)}$ are the alternating fractional binomial coefficients

$$g_k^{(\alpha)} = (-1)^k \begin{pmatrix} \alpha \\ k \end{pmatrix} = \frac{(-1)^k}{k!} \alpha(\alpha - 1) \cdots (\alpha - k + 1) \quad k = 0, 1, \dots$$

1D - Problem setting 000●0	Spectral analysis	2D problem 0	Numerical methods 0 0000	Numerical results	Conclusions

A discretization

Fix two positive integers N, M, and define the following partition of $[L, R] \times [0, T]$,

$$\begin{aligned} x_i &= L + i\Delta x, \quad \Delta x = \frac{(R-L)}{N+1}, \quad i = 0, \dots, N+1, \\ t_m &= m\Delta t, \quad \Delta t = \frac{T}{M}, \quad m = 0, \dots, M, \end{aligned}$$

- discretization in time by an implicit Euler method
- discretization in space of the fractional derivatives by the shifted Grünwald formula

consistent and unconditionally stable method $^{\left[1,2\right] }.$

∜

[1] Meerschaert, Tadjeran, J. Comput. Appl. Math., 2004

[2] Meerschaert, Tadjeran, Appl. Numer. Math., 2006

1D - Problem setting	Spectral analysis	2D problem	Numerical methods	Conclusions
00000			0 0000	

Matrix form of the discretized problem

$$\left(\nu_{M,N}I + D_{+}^{(m)}T_{\alpha,N} + D_{-}^{(m)}T_{\alpha,N}^{T}\right)u^{(m)} = \nu_{M,N}u^{(m-1)} + \Delta x^{\alpha}f^{(m)},$$

• $T_{\alpha,N}$ lower Hessenberg Toeplitz matrix

$$T_{\alpha,N} = - \begin{bmatrix} g_1^{(\alpha)} & g_0^{(\alpha)} & 0 & \cdots & 0 & 0\\ g_2^{(\alpha)} & g_1^{(\alpha)} & g_0^{(\alpha)} & 0 & \cdots & 0\\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots\\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots\\ g_{N-1}^{(\alpha)} & \vdots & \ddots & \ddots & g_1^{(\alpha)} & g_0^{(\alpha)} \end{bmatrix}_{N \times N}$$

•
$$D_{\pm}^{(m)} = \text{diag}(d_{\pm,1}^{(m)}, \dots, d_{\pm,N}^{(m)})$$
 with $d_{\pm,i}^{(m)} := d_{\pm}(x_i, t_m)$

• $\nu_{M,N} = \frac{\Delta x^{\alpha}}{\Delta t}$ • $f^{(m)}, u^{(m)} \in \mathbb{R}^N$, with $f_i^{(m)} := f(x_i, t_m)$, and $u_i^{(m)} \approx u(x_i, t_m)$

1D - Problem setting 00000	Spectral analysis	2D problem O	Numerical methods 0 0000	Numerical results	Conclusions 00

Preliminaries: symbol

Def1 Let $f \in L^1[-\pi, \pi]$ with Fourier coefficients

$$f_j = rac{1}{2\pi} \int_{-\pi}^{\pi} f(heta) \mathrm{e}^{-\mathrm{i} j heta} d heta, \quad j \in \mathbb{Z}.$$

Then the Toeplitz matrix of size $n \times n$ generated by f is

$$T_n(f) = [f_{i-j}]_{i,j=1}^n$$

• The symbol f describes the spectrum of $T_n(f)$ for n large enough:

$$\{T_n(f)\}_{n\in\mathbb{N}}\sim_\lambda (f,[-\pi,\pi])$$

1D - Problem setting	Spectral analysis	2D problem	Numerical methods	Conclusions
			0 0000	

Symbol and spectral distribution of $\left\{\mathcal{M}_{lpha,N}^{(m)} ight\}_{N\in\mathbb{N}}$

The coefficient matrix

$$\mathcal{M}_{\alpha,N}^{(m)} = \nu_{M,N} I + D_{+}^{(m)} T_{\alpha,N} + D_{-}^{(m)} T_{\alpha,N}^{T}$$

is a symmetric Toeplitz matrix in the case of constant and equal diffusion coefficients $(D_{\pm}^{(m)} = d \cdot I, d > 0)$

If $\nu_{M,N} = o(1)$ then

$$\left\{\mathcal{M}_{\alpha,N}^{(m)}\right\}\sim_{\lambda} (\boldsymbol{d}\cdot\boldsymbol{p}_{\alpha}(\boldsymbol{\theta}),[-\pi,\pi]),$$

where

$$p_{\alpha}(\theta) = f_{\alpha}(\theta) + f_{\alpha}(-\theta) = f_{\alpha}(\theta) + \overline{f_{\alpha}(\theta)}$$
$$f_{\alpha}(\theta) = -\sum_{k=-1}^{\infty} g_{k+1}^{(\alpha)} e^{ik\theta} = -e^{-i\theta} \left(1 - e^{i\theta}\right)^{\alpha}$$

is a real-valued continuous function.

1D - Problem setting 00000	Spectral analysis	2D problem 0	Numerical methods 0 0000	Numerical results	Conclusions 00

Zero of the symbols $p_{\alpha}(\theta)$

The function $p_{\alpha}(\theta)$ has a zero of order $\alpha \in (1,2)$ at 0

Comparison between the symbol of the Laplacian operator $\ell(\theta) = 2 - 2\cos(\theta)$ (blue bullet line) with $p_{\alpha}(\theta)$ for $\alpha = 1.2$ (red solid line), $\alpha = 1.5$ (black dotted line) and $\alpha = 1.8$ (green dashed line) in a neighborhood of 0.

Curiosity $p_1(\theta) = \ell(\theta) = \frac{1}{2}p_2(\theta)$.

1D - Problem setting 00000	Spectral analysis	2D problem 0	Numerical methods 0 0000	Numerical results	Conclusions 00

Variable coefficients case

Generalized Localy Toeplitz (GLT) matrices^[3] combine diagonal and Toeplitz matrices (first proposal in $^{[4]}$)

$$\mathcal{M}_{\alpha,N}^{(m)} = \nu_{M,N} I + D_+^{(m)} T_{\alpha,N} + D_-^{(m)} T_{\alpha,N}^{\mathsf{T}}$$

If $\nu_{M,N} = o(1)$ and $d_{\pm}(x) := d_{\pm}(x, t_m)$ Riemann integrable for a fixed t_m , then $\left\{ \mathcal{M}_{\alpha,N}^{(m)} \right\} \sim_{\sigma} (h_{\alpha}(x, \theta), [L, R] \times [-\pi, \pi]).$

$$\begin{split} & h_{\alpha}(x,\theta) = d_{+}(x)f_{\alpha}(\theta) + d_{-}(x)f_{\alpha}(-\theta), \quad (x,\theta) \in [L,R] \times [-\pi,\pi], \\ & \text{If } d_{+}(x) = d_{-}(x), \text{ we also have } \left\{ \mathcal{M}^{(m)}_{\alpha,N} \right\} \sim_{\lambda} (h_{\alpha}(x,\theta), [L,R] \times [-\pi,\pi]). \end{split}$$

[3] Serra-Capizzano, LAA, 2006

[4] Tilli, LAA, 1998

1D - Problem setting 00000	Spectral analysis	2D problem ●	Numerical methods 0 0000	Numerical results 00000	Conclusions

2D FDEs

$$\begin{cases} \frac{\partial u(x,y,t)}{\partial t} = d_{+}(x,y,t) \frac{\partial^{\alpha} u(x,y,t)}{\partial_{+}x^{\alpha}} + d_{-}(x,y,t) \frac{\partial^{\alpha} u(x,y,t)}{\partial_{-}x^{\alpha}} & (x,y,t) \in \Omega \times (0,T], \\ + e_{+}(x,y,t) \frac{\partial^{\beta} u(x,y,t)}{\partial_{+}y^{\beta}} + e_{-}(x,y,t) \frac{\partial^{\beta} u(x,y,t)}{\partial_{-}y^{\beta}} + f(x,y,t), \\ u(x,y,t) = 0, & (x,y,t) \in \partial\Omega \times [0,T], \\ u(x,y,0) = u_{0}(x,y), & (x,y) \in \bar{\Omega}, \end{cases}$$

Using the second-order accurate CN-WSGD* scheme^[5] the coefficient matrix is

$$\mathcal{M}_{(\alpha,\beta),N}^{(m)} = \left(\frac{1}{r}I_{N} + A_{x}^{(m)} + \frac{s}{r}A_{y}^{(m)}\right), \qquad r = \frac{\Delta t}{2\Delta x^{\alpha}}, \ s = \frac{\Delta t}{2\Delta y^{\beta}}, \ N = N_{1}N_{2}$$
$$\begin{cases} A_{x}^{(m)} = D_{+}^{(m)}(I_{N_{2}} \otimes T_{\alpha,N_{1}}) + D_{-}^{(m)}(I_{N_{2}} \otimes T_{\alpha,N_{1}}^{T}), \\ A_{y}^{(m)} = E_{+}^{(m)}(T_{\beta,N_{2}} \otimes I_{N_{1}}) + E_{-}^{(m)}(T_{\beta,N_{2}}^{T} \otimes I_{N_{1}}). \end{cases}$$

We can compute the symbol of $\mathcal{M}^{(m)}_{(\alpha,\beta),N}$...

* Crank-Nicolson in time and a second order approximation of the Riemann-Liouville fractional derivatives called Weighted and Shifted Grünwald Difference

[5] W. Tian, H. Zhou, W. Deng, Math. Comp., 2015

1D - Problem setting 00000	Spectral analysis	2D problem O	Numerical methods • • •	Numerical results	Conclusions 00
Preconditioners					
Preconditi	oners				

- Matrix-vector product with $\mathcal{M}^{(m)}_{(\alpha,\beta),N}$ in $O(N\log(N))$.
- Circulant preconditioner **CANNOT** give a proper clustering in the multidimensional problems also in the constant coefficient setting due to the negative results in ^[6].
- The preconditioner $P_{2,N}^{(m)} = \mathcal{M}_{(2,2),N}^{(m)}$, i.e., shifted Laplacian,
 - The condition number of the preconditioned matrix P^(m)_{2,N} M^(m)_{α,N} is asymptotical to N^{2-γ}, with γ = max{α, β} s.t. 0 < 2 γ < 1 ^[7] ⇒ the number of iterations of a conjugate gradient type method grows as O(N^{2-γ}/₂) ^[8] ⇒ P^(m)_{2,N} is a good choice when α or β are close to 2.
 only five nonzero diagonals, but the Gaussian elimination is
 - only five nonzero diagonals, but the Gaussian elimination is computationally too expensive ⇒ Multigrid methods

[6] Serra-Capizzano, Tyrtyshnikov, SIMAX, 1999

[7] Serra S., Calcolo, 1995

[8] Axelsson O., Lindskog G., Numer. Math., 1986

1D - Problem setting 00000	Spectral analysis	2D problem O	Numerical methods ○ ●000	Numerical results	Conclusions

Multigrid methods

Algebraic interpretation of Multigrid methods

Multigrid Idea

Project the system in a subspace, solve the resulting system in this subspace and interpolate the solution in order to improve the previous approximation.

Multigrid components

The Multigrid combines two iterative methods:

Smoother: a classic iterative method,

Coarse Grid Correction: projection of the error equation, solution of the restricted problem, interpolation.

Even if the two components have not a good convergence, their combination could results in a very fast iterative method if they are spectrally complementary.

1D - Problem setting 00000	Spectral analysis	2D problem O	Numerical methods ○ ○●○○	Numerical results 00000	Conclusions 00
Multigrid methods					
Multigrid met	nods				

Multigrid for 1D constant coefficients FDE was proposed in^[9]

- Jacobi smoother and linear interpolation projector.
- The two grid convergence analysis agrees with results for Toeplitz matrices in^[10,11].
- The numerical results show a linear convergence rate also for
 - V-cycle,
 - variable coefficients,
 - the coarser matrices are obtained by rediscretization instead of the Galerkin approach.

[9] Pang, Sun, J. Comput. Phys., 2012[10] Fiorentino, Serra-Capizzano Calcolo, 1991

[11] Chan et al., SISC, 1998

1D - Problem setting 00000	Spectral analysis	2D problem 0	Numerical methods ○ ○○●○	Numerical results 00000	Conclusions
Multigrid methods					

Our symbol analysis for Multigrid methods

Using the symbol of $\mathcal{M}^{(m)}_{(\alpha,\beta),N}$

- Two-grid convergence analysis for the 2D problem^[12] proving: smoothing condition for Jacobi and approximation condition for linear interpolation.
- Constant case: The V-cycle optimality requires^[11]

$$\lim_{\theta \to 0} \frac{p(\hat{\theta})}{f(\theta)} = c < \infty, \qquad \hat{\theta} \in V(\theta),$$
(2)

where $V(\theta) = \{(\theta, \theta + \pi), (\theta + \pi, \theta), (\theta + \pi, \theta + \pi)\}$, *p* is the symbol of the linear interpolation, and *f* is the symbol of the FDE. Under the assumption $\frac{\Delta x^{\alpha}}{\Delta t} = o(1)$, and constant diffusion coefficients, the (2) holds with $c = 0 \Rightarrow$ the projector is robust (geometric multigrid).

• Nonconstant case: When the diffusion coefficients are uniformly bounded and positive the optimality of the TGM can be proved using^[14].

[12] Dehghan et al., manuscript

[13] Aricò, Donatelli, Numer. Math., 2007

[14] Serra-Capizzano, Tablino-Possio, Calcolo, 2014

1D - Problem setting 00000	Spectral analysis	2D problem O	Numerical methods ○ ○○○●	Numerical results 00000	Conclusions
Multigrid methods					

Galerkin and geometric Multigrid methods

• Galerkin approach:

$$A_{k+1} = P_k A_k P_k^T,$$

where A_k and P_k are the coefficient matrix and the projection matrix at the recursion level k.

- Pro: It is robust and the theory is well-defined
- Converse: Setup phase for computing all A_k, which could be computational expensive
- Geometric approach: A_k rediscretization of the same FDE at each recursion level.
 - Pro: Cheap and easy to compute
 - Converse: Be careful to scaling and less robust than Galerkin, but c = 0 helps!

1D - Problem setting 00000	Spectral analysis	2D problem ○	Numerical methods 0 0000	Numerical results •0000	Conclusions
	h.,				

• We choose $\Delta x = \Delta y = \Delta t$, such that

$$\frac{1}{r} = \frac{2\Delta x^{\alpha}}{\Delta t} = 2\Delta x^{\alpha - 1} \xrightarrow{N \to \infty} 0$$

- Compute the average number of iterations as $\frac{1}{M} \sum_{m=1}^{M} \text{Iter}(m)$, where Iter(m) is the number of iterations at time t_m
- GMRES with tollerance 10⁻⁷

Example from^[15]: $\alpha = 1.8$, $\beta = 1.9$

$$\begin{split} & d_+(x,y,t) = 4(1+t)x^\alpha(1+y), \qquad d_-(x,y,t) = 4(1+t)(1-x)^\alpha(1+y), \\ & e_+(x,y,t) = 4(1+t)(1+x)y^\beta, \qquad e_-(x,y,t) = 4(1+t)(1+x)(1-y)^\beta. \end{split}$$

on the spatial domain $\Omega = [0,1] \times [0,1]$ and time interval $[0,\mathcal{T}] = [0,1].$

1D - Problem setting 00000	Spectral analysis	2D problem 0	Numerical methods 0 0000	Numerical results 0●000	Conclusions 00

Preconditioners

- *P*_{*ILU} the proposal in* ^[15] based on ILU for the inverse of a band preconditioner (7 bandwidth at blocks with blocks with bandwidth 7)</sub>
- P_2 one iteration of Galerkin multigrid applied to $\mathcal{M}^{(m)}_{(2,2),N} \Rightarrow O(N)$
- *P_{MGM}* one iteration of geometric multigrid applied to the coefficient matrix *M*^(m)_{(α,β),N}
- The multigrid methods use one step of Jacobi as pre- and post-smoother, while the grid transfer operator is the bilinear interpolation.

[15] Jin, Lin, Zhao, Commun. Comput. Phys. 2015.

1D - Problem setting 00000	Spectral analysis	2D problem 0	Numerical methods 0 0000	Numerical results	Conclusions

Number of iterations

N_1	GMRES(20)	P _{ILU}	P_2	P _{MGM}	
2 ⁴	48.750	11.000	18.063	9.000	
2 ⁵	81.594	12.406	15.813	9.000	
2 ⁶	157.750	14.250	11.531	10.000	
27	273.914	17.055	12.000	9.891	

1D - Problem setting 00000	Spectral analysis	2D problem O	Numerical methods 0 0000	Numerical results 000●0	Conclusions 00
Example 2					

- $\alpha = 1.8$, $\beta = 1.6$
- Diffusion coefficients

$$\begin{split} &d_{+}(x,y,t) = \Gamma(3-\alpha)(1+x)^{\alpha}(1+y)^{2} \\ &d_{-}(x,y,t) = \Gamma(3-\alpha)(3-x)^{\alpha}(3-y)^{2} \\ &e_{+}(x,y,t) = \Gamma(3-\beta)(1+x)^{2}(1+y)^{\beta} \\ &e_{-}(x,y,t) = \Gamma(3-\beta)(3-x)^{2}(3-y)^{\beta}. \end{split}$$

- Spatial domain $\Omega = [0, 2] \times [0, 2]$ and time interval [0, T] = [0, 1].
- The source term and the initial condition are fixed such that the exact solution is known.

1D - Problem setting 00000	Spectral analysis	2D problem 0	Numerical methods 0 0000	Numerical results 0000●	Conclusions 00

Number of iterations

N_1	GMRES	P_2	P_{MGM}	P _{MGM}	Error
				(Galerkin)	
2 ⁴	37.000	21.000	10.000	10.000	$9.3706 imes 10^{-2}$
2 ⁵	73.000	18.781	11.000	11.000	$2.4747 imes 10^{-2}$
2 ⁶	137.000	17.000	11.000	11.000	$6.3630 imes 10^{-3}$
2 ⁷	251.000	17.000	10.000	10.000	$1.6053 imes 10^{-3}$

1D - Problem setting 00000	Spectral analysis	2D problem O	Numerical methods 0 0000	Numerical results	Conclusions ●0

Conclusions

Summarizing

- Symbol based analysis for asymptotic eigenvalue/singular value distribution for variable coefficient FDEs.
- Preconditioning: To preserve the structure can be more useful than to preserve the order of the zero of the symbol.
- Multigrid methods preserve the structure without needing to match the order of the zero of the symbol

Future work

- Alternative discretizations like finite volumes^[16]
- Applications in imaging, block problems, etc.

[16] Pan, Ng, Wang, SISC, 2016

1D - Problem setting 00000	Spectral analysis	2D problem O	Numerical methods 0 0000	Numerical results 00000	Conclusions ○●

- M. DONATELLI, M. MAZZA, S. SERRA-CAPIZZANO, Spectral analysis and structure preserving preconditioners for fractional diffusion equations,
 - J. Comput. Phys., 307 (2016), pp. 262–279.
- M. DEHGHAN, M. DONATELLI, M. MAZZA, H. MOGHADERI, Multigrid preconditioners for two-dimensional space-fractional diffusion equations, manuscript (2016).

THANKS!