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The problem and its motivation
Certain mathematical models from the applications lead to solve
computational problems of the kind

Compute the “minimal” solution of the matrix equation

A2X
2 + A1X + A0 = 0

Compute the function

exp(A) =
∞∑
i=0

1

i !
Ai

where A0, A1, A2 and A are infinite matrices of the kind

T + E , T = (ti ,j)i ,j∈Z+ , E = (ei ,j)i ,j∈Z+

with
ti ,j = aj−i ,

∑
k∈Z
|ak | <∞,

∑
i ,j∈Z+

|ei ,j | <∞
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The problem and its motivation
That is, they are the sum of an infinite Toeplitz matrix T (a) associated
with a sequence ak and of an infinite matrix E having a finite sum of the
moduli of its entries

A typical example originated in the analysis of random walks on the
quarter plane, or along a half-line is

T =


a0 a1
a−1 a0 a1

a−1 a0 a1
. . .

. . .
. . .

 , E =

b0 b1 0 . . .
0 0 0 . . .
...

...
. . . . . .


where A0 + A1 + A2 − I , and A are stochastic or sub-stochastic

q p

1-p-q
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The problem and its motivation

Another situation is the case where the matrices have finite (large) size
and still have the form Toeplitz + correction

T =



a0 a1
a−1 a0 a1

a−1 a0 a1
. . .

. . .
. . .

a−1 a0 a1
a−1 a0


+



b0 b1
0 0 0

0 0
. . .

. . .
. . . 0
0 0 0

c−1 c0


This case is encountered for instance in the analysis of bidimensional
random walks in a semi-infinite stripe

q p

1-p-q
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Some related literature

Recently, some interest has been addressed to this kind of problems under
different forms

D. Kressner and R. Luce (2016) analyze the case of the exponential
function for finite Toeplitz matrices

D.A.B., S. Dendievel, G. Latouche, B. Meini (2015), analyze the case
of the exponential function for block triangular block Toeplitz
matrices

Applications to Markov chains and queueing models are given by

M. Miyazawa (2011) for infinite random walks

M. Kobayashi and M. Miyazawa (2012) for double QBDs

S. Dendievel and G. Latouche (2014) for fluid queues
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Some definitions and properties

Wiener class: W = {a(z) =
∑

i∈Z aiz
i :

∑
i∈Z |ai | <∞}

Toeplitz matrix associated with a(z) ∈ W: T (a) = (ti ,j),
ti ,j = aj−i , i , j ∈ Z+

Properties

W with the norm ‖a‖W =
∑

i∈Z |ai | is a Banach algebra, in
particular,

a(z), b(z) ∈ W ⇒ c(z) := a(z)b(z) ∈ W, ‖c‖W ≤ ‖a‖W · ‖b‖W

‖T (a)‖p ≤ ‖a‖W , for any p ≥ 1, included p =∞

[Boettcher and Grudsky]
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Some properties
Theorem [Boettcher and Grudsky] For a(z), b(z) ∈ W, let
c(z) := a(z)b(z), then

T (a)T (b) = T (c)− H(a−)H(b+),

where H(a−) = (a−i−j+1)i ,j∈Z+ , H(b+) = (bi+j−1)i ,j∈Z+ are Hankel

H(a−) =


a−1 a−2 a−3 . . .
a−2 a−3 ..

.
..
.

a−3 ..
.

..
.

..
.

...
..
.

..
.

..
.

 , H(b+) =


b1 b2 b3 . . .
b2 b3 ..

. . . .

b3 ..
.

..
.

..
.

...
..
.

..
.

..
.


Moreover

‖H(a−)‖p ≤ ‖a‖W , ‖H(b+)‖p ≤ ‖b‖W

In words:

The product of two infinite Toeplitz matrices differs from a Toeplitz matrix
by a correction which is located mostly in the upper left corner
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New results
For E = (ei ,j)i ,j∈Z+ define ‖E‖F :=

∑
i ,j∈Z+ |ei ,j |, and

F = {F = (fi ,j)i ,j∈Z+ : ‖F‖F < +∞}

Define Quasi-Toeplitz (QT) a matrix of the form

A = T (a) + E , a(z) ∈ W, ‖E‖F <∞

Define Analitically Quasi-Toeplitz (AQT) a QT matrix where a(z) ∈ W
is analytic in some annulus A(r ,R) = {z ∈ C : r < |z | < R} where
r < 1 < R.

r R1

Real

Imag
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New results
Theorem 1

The set QT of QT matrices is a Banach space with the norm

‖A‖QT = ‖a‖W + ‖E‖F , where A = T (a) + E

Theorem 2

The set AQT of AQT matrices is a normed matrix algebra with the norm

‖A‖AQT = ‖a‖W + ‖a′‖W + ‖E‖F , where A = T (a) + E

Moreover ‖AB‖AQT ≤ ‖A‖AQT · ‖B‖AQT

More precisely if A = T (a) + Ea and B = T (b) + Eb are AQT matrices,
then C = AB is an AQT matrix, that is

C = T (c) + Ec , c(z) = a(z)b(z),
∑

i ,j∈Z+

|e(c)i ,j | <∞
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New results

Remark: AQT is not complete (not Banach). In fact, there are Cauchy
sequences Ak ∈ AQT which do not converge in AQT

However, since AQT ⊂ QT and since ‖ · ‖QT ≤ ‖ · ‖AQT , then

Ak Cauchy in AQT ⇒ Ak Cauchy in QT

Thus, since QT is Banach then limk Ak ∈ QT

Theorem 3

Any Cauchy sequence in AQT has a limit in QT in the form T (c) + Ec ,
where c(z) ∈ W is not necessarily analytic

There are very interesting computational consequences
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Computational consequences

Any AQT matrix can be approximated to any desired precision with a
finite set of parameters

An approximated arithmetic can be defined for AQT matrices, it
formally behaves like the floating point arithmetic

Computing the exponential of AQT matrices

Solving matrix equations

Computing matrix functions by means of power series

Computing matrix functions by means of integration

All the above stuff for finitely large Toeplitz matrices
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Computing the exponential of a Toeplitz matrix
Let A = T (a), consider

exp(A) =
∞∑
i=0

1

i !
Ai

We have the following properties concerning the powers of a Toeplitz
matrix A where E1 = 0

Ak = T (ak) + Ek

Ek = T (a)Ek−1 + H(a−)H((ak−1)+), k ≥ 2

‖Ek‖p ≤ (k − 1)‖a‖kW , ‖Ek‖F ≤
k(k − 1)

2
‖a′‖2W‖a‖k−2W

Moreover,

Sk :=
k∑

i=0

1

i !
Ak = T (

k∑
i=0

1

i !
ai ) +

k∑
i=0

1

i !
Ei =: T (sk) + Fk
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Computing the exponential of a Toeplitz matrix

Consequently, we may prove the following

Theorem 4

The sequence Sk =
∑k

i=0
1
i!A

i is a Cauchy sequence. There exists

exp(A) = lim
k

Sk =
∞∑
i=0

1

i !
Ai ∈ AQT

Moreover, exp(A) = T (exp(a)) + Eexp, ‖Eexp‖F ≤ 1
2‖a
′‖2W exp(‖a‖W)

The function exp(a) as well as the matrix Eexp are numerically computable
with a finite number of ops. The algorithm computes at each step both

sk(z) =
k∑

i=0

1

i !
z i , Fk =

k∑
i=0

1

i !
Ei
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Complexity analysis

band · log(band): for updating sk(z) given sk−1(z)
band · rank · log(band): for updating Ek given Ek−1
band · (rank)2: for compression

where

band is the maximum among the band-width in T (a) and in T (sk), and
the size of Ek

rank is the maximum rank of Ek

Their values depend on the decay of the Fourier coefficients of exp(a(z))
and of a(z), and on the decay of the entries of Eexp.

We have provided a Matlab implementation of the algorithm
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Computing the exponential of an AQT-matrix

A similar result can be proved for an AQT-matrix A = T (a) + E .

We have the following properties concerning the powers of A

Ak = T (ak) + Ek

Ek = T (a)Ek−1 + H(a−)H((ak−1)+) + ET (ak−1), k ≥ 2

with E1 = E .

Consequently

exp(A) = T (exp(a)) + Eexp,

‖Eexp‖F ≤ (
1

2
‖a′‖2W + ‖E‖F ) exp(‖a‖W + ‖E‖F )
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The finite case

Similar results can be proved for finite Toeplitz matrices where

Ak = T (ak) + Ek + Fk

Ek = T (a)Ek−1 + H(a−)H((ak−1)+), k ≥ 2

Fk = T (a)TFk−1 + JH(a+)J · JH((ak−1)−)J, k ≥ 2

where J = (δi ,n−j+1) is the flip matrix and

Ek =



∗ ∗ ∗
∗ ∗
∗

 , Fk =

 ∗
∗ ∗

∗ ∗ ∗
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Some numerical experiments

a(z) =
∑10

i=1 z
i +

∑7
i=0 z

−i , A = T (a), exp(T (a)) = T (exp(a)) + Eexp

=

+
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Some numerical experiments
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Some numerical experiments

a(z) =
∑4

i=1 rand z i +
∑k

i=0 rand z−i , A = T (a),

B = exp(A) = T (exp(a)) + Eexp

m = max(bandwidth, correction size) of B

A2m : 2m × 2m leading principal submatrix of A

C = expm(A2m) : computed by Matlab

err = ‖Bm − Cm ‖∞/‖Bm‖∞
tAQT : CPU time in seconds of our algorithm

texpm CPU time in seconds of the Matlab function expm

rank: rank of the correction Eexp

Experiments performed on a processor i3 with Matlab 8.6.0.267246
(R2015b)
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Some numerical experiments

k tAQT texpm err band rows cols rank
10 0.07 0.10 1.5e-14 311 253 177 21
20 0.06 2.49 8.1e-14 812 758 195 19
30 0.08 12.26 2.0e-13 1501 1448 213 15
40 0.11 50.10 2.5e-13 2358 2306 211 10
50 0.14 102.41 4.0e-13 3375 3319 210 10
60 0.15 * - 4545 4489 164 9
70 0.15 * - 5863 6594 153 9
80 0.21 * - 7325 7276 61 9
90 0.25 * - 8928 8878 51 8

100 0.28 * - 10671 10622 33 8
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Size growth of the correction: a(z) =
∑20

i=−20 rand ∗ z i
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Some numerical experiments
Toeplitz matrices with a finite size

Problem: Option pricing using the Merton model (Kressner-Luce)

size 1024 2048 4096 8192

time 0.5 1.2 3.2 11.3

time (expm) 1.0 4.6 35.8 *

rank of the correction : 18 + 18
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Extension to other functions

Recall that T (a)k = T (ak) + Ek

From the inequality ‖Ek‖F ≤ k(k−1)
2 ‖a′‖2W‖a‖

k−2
W it follows

Theorem.

If f (x) =
∑+∞

i=0 fiz
i is analytic for |x | ≤ ρ and if a(z) is analytic and

‖a‖W ≤ ρ then f (a(z)) is analytic and

f (T (a)) = T (f (a)) + F ,

F =
+∞∑
k=0

fkEk , ‖F‖W < +∞

A similar result holds for f (A), A = T (a) + E
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AQT matrix arithmetic

Since the class of AQT matrices is an algebra, we may implement an
infinite matrix arithmetic in this class so that any algorithm performing
arithmetic operations between matrices can in principle be implemented
for AQT matrices.

It is natural to represent A = T (a) + E by means of the function a(z)
and the matrix E

Since a(z) is represented by a bi-infinite sequence {ak}k∈Z having
decay of the coefficients, we may represent a(z) with a finite
sequence a = (an− , . . . , a0, . . . an+) up to an arbitrarily small error.

The matrix E is represented by means of the pair (U,V ) such that
E = UV T , U and V have a finite number of columns given by the
numerical rank of E .

The matrices U and V can be truncated to a finite number of rows
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AQT matrix arithmetic

The arithmetic operations of addition and multiplication of two
matrices A and B can be reduced to the corresponding operations
between the functions a(z) and b(z) and in terms of the matrices Ua,
Va and Ub, Vb

For instance, for C = A + B one has

c(z) = a(z) + b(z)

Uc = [Ua , Ub], Vc = [Va , Vb]

Similarly we can do for C = AB

An SVD-based compression technique is introduced in order to keep
small the numerical rank

A more complicate situation is encountered for infinite matrix
inversion. We rely on the Wiener-Hopf factorization
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Inverting an AQT matrix: the Wiener-Hopf factorization

Given a function a(z) ∈ W there exist u(z) =
∑∞

i=0 uiz
i and

`(z) =
∑∞

i=0 `iz
i in W and an integer κ such that

a(z) = u(z)zκ`(z−1) Wiener-Hopf factorization

where u(z) 6= 0, `(z) 6= 0 for |z | < 1 If κ = 0 the factorization is said
canonical

Matrix version of the canonical factorization

T (a) =


u0 u1 u2 . . .

u0 u1 u2
. . .

. . .
. . .

. . .



`0
`1 `0
`2 `1 `0
...

. . .
. . .

. . .

 = T (u)T (`)T
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Inverting an AQT matrix: the Wiener-Hopf factorization

It turns out that
T (a)−1 = T (`−1)TT (u−1)

This provides an algorithm for computing the AQT matrix T (a)−1 for a(z)
analytic in T(r ,R)

1 compute the canonical factorization of a(z)

2 compute the power series of 1/u(z) and 1/`(z) by using evaluation
and interpolation

3 compute the product c(z) of the two power series

4 represent T (a)−1 as T (c) + E , where E is product of two Hankel
matrices

D.A. Bini (Pisa) quasi-Toeplitz matrices Luminy 2016 27 / 36



General properties of AQT arithmetic
A matrix A in AQT can be represented as

A = T (a) + Ea + Ea =: Â + Ea
where a(z) is a Laurent polynomial, and Ea has a finite number of nonzero
entries.

Â is the finite representation of A

Ea is the representation error

If A = Â + Ea and B = B̂ + Eb are represented this way, define
Ĉ = trunc(ÂB̂) so that

ÂB̂ = Ĉ + E , where E is the representation error

then
C = Ĉ + E + ÂEb + E1B̂ + EaEb

In blue the inherent error

Similar relations hold for the other operations
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Application to solving a matrix equation

Equations of the kind
BX 2 + AX + C = 0

encountered in queuing models can be solved with Cyclic Reduction

Bk+1 = −BkA
−1
k Bk

Ck+1 = −CkA
−1
k Ck

Ak+1 = Ak − BkA
−1
k Ck − CkA

−1
k Bk

Âk+1 = Ak − BkA
−1
k Ck

where A0 = Â0 = A, B0 = B, C0 = C

For the minimal nonnegative solution G it holds

lim
k

Â−1k B = G

moreover convergence is quadratic
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Application to solving a matrix equation
Relying on the AQT matrix arithmetic we can solve semi-infinite QBD
problems in few seconds

Example: Ten instances of the two-node Jackson network from [Motyer

and Taylor 2006]: problems 1–10

A−1 =

(1− q)µ2 qµ2
(1− q)µ2 qµ2

. . .
. . .

 ,
A0 =

−(λ1 + λ2 + µ2) λ1
(1− p)µ1 −(λ1 + λ2 + µ1 + µ2) λ1

. . .
. . .

. . .

 ,
A1 =

 λ2
pµ1 λ2

. . .
. . .

 ,
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Application to solving a matrix equation

Problem λ1 λ2 µ1 µ2 p q

1 1 0 1.5 2 1 0
2 1 0 2 1.5 1 0
3 0 1 1.5 2 0 1
4 0 1 2 1.5 0 1
5 1 1 2 2 0.1 0.8
6 1 1 2 2 0.8 1
7 1 1 2 2 0.4 0.4
8 1 1 10 10 0.5 0.5
9 1 5 10 15 0.4 0.9

10 5 1 15 10 0.9 0.4
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Application to solving a matrix equation

Problem CPU Res Band Rows Columns Rank

1 2.61 8.6 · 10−16 561 541 138 8
2 2.91 1.5 · 10−15 561 555 145 8
3 0.29 1.1 · 10−16 143 89 66 8
4 2.32 6.8 · 10−16 463 481 99 9
5 0.48 1.2 · 10−15 233 108 148 9
6 7.96 1.9 · 10−14 455 462 153 10
7 29.00 4.3 · 10−15 1423 1543 247 13
8 1.01 1.1 · 10−15 366 348 40 6
9 0.31 5.4 · 10−16 157 81 86 8

10 1.25 1.1 · 10−15 268 241 107 8
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Application to solving a matrix equation

Log plot of a portion of the solution G
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Once again general matrix functions

Matrix functions can be expressed either in terms of power series
expansions

f (A) =
∞∑
i=0

fiz
i

or in terms of numerical integration

f (A) =

∫
γ
f (z)(zI − A)−1dz

where γ is a Jordan curve

We may rely on these expressions and on AQT matrix arithmetic and
extend, under suitable conditions, f (z) to f (A) by providing effective
computational methods
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Conclusions

The class of AQT matrices has been introduced; we proved that it is
a normed matrix algebra contained in a Banach space

A general framework to compute the matrix exponential and any
other matrix function of an AQT matrix expressed by means of power
series has been introduced

Quasi Toeplitz matrix arithmetic has been introduced and
implemented

Applications to solving quadratic matrix equations have been given

Applications are shown to compute matrix functions through Cauchy
integrals

Extensions to finitely large Toeplitz matrices are given
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Thank you
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