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Motivation

Consider the dynamical system (obtained after discretization in space)

du
dt

+ Au = f ,

u(0) = u0,
(1)

A : stiffness matrix (SPD)

Classical antagonism

Explicit time schemes (such as Forward Euler”s) produce fast iterations
but suffer from hard time step restriction

0 < ∆t <
2

ρ(A)

Implicit time schemes (such as Backward Euler’s) are stable but need to
solve a linear system at each step, sometimes with a full matrix.
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Solution: Residual Smoothing Scheme (RSS) Schemes

Simplify the implicit system to solve such as reducing the computational cost
while keeping good stability properties

Start from Backward Euler’s

u(k+1) − u(k)

∆t
+ A(u(k+1) − u(k)) + Au(k) = f

Let B be a preconditioner of A, consider the new scheme

u(k+1) − u(k)

∆t
+ τ B(u(k+1) − u(k))︸ ︷︷ ︸ +Au(k) = f ,

Stabilization term
(2)

Here τ > 0 can be tuned to enhance the stability

Considered independently by A. Cohen-Averbuch-Israeli (’98, unpublished) and
by Costa (’98), then Costa-Dettori-Gottlieb-Temam (’01) (Fourier point of
view) ; Studied by Ribot (’03) then Ribot-Schatzman(’11); C-Costa (’02,’03,
’04) applied the method with hierarchical pre conditioners in Finite Differences
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Natural questions and outline

Give a general approach for nonlinear parabolic equations

Give conditions on B and τ to guarantee enhanced stability conditions (as
compared to Forward and Backward Euler’s)

Accuracy of the schemes

Situations in which the approach is interesting (two different levels of
discretization)

Applications: simulations of nonlinear parabolic PDE
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du

dt
+ F (u) = 0, t > 0, (3)

u(0) = u0, (4)

here F : RN → RN is a regular map
The backward Euler’s scheme reads

u(k+1) − u(k) + ∆tF (u(k+1)) = 0,

Now writing

F (u(k+1)) ' F (u(k)) + F ′(u(k))(u(k+1) − u(k)),

where F ′(u(k)) denotes the differential of F at u(k), we get

u(k+1) − u(k)

∆t
+ F ′(u(k))(u(k+1) − u(k)) + F (u(k)) = 0,

Finally
u(k+1) = u(k) −∆t(Id + ∆tF ′(u(k)))−1F (u(k)).

So with Φ(v) = v − u(k) + ∆tF (v): u(k+1) is the first iterate of
Newton-Raphson applied to Φ(v) when starting from u(k)
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Fully Nonlinear RSS

Now, if we replace F ′(u(k)) by a preconditioner τBk , we find

u(k+1) − u(k)

∆t
+ τ Bk(u(k+1) − u(k))︸ ︷︷ ︸ +F (u(k)) = 0,

Global stabilization
(5)

and u(k+1) is thus the first iteration of a quasi Newton Method applied to Φ(v)
when starting from the initial guess u(k).

The efficiency of this stabilized scheme is closely related to the cost of the
computation of the pre-conditioner of the jacobian matrix which changes at
each iteration: use technique of updating factorizations (Calgaro-C-Saad,
Bellavia et al)
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Semi Nonlinear RSS

if F (u) can be expressed as F (u) = Au + f (u), we define the scheme

u(k+1) − u(k)

∆t
+ τ B(u(k+1) − u(k))︸ ︷︷ ︸ +F (u(k)) = 0,

Stabilization of the linear part
(6)

where B is a pre-conditioner of A.
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The linear case
Nonlinear case
Improving the accuracy by extrapolation
Further developments

Assume A and B are SPD.

(H) α < Bu, u >≤< Au, u >≤ β < Bu, u >, ∀u ∈ RN .

α and β can depend on the dimension N. If not the matrix B is said to be an
inconditionnal pre-conditioner of A.

Theorem

Under hypothesis H, we have the following stability conditions:

If τ ≥ β
2 , the scheme is unconditionally stable (i.e. stable ∀ ∆t > 0)

If τ < β
2 , then the scheme is stable for 0 < ∆t < 2(

1− 2τ
β

)
ρ(A)

.
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The linear case
Nonlinear case
Improving the accuracy by extrapolation
Further developments

Theorem

We consider the two sequences

u(k+1) − u(k)

∆t
+ τB(u(k+1) − u(k)) = f − Au(k),

and
v (k+1) − v (k)

∆t
+ Av (k+1) = f ,

with u(0) = v (0). We let M = Id −∆t(Id + τ∆tB)−1A and we assume that
‖ M ‖< 1, then, there exists γ ∈ [0, 1[ such that

‖ u(k) − v (k) ‖≤ ∆t2 ‖ τB − A ‖ 1
1− γ ‖ f − Av (0) ‖,∀k ≥ 0.

As a consequence RSS is first order accurate in time
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The linear case
Nonlinear case
Improving the accuracy by extrapolation
Further developments

Consider the reaction-diffusion equation (of Allen-Cahn’s type):

∂u

∂t
−∆u +

1
ε2
f (u) = 0, x ∈ Ω, t > 0, (7)

∂u

∂n
= 0 ∂Ω, t > 0, (8)

u(x , 0) = u0(x) x ∈ Ω, (9)

where ε > 0 is a given parameter. The (semi nonlinear) RSS scheme applied to
the discretized scheme writes as

u(k+1) − u(k)

∆t
+ τB(u(k+1) − u(k)) = −Au(k) − 1

ε2
f (u(k)). (10)

We set E(u) = 1
2 < Au, u > + 1

ε2
< F (u), 1 >, where F is a primitive of f .

The scheme is energy decreasing if

E(u(k+1)) < E(u(k)).

If F ≥ 0 (this will be the case in the applications) then E ≥ 0 so the stability is
obtained.
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The linear case
Nonlinear case
Improving the accuracy by extrapolation
Further developments

Theorem

Assume that f is C1 and | f ′ |∞≤ L. We have the following stability conditions
(energy diminuishing conditions)

If τ ≥ β
2 then

if
(
τ
β
− 1

2

)
λmin − L

2ε2
≥ 0 then the scheme is unconditionally stable,

if
(
τ
β
− 1

2

)
λmin − L

2ε2
< 0 then the scheme is stable for

0 < ∆t <
1

L
2ε2
−

(
τ
β
− 1

2

)
λmin

,

If τ < β
2 then the scheme is stable for

0 < ∆t <
1

L
2ε2
−
(
τ
β
− 1

2

)
ρ(A)

.
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The linear case
Nonlinear case
Improving the accuracy by extrapolation
Further developments

RSS-scheme is first order accurate a classical way to improve the accuracy is to
use Richardson extrapolation, as follows (see A. Cohen et al):

du

dt
= F (u),

by the forward Euler scheme defines the iterations

uk+1 = uk + ∆tF (uk) = G∆t(u
k).

The smoothed sequence is defined by

v1 = G∆t(u
k),

v2,0 = G∆t/2(uk),

v2,1 = G∆t/2(v2,0),

uk+1 = 2v2,1 − v1.

It is second order accurate in time.
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The linear case
Nonlinear case
Improving the accuracy by extrapolation
Further developments

Below the Extrapolated RSS scheme

Algorithm 1 : Extrapolated RSS Scheme

1: u(0) given
2: for (; k; =)0,1, · · · until convergence
3: Solve (Id + τ ∆t

2 B)v1 = −∆t
2 F (u(k),

4: Set u1 = u(n) + v1,
5: Solve (Id + τ ∆t

2 B)v2 = −∆t
2 F (u1),

6: Set u2 = u1 + v2,
7: Solve (Id + τ∆tB)v3 = −∆tF (u(k)),
8: Set u3 = u(n) + v3,
9: Set u(k+1) = 2u2 − u3.

Ribot and Schatzman (’11) have studied the general Richardson extrapolation
in the infinite dimensional case (A and B are operators).
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The linear case
Nonlinear case
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Gear’s Scheme 3u(k+1)−4u(k)+u(k−1)

2∆t
+ Au(k+1) = 0

1
2∆t

(3u(k+1) − 4u(k) + u(k−1)) + τB(u(k+1) − u(k)) + Auk = 0

If τ ≥ β
2 , then the scheme is unconditionally stable

If τ < β
2 , then the scheme is table when 0 < ∆t < 2

ρ(A)(1− 2τ
β

)

Crank Nicolson’s Scheme u(k+1)−u(k)

∆t
+ 1

2 (Au(k+1) + Au(k)) = 0

u(k+1) − u(k)

∆t
+ τ

1
2
B(u(k+1) − u(k)) + Au(k) = f

If τ ≥ β, the scheme is unconditionally stable

If τ < β, then the scheme is stable for 0 < ∆t < 2(
1− τ

β

)
ρ(A)

.
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The linear case
Nonlinear case
Improving the accuracy by extrapolation
Further developments

Lie (or Strang) Splitting

u(k+1/2) − u(k)

∆t
+ τ1B1(u(k+1/2) − u(k)) = −A1u

(k), (11)

u(k+1) − u(k+1/2)

∆t
+ τ2B2(u(k+1) − u(k+1/2)) = −A2u

(k+1/2), (12)

and the Strang’s Splitting

u(k+1/3) − u(k)

∆t/2
+ τ1B1(u(k+1/3) − u(k)) = −A1u

(k), (13)

u(k+2/3) − u(k+1/3)

∆t
+ τ2B2(u(k+2/3) − u(k+1/3)) = −A2u

(k+1/3), (14)

u(k+1) − u(k+2/3)

∆t/2
+ τ1B1(u(k+1) − u(k+2/3)) = −A1u

(k+2/3), (15)

We have the same type of stability conditions as for RSS Euler’s scheme.
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Compact Schemes
Preconditioning and applications

Compact Scheme (Lele’s approach, ’92)

A way to obtain a high level of accuracy with a finite difference scheme
(spectral-like resolution)

Approaching a linear operator (differentiation, interpolation) by a rational
(instead of polynomial-like) finite differences scheme

Let U = (U1, · · · ,Un)T denotes a vector whose the components are the
approximations of a regular function u at (regularly spaced) grid points
xi = ih, i = 1, · · · , n. We compute approximations of Vi = L(u)(xi ) as
solution of a system

P.V = QU,

so the approximation matrix is formally B = P−1Q.
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Compact Schemes
Preconditioning and applications

Fourth order scheme for the first derivative

P = tridiag(
1
4
, 1,

1
4

),Q =
1
2h


a1 a2 a3 a4

− 3
2 0 3

2
. . .

. . .
. . .

− 3
2 0 3

2
−a4 −a3 −a2 −a1

 ,

with a1 = −2, a2 = 3, a3 = − 2
3 and a4 = 1

8 .
Fourth order scheme for the second derivative

P = tridiag(
1
10
, 1,

1
10

),Q =
1
h2



a1 a2 a3 a4 a5

− 6
5

12
5 − 6

5
− 6

5
12
5 − 6

5
. . .

. . .
. . .

− 6
5

12
5 − 6

5
− 6

5
12
5 − 6

5
aN−4 aN−3 aN−2 aN−1 aN


,

here the constant a1, a2, a3, ... are given by

a1 = −67
60
, a2 = − 7

12
, a3 =

13
10
, a4 = − 61

120
, a5 =

1
12
.
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Compact Schemes
Preconditioning and applications

Passage to higher dimension by tensorial product: if AN
xx denotes the

discretization matrix on [0, 1] associated to Dirichlet Boundary conditions,
using N internal discretization points, then

Id ⊗ AN
xx

We denote by A2 the laplacian matrix associated to the usual Second order FD
scheme (3 pts in 1D, 5 pts in 2D, 7 points in 3D) and by A4 the one associated
to 4th order CS

2D laplacian matrix : Id ⊗ AN
xx + AN

yy ⊗ Id
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Compact Schemes
Preconditioning and applications

Application to the solution of Poisson Problem (H.D.BC)

Let A2 (resp. A4) be the second order (resp. the fourth order) discretization
matrix of −∆ on a regular grid composed of N internal points per direction.
A natural idea is to use A2 (B) as a preconditioner of A4 (A) (C ’98)

Multiplication of A4 by a vector needs to solve additional linear systems

A2 is sparse: (cheap) sparse factorization techniques can be used to
precondition A2 then A4 and then solve efficiently the linear system in A4;
notice that fast solvers as Sine-FFT can be used also

Pb # it. (n) # it. (n) # it. (n) # it. (n) #it. (n) #it. (n)
2D 12 (n=15) 11 (n=31) 10 (n=63) 10 (n=127) 9 (n=255) 8 (n=511)
3D 12 (n=15) 11 (n=31) 11 (n=63)

Table : Solutions of 2D and 3D Poisson problem with GMRES, 4th order CS
discretization and second order preconditioner

Remark : A4 is not symmetric, so the previous stability results do not apply !

In fact, it works while the symmetry defect δ = ‖A− AT‖ is small and this is
the case here, see next theorem
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In fact, it works while the symmetry defect δ = ‖A− AT‖ is small and this is
the case here, see next theorem
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Application to the Heat equation

The RSS scheme writes as

u(k+1) − u(k)

∆t
+ τA2(u(k+1) − u(k)) + A4u

(k) = f . (16)

The numerical treatment of non homogeneous (possibly time depending)
Dirichlet boundary conditions can be realized with the RSS approach.
Let Am(u, n), m = 2, 4, be the mth order finite difference discretization of −∆
of u with Dirichlet conditions at time n∆t, note that this operator is affine.
The stabilized scheme writes formally as

u(k+1) − u(k)

∆t
+ τ(A2(u(k+1), k + 1)− A2(u(k), k)) + A4(u(k), k) = f , (17)

Making the approximation A2(u(k+1), k + 1) ' A2(u(k+1), k), we obtain

u(k+1) − u(k)

∆t
+ τA2(u(k+1) − u(k)) + A4(u(k), k) = f . (18)
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Theorem

Let A ∈Mn(RN). We assume that A is positive definite and B a symmetric
definite positive preconditioning matrix of A satisfy hypothesis H. We set
δ =‖ A− AT ‖ and Φ(ξ) = (β2 − 2ατ)ξ + 1

4ξ δ
2. Assume that

β2

2α −
δ2

8αλmin(B)2 ≥ 0. Then the RSS scheme has the following stability

conditions

i. if τ ≥ β2

2α + δ2

8αλ2
min(B)

≥ β2

2α. then the scheme is unconditionally stable.

ii. If τ ≤ β2

2α −
δ2

8αλmax(B)2 then the scheme is stable under condition

0 < ∆t <
2α

Φ(λmax(B))

iii. If β
2

2α −
δ2

8αλmax(B)2 ≤ τ <
β2

2α + δ2

8αλmin(B)2 then the scheme is stable

under condition
0 < ∆t <

2α
Φ(λmin(B))

iv. If β
2

2α −
δ2

8αλmin(B)2 < τ <
β2

2α −
δ2

8αλmax(B)2 then the scheme is table

under condition

0 < ∆t <
2α

(Φ(λmin(B)),Φ(λmax(B)))

Here λmin(B) (resp. λmax(B) denotes the lowest (resp. the largest) eigenvalue
of B.
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Avdantages

Use fast solvers:
For Poisson problems with Dirichlet BC:

A4u = f

use sin- FFT or Multigrid as preconditioner for solving preconditioning
systems A2z = r
For the Heat equation

u(k+1) − u(k)

∆t
+ τA2(u(k+1) − u(k)) + A4(u(k), k) = f .

use sin-FFT

More generally, use the sparse linear algebra preconditioning techniques for
the fast solution of the implicit part
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RSS for solving 2D incompressible Navier-Stokes equations (NSE)

Consider the stream function-vorticity formulation (ω − ψ) of NSE

∂ω

∂t
− 1

Re
∆ω +

∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y
= 0, in Ω, (19)

∆ψ = ω, in Ω. (20)

ω(x , y , 0) = ω0(x , y), (21)

that we supplement with proper boundary conditions. We denote by
Γi i = 1, .., 4 the sides of the unit square Ω as follows: Γ1 is the lower
horizontal side, Γ3 is the upper horizontal side, Γ2 is the left vertical side, and
Γ4 is the right vertical side.
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Figure : The lid driven cavity - Schematic localization of the mean vortex regions

We distinguish two different driven flows, according to the choice of the
boundary conditions on the velocity. More precisely we have

g(x) = 1: Cavity A (lid driven cavity)
g(x) = (1− (1− 2x)2)2: Cavity B (regularized lid driven cavity)
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Basic NSE semi implicit Scheme

The Equations are discretized in space with Fourth order CS.

Algorithm 2 Navier-Stokes

1: (ω0, ψ0) given as solution of the Stokes problem
2: for (; k; =)0,1, · · · until convergence
3: Update the boundary terms in ω(k+1) of ψ(k) using fourth order extrapolation
4: Compute ω(k+1) by solving.

ω(k+1) − ω(k)

∆t
+

1
Re

A4ω
(?) + Dy

4ψ
(k). ∗ Dx

4ω
(k) − Dx

4ψ
(k). ∗ Dy

4ω
(k) = 0

5: Compute ψn+1as solution of the Poisson equation

A4ψ
(k+1) = ω(k+1)

Here ? = k or ? = k + 1
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Algorithm 3 RSS-Navier-Stokes

1: (ω0, ψ0) given as solution of the Stokes problem
2: for (k; =; 0),1, ... until convergence
3: Update the boundary terms in ω(k+1) of ψ(k) using fourth order extrapolation
4: Compute ω(k+1) by solving.

ω(k+1) − ω(k)

∆t
+ τ 1

Re
A2(ω(k+1) − ω(k))

= − 1
Re

A4ω
(k)

+Dy
4ψ

(k). ∗ Dx
4ω

(k) − Dx
4ψ

(k). ∗ Dy
4ω

(k)

5: Compute ψn+1as solution of the Poisson equation

A4ψ
(k+1) = ω(k+1)
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Numerical results

Implementation

Systems in ω solved using sin-FFT, those in ψ using sin-FFT preconditioning

Benchmark

We distinguish two different driven flows, according to the choice of the
boundary conditions on the velocity. More precisely we have

g(x) = 1: Cavity A (lid driven cavity)

g(x) = (1− (1− 2x)2)2: Cavity B (regularized lid driven cavity)

These are the considered geometries

Lid Driven cavity on a square domain All the results have been compared
with those of Ghia & Ghia (JCP ’82), Bruneau & Jouron ( ’90) Goyon
(’96), Ben Artzi-Croisille-Fishelov (2005)

Lid Driven cavity on a rectangular model (or double cavity) All the results
have been compared with those of Bruneau & Jouron (’90) Goyon (’96)

A double check has been run, varying the spatial discretization
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The effect of the stabilization

Figure : Convergence to NSE steady state (19) - τ = 100 - N = 63 - Re = 100 -
∆t = 0.01
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Figure : Convergence to NSE steady state (19) - τ = 1 - N = 63 - Re = 100 -
∆t = 0.01
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Figure : Solution of NSE (19) - g ≡ 1 - τ = 1 - N = 127 - Re = 1000 - ∆t = 0.0005
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Figure : Solution of NSE (19) - g ≡ 1 - τ = 1 - N = 127 - Re = 3200 - ∆t = 0.0005
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Figure : Solution of NSE (19) on [0; 1]× [0; 2] - g ≡ 1 - τ = 1 - 255× 511 -
Re = 3200 - ∆t = 0.0005
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Nonlinear RSS Scheme

The (semi linear) RRS-scheme becomes less interesting as Re increases. Idea
use Nonlinear RSS version.(

1
∆t

Id + τ

(
1
Re

A2 + diag(Dyψ
(k))Dx − diag(Dxψ

(k))Dy

))
δ(k) = −F (ψ(k), ω(k)) (22)

with δ(k) = ω(k+1) − ω(k), where A2 is the second order laplacian matrix,
diag(Dyψ

(k)) (resp. diag(Dxψ
(k))) is the diagonal matrix with the discrete

(second order accurate) approximation of ∂ψ
(k)

∂x
(resp. ∂ψ

(k)

∂y
) at grid points as

entries; Dx (resp. Dy ) denote the (second order accurate) first derivative
matrix in x (resp. in y) on the cartesian grid.
−F (ψ(k), ω(k)) is the high order compact scheme discretisation of

− 1
Re

∆ω +
∂φ
∂y

∂ω
∂x
− ∂φ
∂x

∂ω
∂y

.
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Method RSS RSS RSS RSS RSS RSS NLRSS NLRSS NLRSS
τ ∆t ∆tmax Tc ∆t ∆tmax Tc ∆t ∆tmax Tc

Extrap. no no no yes yes yes yes yes yes
τ = 1 0.005 0.005 56.21 0.005 0.01 56.81

0.01 *** 0.01 56.79 0.01 0.02 56.86
0.02 *** 0.02 *** 0.02 56.96

τ = 30 0.05 0.04 NC 0.05 0.08 47.95 0.05 0.7 65.05
0.1 *** 0.1 *** 0.1 62.5
0.7 *** 0.7 *** 0.7 321.3

Table : RSS (left) RSS with Extrapolation (center) and extrapolated NLRSS (right) Re = 1000,
n = 127, ε = 10−5
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Allen Cahn equation writes as
∂u

∂t
+ M(−∆u +

1
ε2
f (u)) = 0 (23)

∂u

∂n
= 0 (24)

u(0, x) = u0(x) (25)

It describes the process of phase separation in iron alloys [Allen-Cahn,
1972, 1973], including order-disorder transitions: M is the mobilty (taken

to be 1 for simplicity), F =

∫ u

−∞
f (v)dv is the free energy, u is the

(non-conserved) order parameter, ε is the interface length.
The homogenous Neumann boundary condition implies that there is not a
loss of mass outside the domain Ω

There is a competition between the potential term and the diffusion term:
regularization in phase transition
Maximum principle: if |u0(x)| ≤ β then |u(x , t)| ≤ β, where β is the
magnitude of largest zero of f .

It is a gradient flow E(u) = 1
ε2

∫
Ω
F (u)dx + 1

2

∫
Ω
|∇u|2dx
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When F (u) = 1
4 (1− u2)2 is considered, one can split the AC equation as

∂u

∂t
−∆u = 0,

∂u

∂t
+

1
ε2
F ′(u) = 0,

This last equation can be integrated exactly (Li-Jeong-Choi-Lee-Kim ’15). So
the a first RSS-scheme is

u(∗) − u(k)

∆t
+ τB(u(∗) − u(k)) = −Au(k),

u(k+1) = u∗√
e−2 ∆t

ε2 + (u∗)2(1− e−2 ∆t
ε2 )

The first (RRS) step can be splitted in ADI sub steps.
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Method N ε ∆t τ [0,T ] ‖error‖∞ CPU factor
RSS N = 32 0.5 10−3 5 [0, 1] 5.960−2 1
RSS N = 32 0.5 10−3 2 [0, 1] 3.03 10−2 1

Classic N = 32 0.5 10−3 [0, 1] 2.1 10−2 2.22
RSS N = 32 0.5 10−2 2 [0, 1] 0.3123 1
RSS N = 32 0.5 10−2 1.9 [0, 1] 0.3066 1

Classic N = 32 0.5 10−2 [0, 1] 0.2586 2.22

Table : 3D Allen-Cahn equation: simulation of patterns - RSS-Lie splitting
scheme vs classic Lie -splitting scheme, exact solution is
u(x , y , z, t) = cos(πx) cos(πy) cos(πz) exp(sin(3πt)), Ω = [0, 1]3
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Cahn-Hilliard equations allow here to in paint a tagged picture. Let g be the
original image and D ⊂ Ω the region of Ω in which the image is deterred. The
idea is to add a penalty term that forces the image to remain unchanged in
Ω \ D and to reconnect the fields of g inside D. Let λ >> 1

∂u

∂t
−∆(−ε∆u +

1
ε
f (u)) +λχΩ\D(x)(u − g) = 0, (26)

Cahn-Hilliard equation︸ ︷︷ ︸ Fidelity term︸ ︷︷ ︸ (27)

∂u

∂n
= 0 ∂

∂n

(
∆u − 1

ε2
f (u)

)
= 0, (28)

u(0, x) = u0(x) (29)

Here χΩ\D(x) =

{
1 if x ∈ Ω \ D,
0 else

The presence of the penalization term λχΩ\D(x)(u − g) forces the solution
to be close to g in Ω \ D when λ >> 1

The Cahn-Hilliard flow has as effect to connect the fields inside D

here ε will play the role of the "contrast". A post-processing is possible
using a thresholding procedure.
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The Reference scheme

u(k+1) − u(k)

∆t
+ Aµ(k+1) + λD(u(k+1) − g) = 0, (30)

µ(k+1) = εAu(k+1) +
1
ε
f (u(k)) (31)

say in the matricial form(
Id + ∆tλD ∆tA
−εA Id

)(
u(k+1)

µ(k+1)

)
=

(
u(k) + ∆tλDg
1
ε f (u(k))

)
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The RSS scheme

u(k+1) − u(k)

∆t
+ τB(µ(k+1) − µ(k)) + Aµ(k) + λD(u(k+1) − u(k)) = λ0D(g − u(k)), (32)

µ(k+1) − µ(k) = ετB(u(k+1) − u(k)) + εAu(k) +
1
ε
f (u(k))− µ(k). (33)

say in the matricial form(
Id + ∆tλD τ∆tB
−ετB Id

)(
u(k+1) − u(k)

µ(k+1) − µ(k)

)
=

(
∆t(λD(g − u(k))− Au(k))

εAu(k) + 1
ε f (u(k))− µ(k)

)

The linear system can be solved by using a (incomplete) LU block
decomposition; technique of approximation of Schur’s complement can be
applied for the optimization (Bosh-Kay-Stoll-Wathen ’13)
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Perturbated image − initial situation
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Figure : Inpainting with C-H. ∆t = 0.001, ε = 0.05, N = 64 - Initial inpainted image
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Image after Cahn−Hilliard flow
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Image after Cahn−Hilliard flow
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Figure : Inpainting with C-H. ∆t = 0.001, ε = 0.05, N = 64 - Restored triangle at
T = 0.1, classical (left) RSS method (right)
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Final tresholded solution
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Figure : Inpainting with C-H. ∆t = 0.001, ε = 0.05, N = 64 - Restored triangle with
thresholding at T = 0.1, classical (left) RSS method (right)
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Method N ε ∆t τ [0,T ] quality CPU factor (iterations)
RSS N = 64 0.05 10−3 1.4 [0, 0.1] EX 1

Classic N = 64 0.05 10−3 [0, 0.1] EX >10
RSS N = 64 0.05 5.10−3 1.5 [0, 0.1] EX 1

Classic N = 64 0.05 5.10−3 [0, 0.1] EX >10
RSS N = 64 0.05 10−2 2.8 [0, 0.1] middle 1

Classic N = 64 0.5 10−2 [0, 0.1] middle >10

Table : 2D Cahn-Hilliard Inpainting equation, the triangle example: , Ω = [0, 1]2, λ = 90000
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Perturbated image − initial situation
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Figure : Inpainting with C-H. ∆t = 0.001, ε = 0.05, N = 128 - Initial inpainted image
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Image after Cahn−Hilliard flow
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Figure : Inpainting with C-H. ∆t = 0.001, ε = 0.05, N = 128 - image at t = 0.005
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Figure : Inpainting with C-H. ∆t = 0.001, ε = 0.05, N = 128 - image at t = 0.008
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Figure : Inpainting with C-H. ∆t = 0.001, ε = 0.05, N = 128 - image at t = 0.01
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Figure : Inpainting with C-H. ∆t = 0.001, ε = 0.05, N = 128 - image at t = 0.02
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Phase Fields: Cahn-Hilliard for inpainting
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Figure : Inpainting with C-H. ∆t = 0.001, ε = 0.05, N = 128 - image at t = 0.1
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NSE
Phase Fields: Allen-Cahn equation for the Phase separation
Phase Fields: Cahn-Hilliard for inpainting

Final tresholded solution
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Figure : Inpainting with C-H. ∆t = 0.001, ε = 0.05, N = 128 - thresholded image at
t = 0.1
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RSS approach for parabolic equations present a compromise for preserving
the stability of (semi)-implicit time schemes while simplifying the solution
a each time step.

Versatility: possibility to apply the technique to a large number of times
schemes

Main issue: saving computational time for a comparable precision

Adaptive versions by varying τ at each iterations

Limitation to parabolic equations: RSS does not apply interestingly, e.g.,
to Airy equation then not to KdV.
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