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Introduction to sequence transformations

A sequence transformation takes a sequence

x0, x1, . . . , xn, . . . ,

and produces another sequence

t0, t1, . . . , tn, . . . ,

that, under some assumptions, converges faster than the original
sequence.

In this context, it is common to produce not one but several

sequences t
(k)
n , indexed by k.

Note that the xi ’s can be scalars or vectors or even other
objects in general inner-product spaces.
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The most well-know scalar sequence transformation is
Aitken’s ∆2 process (1926).

It consists in transforming the scalar sequence (xn) into the

sequence (t
(1)
n ) given by

t
(1)
n = xn −

(xn+1 − xn)2

xn+2 − 2xn+1 + xn
, n = 0, 1, . . .

It is proved that ∀n, t
(1)
n = x if and only if

∀n, a0(xn − x) + a1(xn+1 − x) = 0

with a0a1 6= 0 and a0 + a1 6= 0. It does not restrict the generality
to impose that a0 + a1 = 1.

This set of sequences is names the kernel of the transformation.
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This scalar sequence transformation was then extended by Shanks
in 1949 (published in 1955) to a kernel of the form

∀n, a0(xn − x) + · · ·+ (xn+k − x) = 0,

with a0ak 6= 0 and a0 + · · ·+ ak 6= 0. The condition
a0 + · · ·+ ak = 1 can be imposed without restricting the generality.

The corresponding transformed scalar sequence is denoted (t
(k)
n )

(or (ek(xn)) in the literature) and it can be recursively
implemented by the ε–algorithm Wynn (1956).

Shanks transformation and the ε–algorithm were extended in
several different ways to sequences of vectors, matrices or elements
of a general inner-product space.

We will now discuss some of these extensions to vector
sequences.
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Acceleration techniques as projection processes

Given a sequence of iterates x0, x1, . . . , xn, . . . , which are vectors in
Rd we define the extrapolated sequences of the form:

t
(k)
n =

k∑
j=0

αjxn+j ,

where the coefficients αj depend on k and n, and are constrained
by the normalization condition

k∑
j=0

αj = 1.

This condition is necessary to ensure that t
(k)
n = x when xn+j = x

for j = 0, . . . , k, where x is the limit of (xn) when it converges, or
its antilimit otherwise.



Many acceleration techniques obtain the needed coefficients αj by
a projection process whereby conditions of the following form are
imposed, and added to the normalization condition

k∑
j=0

(yi ,∆xn+j)αj = 0, i = 1, . . . , k,

where the yi ’s are carefully selected vectors that can depend on n,
and have to be linearly independent.

These conditions imply that ∀n, t
(k)
n = x if the sequence (xn)

satisfies the difference equation

α0(xn − x) + · · ·+ αk(xn+k − x) = 0, n = 0, 1, . . .
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Among several methods available we mention three that are
well-known. These are
Minimal Polynomial Extrapolation (MPE) (Cabay-Jackson),
Reduced Rank Extrapolation (RRE) (Eddy, Mes̆ina),
Modified Minimal Polynomial Extrapolation (MMPE) (C.B.).

They correspond to the following choices:

yi = ∆xn+i−1, i = 1, . . . , k (MPE)

yi = ∆2xn+i−1, i = 1, . . . , k (RRE).

yi = arbitrary, i = 1, . . . , k (MMPE).

In MMPE each vector yi is independent of n and is selected, e.g.,
as a random vector and remains the same throughout the
iterations. It is the only method that can be recursively
implemented (Jbilou).
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Let

ηi ,j = (yi ,∆xn+j), for i = 1, . . . , k; j = 0, . . . , k.

The normalization condition together with the preceding conditions
constitute a (k + 1)× (k + 1) linear system of equations

1 · · · 1
η1,0 · · · η1,k

...
...

ηk,0 · · · ηk,k




α0

α1
...
αk

 =


1
0
...
0

 .

Provided the coefficient matrix is nonsingular, we obtain a solution
that depends on k and on iteration number n.
This solution α = {αj}j=0,...,k can be easily obtained in terms of
determinants using Cramer’s rule, and it holds
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t
(k)
n =

∣∣∣∣∣∣∣∣∣
xn . . . xn+k

η1,0 . . . η1,k
...

...
ηk,0 . . . ηk,k

∣∣∣∣∣∣∣∣∣
/∣∣∣∣∣∣∣∣∣

1 · · · 1
η1,0 · · · η1,k

...
...

ηk,0 · · · ηk,k

∣∣∣∣∣∣∣∣∣ .
The determinant in the numerator contains vectors in its first row
and it is to be interpreted as an expansion of the determinant with
respect to this row.



Alternative expressions

The definitions for t
(k)
n can also be written in the form

t
(k)
n = xn +

k∑
j=1

αj(xn+j − xn)

= xn +
k∑

i=1

 k∑
j=i

αi

∆xn+i−1.

In other words, the accelerated sequence satisfies

t
(k)
n = β0xn +

k∑
i=1

βi∆xn+i−1,

in which the coefficients βi are equal to βi = αi + · · ·+ αk for
i = 0, . . . , k and in particular β0 = 1.
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Appropriate combinations of columns of the linear system easily
shows that the new coefficients βj are solutions of the system
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n can be also modified to

introduce differences.
From each of the columns 2 to k + 1, we subtract the preceding
column and set

∆ηi ,j = ηi ,j+1−ηi ,j = (yi ,∆
2xn+j), i = 1, . . . , k; j = 0, . . . , k−1.
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The resulting determinant in the denominator can be simplified to
a k × k determinant because its first row is a one followed by
zeros. With this we get:

t
(k)
n =

∣∣∣∣∣∣∣∣∣
xn ∆xn · · · ∆xn+k−1

η1,0 ∆η1,0 · · · ∆η1,k−1
...

...
...

ηk,0 ∆ηk,0 · · · ∆ηk,k−1

∣∣∣∣∣∣∣∣∣
/∣∣∣∣∣∣∣

∆η1,0 · · · ∆η1,k−1
...

...
∆ηk,0 · · · ∆ηk,k−1

∣∣∣∣∣∣∣ .
The determinant in the numerator is a vector and we can examine
its components separately.



Using a Schur complement argument, the above ratio can be
seen to be equal to

t
(k)
n = xn−[∆xn, . . . ,∆xn+k−1]

 ∆η1,0 · · · ∆η1,k−1
...

...
∆ηk,0 · · · ∆ηk,k−1


−1 η1,0

...
ηk,0

 .

In this form, we see that the accelerated sequence is expressed by
adding to xn a linear combination of the differences ∆xn+j , for
j = 0, . . . , k − 1. Specifically,

t
(k)
n = xn − [∆xn,∆xn+1, . . . ,∆xn+k−1]γ

where γ is a solution of the linear system Bkγ = g0 where Bk is the
matrix whose inverse appears above and g0 the vector on its right.
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Note in passing that the solution obtained for the coefficient vector
γ is of the preceding form where γ is such that this solution
satisfies the Galerkin conditions

(yi ,∆xn)−

yi ,
k∑

j=1

γj∆
2xn+j−1

 = 0, i = 1, . . . , k.



There are other ways of expressing t
(k)
n by means of various

combinations of columns of its determinantal expression.

Let us show how to obtain an expression where t
(k)
n is expressed

as an update to xn+j instead of xn, where j can take any value
from 0 to k.

First, we take each of the columns 1 to j of the numerator, change
its sign and add the following column to it, i.e., the operation is
col(i) := -col(i) + col(i+1) for i = 1 : j .

Second, from each of the columns j + 2 to k + 1 we subtract the
preceding column: col(i) := col(i) - col(i-1) for
i = j + 2 : k + 1. Finally, column j + 1 remains unchanged.

The exact same operations are also performed on the columns of
the denominator, so that the sign of the ratio is unchanged.
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These transformations yield the following fraction:

t
(k)
n =

∣∣∣∣∣∣∣∣∣
xn+j ∆xn · · · ∆xn+k−1

η1,j ∆η1,0 · · · ∆η1,k−1
...

...
...

ηk,j ∆ηk,0 · · · ∆ηk,k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∆η1,0 ∆η1,1 · · · ∆η1,k−1

...
...

...
∆ηk,0 ∆ηk,1 · · · ∆ηk,k−1

∣∣∣∣∣∣∣
.



Using a Schur complement argument, we get the result of the
following lemma.

Lemma

Define ∆Xn = [∆xn, . . . ,∆xn+k−1], and gj = [η1,j , · · · , ηk,j ]T and
let Bk be the k × k matrix with entries bij = ∆ηi ,j−1 for
i , j = 1, . . . , k. Then, assuming that Bk is nonsingular, we have for
j = 0, . . . , k:

t
(k)
n = xn+j − (∆Xn)B−1

k gj .

What is remarkable here is that the matrix Bk involved in the
result is the same for all j ’s.

Note that if we subtract relation t
(k)
n = xn+j − (∆Xn)B−1

k gj for j
from the same relation for j + 1 (so j < k) we get
0 = ∆xn+j − (∆Xn)B−1

k [∆η1,j , · · · ,∆ηk,j ]T which is trivially
verified since the vector to the right of B−1

k is column j + 1 of Bk .
However, this simpler proof of the above result only holds for j < k.
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k is column j + 1 of Bk .
However, this simpler proof of the above result only holds for j < k.



Using a Schur complement argument, we get the result of the
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The case of the Reduced Rank Approximation (RRE)

We will now show that the choice of the yi ’s for the Reduced Rank
Extrapolation leads to a least-squares problem.

In the case of RRE, yi = ∆2xn+i−1. As a result, we have

ηi ,j = (∆2xn+i−1,∆xn+j), ∆ηi ,j = ηi ,j+1−ηi ,j = (∆2xn+i−1,∆
2xn+j).

If we define the matrix:

Fk = [∆2xn, . . . ,∆
2xn+k−1],

then, from the definitions above, we get

Bk =

 ∆η1,0 · · · ∆η1,k−1
...

...
∆ηk,0 · · · ∆ηk,k−1

 = FT
k Fk , g0 =

 η1,0
...

ηk,0

 = FT
k ∆xn.
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Therefore, in the expression for t
(k)
n , the vector γ is a solution of

the normal equations

(FT
k Fk)γ = FT

k ∆xn.

We are in effect solving a least-squares problem to obtain γ.

Specifically,
γ = argminµ‖∆xn − Fkµ‖2.

In the end

t
(k)
n = xn−[∆xn,∆xn+1, . . . ,∆xn+k−1]γ s.t. ‖∆xn−Fkγ‖2 Min.
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As a particular case, assume that we fix n at n = 0 and use all
forward differences ∆x0,∆x1, . . . ,∆xk . Then we would obtain

t
(k)
0 = x0 − [∆x0,∆x1, . . . ,∆xk−1]γ s.t. ‖∆x0 − Fkγ‖2 Min.

In the linear case, t
(k)
0 is the solution obtained at the k-th step of

the full GMRES (Y.S.).

Note also that in the case when Fk is not of full rank, the
preceding expression is still valid and t

(k)
0 can be written using

pseudo-Schur complements (M.R.-Z.)
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It is also possible to express the accelerated sequence in different
ways thanks to the first Lemma. We state this in the form of a
corollary to the lemma.

Corollary

Assume that the vectors yi in the first Lemma are selected as in

RRE. Then for any j, 0 ≤ j ≤ k, the accelerated t
(k)
n can be

written as:
t

(k)
n = xn+j − (∆Xn)γj

where γj = argminµ‖∆xn+j − Fkµ‖2.

Though the result is written for all possible j ’s in the range 0 : k
we are actually interested only in the cases j = 0 and j = k.
As it turns out j = 0 corresponds to the common way in which
RRE is written, whereas j = k corresponds to Anderson
acceleration.
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Anderson acceleration

Anderson acceleration is aimed at the solution of systems of
nonlinear equations f (x) = g(x)− x = 0.
Specifically let xj , j = 0, 1, . . ., be a given sequence and define
fj = f (xj). We consider k + 1 consecutive iterates
xn−k , xn−k+1, . . . xn−1, xn. As before we define

∆xj = xj+1 − xj , and ∆fj = fj+1 − fj .

Anderson mixing takes the sequence x0, x1, . . . , xn, . . . and seeks an
‘accelerated’ sequence of the form

x̄n = xn −
n−1∑

i=n−k
θ

(n)
i ∆xi , n ≥ k.



Let us denote by Xn,k the matrix whose columns are the ∆xj ’s:

Xn,k = [∆xn−k , . . . ,∆xn−1],

and let θ(n) be the vector θ(n) = [θ
(n)
n−k , . . . , θ

(n)
n−1]T .

Then
x̄n = xn −Xn,kθ

(n).

The difference between Anderson acceleration and the RRE
is mainly notational.
In RRE, from xn we compute the forward iterates xn+1, . . . , xn+k

in order to obtain the accelerated vector t
(k)
n : then t

(k)
n is obtained

as xn plus a linear combination of the differences ∆xn+j for
j = 0, . . . , k − 1.
In contrast, Anderson’s acceleration takes the most recent iterate
xn and finds a linear combination of the previous differences ∆xn−j
for j = 1, . . . , k to add to xn, i.e., it uses backward iterates.
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Anderson acceleration defines the matrix

Fn,k = [∆fn−k . . . ∆fn−1],

and considers the quantity

f̄n = fn −
n−1∑

i=n−k
θ

(n)
i ∆fi ≡ fn −Fn,kθ

(n).

By considering f̄n as an approximation to f (x̄n), it is natural to seek
to minimize ‖f̄n‖ since we seek to find a zero to the function f .

Thus, Anderson’s method determines the coefficient vector θ(n) as
a minimizer of the norm of f̄n, i.e.,

θ(n) = argminθ ‖fn −Fn,kθ‖2.
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The solution to this least-squares problem is θ(n) = F†n,k fn. So
we can rewrite x̄n as

x̄n = xn −Xn,kF†n,k fn.

Consider the particular case when k=n. Then
Xn,n = [∆x0, . . . ,∆xn−1] and Fn,n = [∆f0, . . . ,∆fn−1]. We will
denote by ∆X0 and ∆F0 these two matrices, i.e.,

∆X0 ≡ [∆x0, . . . ,∆xn−1] ∆F0 ≡ [∆f0, . . . ,∆fn−1].

In this particular case we can write the accelerated sequence as

x̄n = xn −∆X0(∆F0)†fn.

Note that it is also possible to formulate the problem in the
standard ‘acceleration’ form as explained above for the RRE as
explained above for the RRE.as explained above for the RRE.

x̄n =
n∑

i=n−k
µ

(n)
i xi with

∑
µ

(n)
i = 1.
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The Broyden connection

In ’generalized Broyden methods’, a class of Broyden update
techniques is defined that give an approximate Jacobian Gn

satisfying k secant conditions:

Gn∆fi = ∆xi for i = n − k, . . . , n − 1,

where it is assumed again that the vectors ∆fn−k , . . . ,∆fn−1 are
linearly independent and k ≤ n.

In matrix form this can be written:

GnFn,k = Xn,k .

A no-change condition is imposed:

(Gn − Gn−k)q = 0, ∀q ∈ span{∆fn−k , . . . ,∆fn−1}⊥.
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After calculations we get a rank-k update formula:

Gn = Gn−k + (Xn,k − Gn−kFn,k)(FT
n,kFn,k)−1FT

n,k .

The update itself is of the form:

xn+1 = xn − Gn−k fn − (Xn,k − Gn−kFn,k)θ(n), θ(n) = F†n,k fn.

Note that it is common in practice that k is varied with n (so k
could be replaced by kn).

A no-change condition is imposed:

(Gn − Gn−k)q = 0, ∀q ∈ span{∆fn−k , . . . ,∆fn−1}⊥.

Setting Gn−k = −βI yields exactly Anderson’s original method
(which includes a parameter β). This result was shown by Eyert
(see Fang-Y.S.).
When β = 0 the update simplifies to

xn+1 = xn −Xn,kF†n,k fn.
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Comparison with RRE

We would like to compare the sequence t
(k)
n obtained in RRE

with the vector sequence obtained by Anderson acceleration.

In the following we assume that k is fixed and that it is the same
for RRE and the Anderson acceleration.

In the linear case, it has been shown that these two methods yield
the same result in the situation k = n, i.e., when all previous
iterates are used, and that they are both mathematically
equivalent to GMRES (Y.S.).

The question that remains is whether or not there are relations with
any one of the extrapolation techniques in the nonlinear case.
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Consider RRE in the general case. Setting j = k in the previous
Corollary results in

t
(k)
n = xn+k − (∆Xn)(∆2Xn)†∆xn+k ,

where ∆2Xn = ∆(∆Xn).

Consider now Anderson mixing, for fixed point iterations of the
form xj+1 = g(xj). We note that

∆xj = g(xj)− xj = f (xj),

where we have denoted by f (xj) this difference, i.e., we have set
f (x) ≡ g(x)− x , as above.
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In this case, extending the notation introduced before, we obtain

[∆xn,∆xn+1, . . . ,∆xn+k−1] ≡ ∆Xn

[∆fn,∆fn+1, . . . ,∆fn+k−1] ≡ ∆2Xn.

Consider first what we term the full extrapolation case where all
previous iterates are kept.

In this scheme we keep all previous iterates and obtain the
accelerated iterate from all the previous xi ’s. In this case, the
Anderson accelerated sequence is

x̄n = xn −∆X0(∆2X0)†∆xn.

This is identical with the related unrestarted RRE result in which
we replace n by zero and k by n, and it is stated as a proposition.
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Proposition

The sequence t
(n)
0 produced by the (full) reduced rank

extrapolation is the same as the sequence x̄n produced by the (full)
Anderson acceleration.

It can be shown that a ‘restarted’ version of the RRE
converges quadratically under some assumptions (Jbilou-Sadok).

Specifically, to compute a fixed point x of g : Rk 7−→ Rk this
restarted procedure proceeds as follows. Select x̂0 and set x0 = x̂0

and then compute xj+1 = g(xj) for j = 0, . . . , k − 1. RRE is then

applied to x0, . . . , xk to yield t
(k)
0 . Set x̂1 ≡ t

(k)
0 . Another sequence

of iterates xj+1 = g(xj), for j = 0, · · · , k − 1 is generated from

x0 = x̂1. Applying RRE to this sequence will yield x̂2 ≡ t
(k)
0 . This

is repeated to generate x̂3, x̂4, . . . ,
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x0 = x̂1. Applying RRE to this sequence will yield x̂2 ≡ t
(k)
0 . This

is repeated to generate x̂3, x̂4, . . . ,



The ‘full extrapolation’ case requires keeping all previous iterates
and this is not realistic in practice.

The standard RRE approach as well as Anderson mixing keep only

k terms and obtain an accelerated sequence (t
(k)
n ), where k is

typically small and may be varied with the iteration number n.

Consider now Anderson mixing under this scenario. From the
sequence of k vectors xn, xn−1, · · · xn−k+1 we obtain x̄n as defined
above where θ(n) is solution of the least-squares problem.
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To make the notation less cumbersome, it is best to look at iterate
xn+k in Anderson’s scheme. With this, and recalling that fi ≡ ∆xi ,
for i ≥ 0, the matrices Xn,k and Fn,k are replaced by

Xn+k,k = [∆xn,∆xn+1, · · · ,∆xn+k−1]

Fn+k,k = [∆fn,∆fn+1, · · · ,∆fn+k−1]

= [∆2xn,∆
2xn+1, · · · ,∆2xn+k−1].

The solution becomes

x̄n+k = xn+k −Xn+k,kF†n+k,k fn+k

= xn+k −Xn+k,kF†n+k,k∆xn+k .
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The main observation at this point is that the matrix Xn+k,k is
nothing but the matrix which we called ∆Xn in RRE, while Fn+k,k

is nothing but ∆2Xn.

Therefore, the right-hand side of the formula for x̄n+k is identical

with that of t
(k)
n and so the Anderson accelerated vector x̄n+k is

identical with the RRE-accelerated vector t
(k)
n .

We restate this result in a theorem.

Theorem

Assuming k is constant, the sequence t
(k)
n produced by the k-term

reduced rank extrapolation is the same as the sequence x̄n+k

produced by the k-term Anderson acceleration.
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Concluding remarks

Methods for accelerating the convergence of various processes have
been developed by researchers across many disciplines, often
without being aware of similar efforts undertaken elsewhere.

Certainly, differences in terminology and notation have played a
role in hampering the exchange of ideas developed within different
arenas.

The Anderson acceleration article appeared in 1965 about one
decade before the Kaniel and Stein version of RRE (1974) and 13
years before the RRE paper (1977, 1979). This rather long delay is
all the more surprising since the methods are mathematically
equivalent.
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To be able to make links between different methods, it is necessary
to overcome the scientific language barrier.

In the case of the link between RRE and Anderson mixing, it was
essential to express the RRE accelerated sequence differently,
specifically as an update from the last iterate instead of a delayed
iterate.

It is hoped that this alternative expression will help unravel other,
yet unknown, equivalences.
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Backward references

The equivalence between Anderson and GMRES in the linear case
was proved by H.F. Walker, P. Ni in 2011.

However, this result was already given a paper by R. Haelterman,
J. Degroote, D. V. Heule, J. Vierendeels in 2010.

The connection Anderson–RRE was discussed in several papers.

Finally, recently searching into the web with the keywords
acceleration iterative methods, I found that the equivalence
Anderson–RRE we presented today was established, in the linear
and nonlinear cases, by Steven Russell Capehart, a Major of the
U.S. Air Force, in his Ph.D. Thesis under Prof. John P. Chandler
defended at Oklohoma State University in 1989. This Thesis is
only quoted twice.

In conclusion, the results are quite easy to prove once the
notations have been understood.
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Thank you !


