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Fast matrix-vector multiplication
Given X ∈ Cm×n, we define for k ≥ 1 the singular numbers

σk (X ) = min{‖X − B‖ : rank(B) < k},

attained for matrix Xk (with euclidean/spectral norm).

In case m = n of a square matrix, we can approach the
matrix-vector product Xc by Xk+1c in complexity O(kn), with
precision

sup
c∈Cn

‖Xc − Xk+1c‖
‖X‖ ‖c‖

=
σk+1(X )

σ1(X )
.

With ε-rank

rankε(X ) = min{k ≥ 0 :
σk+1(X )

σ1(X )
≤ ε}

we get complexity O(n rankε(X )) for precision ε.



Fast Hadamard matrix-vector multiplication
Hadamard product T � X =

(
Tj,kXj,k

)
j,k

.

Observation [Townsend, Webb & Olver’16]: Suppose that matrix-vector
product Tc has complexity O(n log(n)) (e.g., T Toeplitz, Hankel, cir-
culant matrix).

Then we can approach (T � X )c by precision ε in complexity
O(n log(n) rankε(X )).

Idea of proof: If X = uvT is of rank 1 then
(T � X )c = diag(u)T diag(v)c has complexity O(n log(n)).

From ‖T � Y‖F ≤ ‖T‖ ‖Y‖F we get error estimate

‖T � X − T � Xk+1‖F
‖T‖ ‖X‖F

≤ sup
j≥0

σk+1+j(X )

σ1+j(X )
.
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Matrix structure through small displacement rank
Given fixed A ∈ Cm×m, B ∈ Cn×n, the quantity

ρ = rank(AX − XB)

is called (A,B)-displacement rank of X ∈ Cm×n [Heinig & Rost’84].

EX1: Cauchy matrix X =
(

1
aj−bk

)j,k , e = (1,1, ...,1)T

diag(aj)X − X diag(bk ) = eeT of rank 1

EX2: Cauchy matrix pre/post multiplied by diagonal matrix
X =

(
fj gk

aj−bk
)j,k ,

diag(aj)X − X diag(bk ) = fgT of rank ρ = 1

EX3: Loewner
(

fj−gk
aj−bk

)j,k : same A,B, but of rank ρ = 2.
EX4: Pick=Loewner with bk = −ak , fk = −gk .
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Matrix structure through small displacement rank
Given fixed A ∈ Cm×m, B ∈ Cn×n, the quantity

ρ = rank(AX − XB)

is called (A,B)-displacement rank of X ∈ Cm×n [Heinig & Rost’84].
EX5: Vandermonde matrix X =

(
ak−1

j )j,k ,

diag(aj )X − XS(ϕ) of rank ρ = 1, S(ϕ) =


0 0 · · · 0 ϕ
1 0 0 · · · 0
0 1 0 · · · 0
.
.
.

. . .
. . .

. . .
.
.
.

0 · · · 0 1 0


EX6: Krylov matrix X =

(
Ak b

)
k

(including diagonal times
Vandermonde)

AX − XS(ϕ) = feT
n of rank 1.

If m = n and A = A∗ then condition number grows [BB’00]

σ1(X )

σn(X )
= ‖X‖ ‖X−1‖ ≥

exp( 2Catalan
π (n − 1))

4
√

n − 1
.

Other Examples: Hankel, Toeplitz, block versions,...



Decay of singular values
THM1: [BB, Cortona’08]
Let A,B be normal, with spectra included in E ,F ⊂ C.
If X has (A,B)-displacement rank ρ then for j , k = 1,2, ...

σj+ρk (X )

σj(X )
≤ Zk (E ,F )

with the Zolotarev number

Zk (E ,F ) := inf
r∈Rk,k

sup
z∈E
|r(z)| sup

z∈F

∣∣∣∣ 1
r(z)

∣∣∣∣ .
Idea of proof:

Given a rational function r ∈ Rk,k , k iterations of ADI
for AX − XB = FGT with starting matrix Xj gives iterate Y with
rank(Y ) ≤ rank(Xj ) + ρk and

X − Y = r(A)Xj r(B)−1.

COR1: Same bound up to C2 if E , F are C-spectral for A resp. B.
COR2: Same bound up to 2CCrouzeix if E = W (A), F = W (B) [BB’11].
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Some facts on Zolotarev numbers

Zk (E ,F ) := inf
r∈Rk,k

sup
z∈E
|r(z)| sup

z∈F

∣∣∣∣ 1
r(z)

∣∣∣∣ .
1 for all k ≥ 1

exp(
−k

cap(E ,F )
) ≤ Zk (E ,F ) ≤ Z1(E ,F )k ,

2 Asymptotically,

lim
k→∞

Zk (E ,F )1/k = exp(
−1

cap(E ,F )
).

3 For any Moebius transform T we have
Zk (E ,F ) = Zk (T (E),T (F )), cap(E ,F ) = cap(T (E),T (F )).

4 If E = [−1,−λ], F = [λ,1] for some λ ∈ (0,1) then
[Zolotarev’1877]

Zk (E ,F ) ≤ 4 exp(
−k

cap(E ,F )
) ≤ 4 exp(

−kπ2

2 log(4/λ)
).



Some more facts on Zolotarev numbers
With the decreasing Groetsch modulus

µ(λ) =
π

2
K (
√

1− λ2)

K (λ)
, K (λ) =

∫ 1

0

1√
(1− t2)(1− λ2t2)

dt ,

Zolotarev found out that

µ(Zk ([−1,−λ], [λ,1])) =
k

cap([−1,−λ], [λ,1])
,

it remains to apply a formula for the inverse of µ

κ = 4
√

q
∞∏

j=1

(1 + q2j)4

(1 + q2j−1)4 , q = exp(−2µ(κ)).

Mistake in [Lebedev’76], reproduced in [Medovikov & Lebedev’05],
[Osedelets’07], [Druskin, Knizhnerman, Zaslavsky’09], [Güttel et.al.’14],
[Nakatsukasa & Freund’15], [Bini, Massei & Robol,16],....



Some more facts on Zolotarev numbers
With the decreasing Groetsch modulus

µ(λ) =
π

2
K (
√

1− λ2)

K (λ)
, K (λ) =

∫ 1

0

1√
(1− t2)(1− λ2t2)

dt ,

Zolotarev found out that

µ(Zk ([−1,−λ], [λ,1])) =
k

cap([−1,−λ], [λ,1])
,

it remains to apply a formula for the inverse of µ

κ = 4
√

q
∞∏

j=1

(1 + q2j)4

(1 + q2j−1)4 , q = exp(−2µ(κ)).

Mistake in [Lebedev’76], reproduced in [Medovikov & Lebedev’05],
[Osedelets’07], [Druskin, Knizhnerman, Zaslavsky’09], [Güttel et.al.’14],
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Numerical rank for Cauchy matrices (ρ = 1),
Pick and Loewner matrices (ρ = 2)

Here E ,F do not depend on dimensions m,n of X .
THM2: If aj ∈ T ([−1,−λ]) and bk ∈ T ([λ,1]) for some λ ∈ (0,1)
and some Moebius transform T and X like in EX1–EX4 then

rankε(X ) ≤ r := ρ

⌈
1
π2 log(

4
ε

) log(
4
λ

)

⌉
and more precisely σj+r (X ) ≤ ε σj(X ) for all j ≥ 1.



Numerical rank for Vandermonde/Krylov (ρ = 1)
Problem with Vandermonde with real abscissa or Krylov with
hermitian A: here σ(A) ⊂ E = R but

σ(B) = σ(S(−1)) = {exp(
π

n
(2j − 1)) : j = 1, ...,n} =: Λn

depends on n. Here n even !
First Approach : Use asymptotic results from [Gryson,BB’10]
giving lim

n,k→∞, kn→t>0
Zk (R,Λn)1/n. Problem: k gets too large.

Our approach

σ(B) ⊂ Fπ/n ∪ Fπ+π/n, Fϕ = {eit : ϕ ≤ t ≤ π − ϕ}

Lemma: [BB & Townsend’16] For even n,

Z2k (R,Fπ/n ∪ Fπ+π/n) ≤ 2
√

Zk (Fπ/n,Fπ+π/n)

= 2
√

Zk ([−1,− tan2(
π

2n
)], [tan2(

π

2n
),1]).



Numerical rank for Vandermonde/Krylov (bis)
THM3: With X ∈ Cm×n Vandermonde/Krylov like in EX5–EX6

rankε(X ) ≤ r := 2 + 2
⌈

4
π2 log(

4
ε

) log(
8bn

2c
π

)

⌉
and more precisely σj+r (X ) ≤ ε σj(X ) for all j ≥ 1.

Idea of proof: If n is odd then denote by X̃ ∈ Cm×(n−1) (also
Vandermonde/Krylov) the first (n − 1) columns of X . Then
interlacing of singular values gives rankε(X ) ≤ rankε(X̃ ) + 1
and it remains to discuss the case of even n. THM1 and
Lemma give bound with λ = tan2( π

4bn/2c).
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Numerical rank for real semi pos. def. Hankel
THM3: With X ∈ Cm×n Vandermonde/Krylov like in EX5–EX6

rankε(X ) ≤ r := 2 + 2
⌈

4
π2 log(

4
ε

) log(
8b n

2c
π

)

⌉
and more precisely σj+r (X ) ≤ ε σj (X ) for all j ≥ 1.

We use Fiedler factorization Y = X HX with X as in THM3 and obtain:

COR3: With Y ∈ Rn×n semi pos. def. Hankel

rankε(Y ) ≤ r := 2 + 2
⌈

2
π2 log(

16
ε

) log(
8b n

2c
π

)

⌉
and more precisely σj+r (Y ) ≤ ε σj (Y ) for all j ≥ 1.



Further reading: arXiv:1609.09494

MERCI !



Further details about Zolotarev (1)
If E = [−1,−λ], F = [λ,1] for some λ ∈ (0,1) then
[Zolotarev’1877]

µ(Zk (E ,F )) = k
π2

2µ(λ)
=

k
cap(E ,F )

with the decreasing Groetsch modulus

µ(λ) =
π

2
K (
√

1− λ2)

K (λ)
, K (λ) =

∫ 1

0

1√
(1− t2)(1− λ2t2)

dt ,

in particular

Zk (E ,F ) ≤ 4 exp(
−k

cap(E ,F )
) ≤ 4 exp(

−kπ2

2 log(4/λ)
).

since µ(λ) ≤ log(4/λ).



Proof of Lemma
Set E = [−1,−λ], F = [λ,1] , λ = tan2( π2n ), n even.
There exists R ∈ Rk ,k real-valued on R with R(−z) = 1/R(z)
and thus |R(z)| ≤ 1 for z ∈ iR extremal for Zk (E ,F ).

Thus there exists r ∈ Rk ,k real-valued on ∂D with
r(1/z) = 1/r(z) and |r(z)| ≤ 1 for z ∈ R extremal for
Zk (Fπ/n,Fπ+π/n). Hence

Z2k (R,Fπ/n ∪ Fπ/n+π)

≤ max
z∈R
| r(w) + 1/r(w)

2
| max

w∈Fπ/n∪Fπ/n+π

| 2
r(w) + 1/r(w)

|

=
2
√

Zk (E ,F )

1 + Zk (E ,F )
≤ 2

√
Zk (E ,F )



Further details about Zolotarev (2)
Denote F̃φ = {eit : ϕ ≤ t ≤ 2π − ϕ} = F 2

ϕ/2 = F 2
ϕ/2+π then by

considering only rational functions in z2

Z2k (R,Fπ/n ∪ Fπ/n+π) ≤ Zk ([0,+∞), F̃2π/n)

Sending the circle to the imaginary axis and −1 to∞

Z2k ([0,+∞), F̃π/n) = Z2k ([−1,1], iR \ [− tan−1(
π

2n
), tan−1(

π

2n
)])

≤ Zk ([0,1], (−∞,− tan−2(
π

2n
)])

...


