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Motivation

Generalized matrix functions were originally introduced by J. B. Hawkins
and A. Ben-Israel in 1973 in an attempt to extend the notion of a matrix
function to rectangular matrices. The idea was to parallel the construction
of the (Moore-Penrose) generalized inverse, using the SVD.

J. B. Hawkins and A. Ben-Israel, On generalized matrix functions, Linear
and Multilinear Algebra, 1 (1973), pp. 163–171.

This paper is purely theoretical and does not mention any applications.
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Motivation (cont.)

Note that the use of the term “generalized" is somewhat misleading, since
this notion of matrix function does not reduce to the usual one when A is
square, except in special situations.

The name was dropped in the treatment given later in

A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and
Applications, Second Ed., Springer, New York, 2003.
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Motivation (cont.)

This notion has gone largely unnoticed and has been dismissed by some as
useless. Nevertheless, generalized matrix functions, usually unrecognized
as such, have apppeared repeatedly in di�erent contexts in the literature
and do have important applications, for instance to matrix optimization
and low-rank approximation problems arising in

computer vision (photometric stereo and optical flow)
regularization of discrete ill-posed problems
financial mathematics
MRI
control theory
complex frequency estimation

The notion of generalized matrix function also arises in the analysis of
directed networks and as a subtask when computing (standard) functions
of skew-symmetric matrices (Del Buono, Lopez, and Peluso, SISC 2005).
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Definition of generalized matrix function

Definition
Let A œ Cm◊n be a rank r matrix and let A = Ur�rV

ú
r be its compact

SVD. Let f : Ræ R be a scalar function such that f(‡i) is defined for all
i = 1, 2, . . . , r. The generalized matrix function fù : Cm◊n æ Cm◊n
induced by f is defined as

fù(A) := Urf(�r)V
ú
r ,

where f(�r) is defined for the r ◊ r matrix �r in the standard way:

f(�r) = diag(f(‡1), f(‡2), . . . , f(‡r)).
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Basic properties
For A =

qr
i=1 ‡iuivúi =

qr
i=1 ‡iEi, let

E :=

rÿ

i=1
Ei = UrV

ú
r .

Note that EEú = PR(A) and EúE = PR(Aú).

Proposition
Let f, g, h : Ræ R be scalar functions and let fù, gù, hù : Cm◊n æ Cm◊n
be the corresponding generalized matrix functions. Then:
(i) if f(z) = k, then fù(A) = kE;
(ii) if f(z) = z, then fù(A) = A;
(iii) if f(z) = z≠1, then fù(A) = (A†)ú;
(iv) if f(z) = g(z) + h(z), then fù(A) = gù(A) + hù(A);
(v) if f(z) = g(z)h(z), then fù(A) = gù(A)Eúhù(A).
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Basic properties (cont.)

Proposition
Let A œ Cm◊n be a matrix of rank r. Let f : Ræ R be a scalar function
and let fù : Cm◊n æ Cm◊n be the induced generalized matrix function,
assumed to be defined at A. Then the following properties hold true.
(i) [fù(A)]

ú
= fù(Aú);

(ii) let X œ Cm◊m and Y œ Cn◊n be two unitary matrices, then
fù(XAY ) = X[fù(A)]Y ;

(iii) if A = diag(A11, A22, . . . , Akk), then

fù(A) = diag(fù(A11), fù(A22), . . . , fù(Akk));

(iv) fù(Ik ¢A) = Ik ¢ fù(A);
(v) fù(A¢ Ik) = fù(A)¢ Ik.
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Basic properties (cont.)

The next two propositions describe the relation between generalized and
standard matrix functions.

Proposition
Let A œ Cm◊n be a rank r matrix and let f : Ræ R be a scalar function.
Let fù : Cm◊n æ Cm◊n be the induced generalized matrix function. Then

fù(A) =

A
rÿ

i=1

f(‡i)

‡i
uiuúi
B

A = A

A
rÿ

i=1

f(‡i)

‡i
vivúi
B

, (1a)

or, equivalently,

fù(A) = f(
Ô
AAú)(

Ô
AAú)†A = A(

Ô
AúA)

†f(
Ô
AúA). (1b)
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Basic properties (cont.)

Proposition
Let A œ Cm◊n have the polar decomposition

A = PH

with P œ Cm◊n having orthonormal columns and H œ Cn◊n Hermitian
positive semidefinite. If fù(A) is defined, then

fù(A) = Pf(H) , (2)

where f(H) is a standard matrix function of H.

Note: recall that H =

Ô
AúA.
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Basic properties (cont.)

When f is analytic, it is also possible to express fù(A) in terms of
generalized power series and also in terms of contour integrals. We
will not need these representations here.

The notion of generalized matrix function also extends to compact
operators on infinite-dimensional separable Hilbert spaces (since the
SVD does).

F. Andersson, M. Carlsson, and K.-M. Perfekt, Operator-Lipschitz estimates
for the singular value functional calculus, Proceedings of the AMS, 144(5),
pp. 1867–1875, 2016.
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Functions of block matrices

In network science and in the numerical solution of systems of ODEs it is
required io compute (standard) matrix functions of matrices of the form

A =

A
0 A
Aú 0

B

or B =

A
0 ≠A
Aú 0

B

.

In particular, exponentials of matrices of the form A arise in the analysis of
bipartite and directed networks, and exponentials of matrices of the form
B arise, for example, in the numerical integration of the Korteveg-de Vries
equation and other Hamiltonian systems.

M. Benzi, E. Estrada, and C. Klymko, Ranking hubs and authorities using matrix
functions, LAA, 438 (2013), pp. 2447–2474.

N. Del Buono, L. Lopez, and R. Peluso, Computation of the exponential of
large sparse skew-symmetric matrices, SISC, 27 (2005), pp. 278–293.
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Functions of block matrices (cont.)

It is easy to check that the exponentials of A and B are given by

exp(A) =

A
cosh(

Ô
AAú) sinhù(A)

sinhù(Aú) cosh(

Ô
AúA)

B

and
exp(B) =

A
cos(
Ô
AAú) ≠sinù(A)

sinù(Aú) cos(
Ô
AúA)

B

,

respectively. Similar expressions hold for other functions of A and B,
leading to even functions of

Ô
AAú and

Ô
AúA on the diagonal and to

generalized odd functions of A and Aú in the o�-diagonal positions.

Hence, generalized matrix functions occur as submatrices of (standard)
functions of certain block 2◊ 2 matrices.
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Another example

The “hybrid" matrix function

�(A) = I ≠A+

AAT

2!

≠ AA
TA

3!

+

AATAAT

4!

≠ · · · ,
where A is the adjacency matrix of a directed network, was studied in

J. J. Crofts, E. Estrada, D. J. Higham, and A. Taylor, Mapping directed networks,
ETNA, 37 (2010), pp. 337–350.

Note that if A = U�V T , then

�(A) = U cosh(�) UT ≠ U sinh(�) V T = cosh

1Ô
AAT

2
≠ sinh

ù
(A).
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Gaussian quadrature
Most problems involving generalized matrix functions lead to the
computation of bilinear forms of the type

zúfù(A)w. (3)

Owing to the identities

zúfù(A)w = zú
A
rÿ

i=1

f(‡i)

‡i
uiuúi
B
Âw =

Âzú
A
rÿ

i=1

f(‡i)

‡i
vivúi
B

w,

where Âw = Aw, and Âz = Aúz, we can rewrite (3) as

zúfù(A)w =

Âzú
A
rÿ

i=1

f(‡i)

‡i
vivúi
B

w =

Âzúg(AúA)w, (4a)

zúfù(A)w = zú
A
rÿ

i=1

f(‡i)

‡i
uiuúi
B
Âw = zúg(AAú) Âw, (4b)

where in both cases g(t) = (

Ô
t)≠1f(

Ô
t).
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Gaussian quadrature (cont.)

Note that if z,w are vectors such that Âz ”= w, then we can use the
polarization identity:

Âzúg(AúA)w =

1

4

[(

Âz + w)

úg(AúA)(

Âz + w)≠ (

Âz≠w)

úg(AúA)(

Âz≠w)]

to reduce the evaluation of the bilinear form of interest to the evaluation
of two Hermitian forms.

Hence, we can assume that Âz = w.

See G. H. Golub and G. Meurant, Matrices, Moments and Quadrature
with Applications, Princeton University Press, Princeton, NJ, 2010.
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Gaussian quadrature (cont.)

Let Âz = w be a unit vector (i.e., ÎwÎ2 = 1). We can rewrite the quantity
(4a) as a Riemann–Stieltjes integral using the eigendecomposition of AúA:

wúg(AúA)w = wúVrg(�2
r)V
ú
r w =

rÿ

i=1

f(‡i)

‡i
|vúiw|2 =

⁄ ‡2
1

‡2
r

g(t) d–(t),

where –(t) is a piecewise constant step function with jumps at the positive
eigenvalues {‡2

i }ri=1 of AúA, defined as follows:

–(t) =

Y
_]

_[

0, if t < ‡2
rqr

i=j+1 |vúiw|2, if ‡2
j+1 Æ t < ‡2

jqr
i=1 |vúiw|2, if t Ø ‡2

r .

We use Gaussian quadrature to approximate the above Stieltjes integral.
We now show that the nodes and weights can be obtained from the
Golub–Kahan bidiagonalization of A, with starting vector w.
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Gaussian quadrature (cont.)
We can approximate the quadratic form (Stieltjes integral) with an ¸ point
Gauss quadrature rule:

G¸ := eT1 g (Bú¸B¸) e1 = eT1
1Ò
Bú¸B¸

2†
f
1Ò
Bú¸B¸

2
e1, (5)

where B¸ is the bidiagonal matrix obtained after ¸ steps of Golub–Kahan
bidiagonalization of A, with starting vector w.

Proposition

Let (◊i, ‚i, ‹i) for i = 1, 2, . . . , ¸ be the singular triplets of B¸ = U¸�¸Vú¸ .
Then the nodes of the ¸-point Gauss quadrature rule G¸ are the singular
values {◊i}¸i=1. Furthermore, if z =

Âw, the weights of G¸ are (eT1 ‚i)2◊≠1
i

for i = 1, 2, . . . , ¸.
Similarly, if Âz = w, then the weights of the rule are given by (eT1 ‹i)2◊≠1

i .

One can also prescribe some of the nodes (Gauss–Radau/Gauss–Lobatto
rules).
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Gaussian quadrature (cont.)

The previous approach requires computing the standard matrix function
f(
Ô
T¸), with T¸ = Bú¸B¸ tridiagonal. In alternative, we can work directly

with B¸:

Proposition
The ¸-point Gauss quadrature rule G¸ is given by

G¸ = eT1B†¸fù(B¸)e1, if Âz = w,

or
G¸ = eT1 fù(B¸)B†¸e1, if z =

Âw.

While mathematically equivalent, the two approach can behave rather
di�erently in practice.
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Gaussian quadrature (cont.)

A third approach uses the Golub–Kahan decomposition A = PrBrQ
ú
r :

zúfù(PrBrQúr)w = zúfù(PrUr�rVúrQúr)w = zú(PrUr)f(�r)(QrVr)úw,

hence zúfù(A)w =

‚zúfù(Br)e1, with ‚z = P úr z and Qúrw = e1.

Assume now that ¸ < r. We can truncate the bidiagonalization process
and approximate fù(A)w as

fù(A)w ¥ P¸fù(B¸)e1

and then obtain the approximation to the bilinear form of interest as

zT fù(A)w ¥ zTP¸fù(B¸)e1.

The quality of the approximation will depend in general on the distribution
of the singular values of A and on the particular choice of f .
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Test problems

We present some total communicability computations on two directed
networks: ITwiki and SLASHDOT. Here m = n and the computed
quantities are row sums:

C(i) = [fù(A)1]i = eTi fù(A)1 .

ITwiki is the Italian Wikipedia. Its adjacency matrix A is 49, 728◊ 49, 728 and
has 941, 425 nonzeros, and there is a link from node i to node j in the graph if
page i refers to page j.

SLASHDOT is a social news website on science and technology (aka “news for
nerds"). There is a connection from node i to node j if user i indicated user j as
a friend or a foe. Its adjacency matrix A is 82, 168◊ 82, 168 matrix with 948, 464

nonzeros.

22



Test problems (cont.)
We approximate C(i) for ten di�erent choices of i using Gauss quadrature
with ¸ nodes using the stopping criterion

R¸ =

---x(¸) ≠ x(¸≠1)
---

--x(¸)-- Æ tol

and x(¸) is the approximation to C(i) obtained with ¸ steps of the method
being tested.

We also check the relative error

E¸ =

|x(¸) ≠ C(i)|
|C(i)| ,

where C(i) is the “exact" quantity, computed using ∫ ¸ terms.

All the computations were carried out with MATLAB Version 7.10.0.499
(R2010a) 64-bit for Linux, in double precision arithmetic, on an Intel Core i5
computer with 4 GB RAM.
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Results for f(z) = sinh(z)

Table: Network: ITwiki, f(z) = sinh(z) (tol = 10

≠6

).

First approach Second approach Third approach

¸ E¸ ¸ E¸ ¸ E¸
1 5 3.88e-08 5 2.90e-08 6 8.02e-09

2 10 4.72e-05 9 4.68e-05 7 1.27e-08

3 5 3.20e-08 5 3.17e-08 6 7.01e-09

4 7 2.31e-05 9 2.33e-05 8 4.31e-09

5 8 4.20e-05 20 5.77e-05 8 5.91e-09

6 9 2.19e-04 24 2.13e-04 8 2.70e-08

7 6 4.26e-07 6 5.85e-07 7 3.15e-09

8 14 1.91e-04 29 2.24e-04 8 3.38e-09

9 5 8.57e-08 5 9.31e-08 6 5.07e-09

10 9 9.36e-06 8 1.12e-05 8 3.22e-10
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Results for f(z) = sinh(z) (cont.).

Table: Network: SLASHDOT, f(z) = sinh(z) (tol = 10

≠6

).

First approach Second approach Third approach

¸ E¸ ¸ E¸ ¸ E¸
1 6 4.31e-07 6 5.61e-07 9 2.45e-08

2 9 3.24e-05 15 2.26e-06 9 1.56e-08

3 7 1.24e-06 8 1.75e-06 9 1.04e-07

4 14 2.21e-04 8 2.12e-04 10 1.74e-08

5 7 2.24e-05 7 2.35e-05 10 5.16e-09

6 10 4.84e-04 19 3.72e-04 10 1.99e-08

7 7 1.20e-06 7 1.20e-06 9 6.47e-08

8 7 7.11e-07 7 7.66e-07 9 7.68e-09

9 7 5.53e-06 7 5.98e-06 9 1.32e-09

10 6 6.98e-07 6 4.92e-07 8 8.68e-09
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Block methods

It is also possible to use block variants of the Golub–Kahan and Lanczos
algorithms to compute or approximate quantities of the form

Zúfù(A)W

where now Z and W are m◊ k and n◊ k matrices; this problem reduces
to the previous one when k = 1.

For instance, when Z and W are formed with selected columns of the
corresponding identity marices Im and In, these algorithms allow one to
estimate multiple selected entries of fù(A) simultaneously.

As is often the case, these block methods are usually more e�cient than
computing the corresponding entries of fù(A) one by one by a “scalar"
algorithm.

See our paper for details.
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A numerical example
We compute blocks of hub-to-authority communicabilities in the Twitter
network, which has 3, 656 nodes and 188, 712 edges. These are k ◊ k
submatrices of sinh

ù
(A), where A is the adjacency matrix.

Define the relative error E¸ and the relative distance R¸ as

E¸ =

ÎF¸ ≠ ZT fù(A)WÎ
2

ÎZT fù(A)WÎ
2

and R¸ =

ÎG¸ ≠H¸+1

Î
max

ÎG¸ +H¸+1

Î
max

,

respectively, where

ÎMÎ
max

= max

1ÆiÆm
1ÆjÆn

{Mij}, with M œ Cm◊n,

and F¸ is the arithmetic mean

F¸ =

1

2

(G¸ +H¸+1

)

between Gauss and anti-Gauss quadrature rules, which can be used as an
approximation of the matrix-valued expression ZT fù(A)W .
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A numerical example (cont.)

Table: Execution time (in seconds), relative error and relative distance for the

computation of the total communicabilities between k nodes of the Twitter
network with ¸ = 5 and ¸ = 10 steps.

k
¸ = 5 ¸ = 10

Time E5 R5 Time E10 R10
5 2.14e-01 4.62e-04 5.07e-09 3.50e-01 4.62e-04 9.74e-10

10 2.70e-01 1.04e-02 2.21e-09 5.62e-01 1.04e-02 9.96e-10

20 4.21e-01 3.78e-02 5.39e-10 1.10e+00 3.78e-02 8.12e-09

30 6.63e-01 2.24e-02 1.78e-11 2.12e+00 2.24e-02 3.14e-10

50 1.24e+00 4.59e-02 6.83e-12 5.57e+00 4.59e-02 1.63e-11

100 3.86e+00 5.65e-02 3.43e-11 2.72e+01 5.65e-02 1.60e-11
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Conclusions and future work
The upshot:

Generalized matrix functions arise in several important applications
and are interesting mathematical objects to study.
For large sparse, matrices, generalized matrix functions can be
approximated via Gauss quadrature rules and Golub–Kahan
bidiagonalization.
Convergence will be fast if f is large on the large singular values of A,
and small on the rest.

Topics for further research:
A better theoretical understanding of generalized matrix functions is
needed (see work of V. Noferini in this direction).
The convergence properties of the various algorithms need to be
better understood.
Algorithms for more “di�cult" choices of f .
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