
N  umerical   L  inear   A  lgebra with   A  pplications  

(NL2A)

CIRM Luminy,  France

October 24—28, 2016

http://scientific-events.weebly.com/1500.html



 Organiz  ing Committee  :  
    M. Bellalij, Université de Valenciennes

    M. Hached, Université de Lille1                  

    K. Jbilou, Université du Littoral Côte d'Opale

    L. Reichel, Kent State University, USA

    H. Sadok, Université du Littoral Côte d'Opale

  Scientific     Committee:  
     J. Erhel  , Inria Rennes Bretagne Atlantique

     K. Jbilou, Université du Littoral Côte d'Opale

     G. Meurant, CEA Paris

     L. Reichel, Kent State University

     C. Rosier, Université du Littoral Côte d'Opal 

     H. Sadok,  Université du Littoral Côte d'Opal . 

 Topics:
  The meeting will take place at CIRM (Luminy, Marseille). The main topics of the   

  conference are:

         - Large-scale matrix equations, Eigenvalue problems and  Preconditioning.

         - Ill-posed problems, Image restoration.

         - Model reduction methods.

         - Numerical methods for PDEs. 

         - Applications: Image processing, Optimal control,...

                    

        

  

                                                        

Fédération de Recherche Mathématique du Nord Pas de Calais - FR 2956 

http://www.irisa.fr/sage/jocelyne/
http://www-lmpa.univ-littoral.fr/fr/fiche.php?personne=Carole%20Rosier
http://www.math.kent.edu/~reichel/
http://gerard.meurant.pagesperso-orange.fr/
http://www-lmpa.univ-littoral.fr/~jbilou/


 List of abstracts

Title/Authors Page

Accelerating convergence in sparse least squares iterative solvers using LU factorization 

M. Baboulin, G. Howell 

1

On the numerical rank of positive definite Hankel matrices 

B. Beckermann, A. Townsend

2

An Iterative method for computing a symplectic SVD-Like decomposition 

S . Agoujil, A. H. Bentbib, A.  Kanber

3

Generalized matrix functions: properties, algorithms, and applications 

M. Benzi

4

Computing matrix functions of infinite quasi- Toeplitz matrices 

D.A. Bini, S. Massei, B. Meini

5

Anderson Acceleration and the Reduced Rank Extrapolation 

C. Brezinski , M. Redivo-Zaglia, Y. Saad

6

Point-spread function reconstruction in ground-based astronomy 

R.H. Chan 

7

Stabilized Time Marching Schemes for High Accurate Finite Differences Solutions of Nonlinear 

Parabolic Equations 

M. Brachet, J-P.  Chehab

8

Uniqueness of solution of systems of generalized Sylvester and  �-Sylvester equations 

F. De Teran, B.  Iannazzo, F.  Poloni, L.  Robol 

9

Spectral analysis and numerical methods for fractional diffusion equations 

M. Dehghan, M. Donatelli, M. Mazza, H.Moghaderi, S. Serra-Capizzano 

10

Strong linearizations of rational matrices: theory and explicit constructions 

A. Amparan, F. M. Dopico, S. Marcaida, I. Zaballa 

11

Direct nonlinear imaging via data-driven discrete- time ROMs of large-scale wave propagation 

V.  Druskin, A. Mamonov, A. Thaler, M. Zaslavsky 

12

Block Lanczos Algorithm for Digital Colour Images 

A.  Bentbib, M. El Guide, K.  Jbilou 

13



Varying the s in s-step GMRES                             

D. Imberti, J. Erhel 

14

Iterative regularization in variable exponent Lebesgue spaces

C. Estatico

15

Block Matrix Formulations for Evolving Networks 

C. Fenu, D.J. Higham

16

Fast nonnegative least squares through flexible Krylov subspaces 

S. Gazzola 

17

Low rank approximate solutions to large-scale differential matrix Riccati equations 

Y. Guldogan, M. Hached, K. Jbilou , M. Kurulay 

18

Column-Action Methods in CT 

P.C. Hansen 

19

An Alternating Modulus Nonnegative Least- Squares Method for Nonnegative Matrix Factorization 

N. Zheng, K. Hayami, N. Ono

20

On applying the block Arnoldi process to the solution of a particular Sylvester-observer equation 

L. Elbouyahyaoui1, M. Heyouni, K. Jbilou A . Messaoudi 

21

Fast computation of the matrix exponential for a Toeplitz matrix 

D. Kressner, R. Luce

22

Bidiagonalization with Parallel Tiled Algorithms 

M. Faverge, J. Langou, Y. Robert, J. Dongarra

23

Doubling Algorithms, General Theory and Applications 

T.-M. Huang, R-C Li, W-W Lin 

24

Adaptive cross approximation for ill-posed problems 

T. Mach, L. Reichel, M.Van Barel, R.Vandebril 

25

Computing the Jordan structure of an eigenvalue 

N. Mastronardi, P. Van Dooren

26

Recursive Interpolation Algorithm for Polynomials: RIAP 

A. Messaoudi, H. Sadok

27

An optimal Q-OR Krylov subspace method for solving linear systems 

G. Meurant

28



Computing the Least Common Multiple of Polynomial Sets 

M. Mitrouli,  D. Christou, N. Karcanias 

29

Identification of hydraulic conductivity for salt- water intrusion problem in free aquifers 

A. Mourad, C. Rosier 

30

Approximated structured pseudospectra 

S. Noschese, L. Reichel

31

Gauss quadrature for quasi-definite linear functionals 

S. Pozza, M. Pranic, Z. Strakos

32

Applications of the simplified topological epsilon–algorithms 

C. Brezinski, M. Redivo-Zaglia

33

Generalized Krylov subspace methods for l̀p-lq ' minimization 

G.-X. Huang,  A. Lanza, S. Morigi,  L. Reichel, F. Sgallari

34

Fast and backward stable computation of the eigenvalues of matrix polynomials 

T. Mach, L. Robol, R. Vandebril, D.S. Watkins 

35

Regularized inversion of  frequency domain electromagnetic geophysical data 

G. P. Deidda, P. Diaz De Alba, C. Fenu, G. Rodriguez 

36

Vector estimates for the action of matrix functions on vectors 

P. Fika, M. Mitrouli, P. Roupa 

37

Divide and conquer algorithms and software for large Hermitian eigenvalue problems 

Y.  Saad

38

Analysis of the rational Krylov subspace method for large-scale algebraic Riccati equations 

V. Simoncini

39

Stagnation of block GMRES and its relationship to block FOM 

K. M. Soodhalter 

40

Block Krylov subspace methods for matrix functions 

A. Frommer, K. Lund-Nguyen, D.B. Szyld

41

The roots of GMRES polynomials need not influence GMRES residual norms 

J. Duintjer Tebbens, G Meurant

42

Block Kronecker Linearizations of Matrix Polynomials and their Backward Errors 

F. Dopico, P. Lawrence, J. Pérez,  P. Van Dooren

43



Tropical scaling of a Lagrange-type linearization for matrix polynomial eigenvalue problems 

M. Van Barel, F. Tisseur 

44

A Framework for Structured Linearizations of Matrix Polynomials in Various Bases 

L. Robol, R. Vandebril, P. Van Dooren 

45

A fast contour-integral eigensolver for non- Hermitian matrices and the approximation accuracy 

J. Xia, X. Ye, R.  Chan 

46

Weighted Golub-Kahan-Lanczos Algorithms 

H. Xu, H-X. Zhong

47

Multi-scale S-fraction reduced-order models for massive wavefield simulations 

M. Zaslavsky,V. Druskin, A. Mamonov 

48

Phase-preconditioned Rational Krylov Subspaces for model reduction of large-scale wave propagation 

J. Zimmerling, V. Druskin, R. Remis, M. Zaslavsky 

49



Accelerating convergence in sparse least squares

iterative solvers using LU factorization

Marc Baboulin1, Gary Howell2

1University of Paris-Sud, Orsay, France
2North Carolina State University, Raleigh, USA

Abstract

We study how to use an LU factorization as a right-preconditioner of standard iterative methods
(e.g., lsqr [1] or lsmr [2]) for solving overdetermined sparse least squares problems. Usually L
is much better conditioned than A, so iterating with lower trapezoidal L instead of A gives a faster
convergence. In previous work [3], we showed that when L is not sufficiently well-conditioned, we
could use a partial orthogonalization of L to accelerate convergence. In this talk, we illustrate that,
alternatively to partial orthogonalization, convergence can be improved by iterating with LL�1

1

where L1 is the square upper triangular part of L, resulting in a cheaper algorithm. Mixed precision
techniques [4] can be also used to reduce execution time.

References
[1] C. Paige and M. Saunders, An algorithm for sparse linear equations and sparse least

squares, ACM Trans. on Math. Software 8, no. 1, 43–71 (1982).

[2] D. Fong and M. Saunders, LSMR: An iterative algorithm for sparse least-squares prob-

lems, SIAM Journal on Scientific Computing 33, no. 5, pp. 2950–2971 (2011).

[3] G. W. Howell and M. Baboulin, LU Preconditioning for overdetermined sparse least

squares problems, Proceedings of the 11th International Conference on Parallel Pro-
cessing and Applied Mathematics (PPAM 2015), Lecture Notes in Computer Science,
Springer-Verlag 9573, pp. 128–137 (2016).

[4] M. Baboulin and A. Buttari and J. Dongarra and J. Kurzak and J. Langou and J. Langou
and P. Luszczek and S. Tomov, Accelerating scientific computations with mixed preci-

sion algorithms, Computer Physics Communications 180, no. 12, 2526–2533 (2009).

1



On the numerical rank of positive definite Han-
kel matrices

Bernhard Beckermann

1

, Alex Townsend

2

1Laboratoire Paul Painlevé UMR 8524 CNRS, Equipe ANO-EDP, UFR Mathématiques, UST Lille, F-59655 Villeneuve
d’Ascq CEDEX, France. (Bernhard.Beckermann@univ-lille1.fr)
2Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-
4307. (ajt@mit.edu)

Abstract
Matrices with displacement structure such as Pick, Vandermonde, and Hankel matrices appear in
a diverse range of applications. In this talk, we use an extremal problem for rational functions to
derive explicit bounds on the singular values of such matrices. For example, we show that the kth
singular value of a real n ⇥ n positive semidefinite Hankel matrix, H , with n � 2, is bounded
by Ce�↵k/ lognkHk

2

with explicitly given constants C and ↵ > 0, where kHk
2

is the spectral
norm. This means that any positive semidefinite Hankel matrix can be approximated, up to an
accuracy of ✏kHk

2

with 0 < ✏ < 1, by a rank R = O(log n log(1/✏)) matrix. Analogous results
are obtained for Pick, Cauchy, real Vandermonde, and Löwner matrices.

References
[1] B. Beckermann, A. Townsend, On the singular values of matrices with displacement

structure, submitted (2016).
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An Iterative method for computing a symplec-

tic SVD-Like decomposition

S. Agoujil1, A. H. Bentbib 2, A. Kanber3
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Faculty of Science and Technology Errachidia Morocco

2

Laboratory LAMAI, Faculty of Science and Technology Marrakech 42000 Morocco (a.bentbib@uca.ac.ma)

3

Laboratory LAMAI, CRMEF, Marrakech

Abstract

We present in this paper a constructive iterative method to compute symplectic SV D-like decom-
position for a 2n-by-m rectangular real matrix A. The main purpose is based on using a block
power iterative method and RJR decomposition in order to compute a k-block J � SV D de-
composition, namely Ak = Sk⌃kV

T
k where Sk 2 R2n⇥2s is symplectic and Vk 2 Rm⇥2s is

orthogonal. This method allows us to compute eigenvalues of structured matrices.

References
[1] H. Xu, An SVD-like matrix decomposition and its applications, Linear Algebra and its

Applications. 368 (2003), pp. 1–24.

[2] H. Xu, A Numerical Method For Comuping An SVD-like matrix decomposition, SIAM
journal on matrix analysis and applications. 26 (2005), pp. 1058–1082.
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Generalized matrix functions: properties,

algorithms, and applications

Michele Benzi1
1

Department of Mathematics and Computer Science

Emory University

Atlanta, GA 30322, USA

Abstract

Generalized matrix functions were introduced in 1973 by Hawkins and Ben-Israel as a way to
extend the notion of a matrix function to rectangular matrices [2]. If A is a matrix of rank r and
A = Ur⌃rV

⇤
r is a compact singular value decomposition of A, then one can define a func-

tion of A as f(A) := Urf(⌃r)V
⇤
r for any scalar function f defined on the singular values

�1 � �2 � · · · � �r > 0 of A. (Note that, generally speaking, this kind of matrix function
does not reduce to the usual one when A is square.) While the paper by Hawkins and Ben-Israel
attracted little attention, generalized matrix functions arise naturally in various applications, and
over the course of time several authors have made use of them without recognizing them as such.
In this talk I will review the basic properties of generalized matrix functions and discuss some
applications and numerical methods for their approximation.

The talk is based on joint work with Francesca Arrigo and Caterina Fenu [1].

References
[1] F. Arrigo, M. Benzi, and C. Fenu, Computation of generalized matrix functions, SIAM

J. Matrix. Anal. Appl., 37 (2016), pp. 836–860.

[2] J. B. Hawkins and A. Ben-Israel, On generalized matrix functions, Linear Multilinear
Algebra, 1 (1973), pp. 163–171.
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Computing matrix functions of infinite quasi-

Toeplitz matrices

Dario A. Bini
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2

, Beatrice Meini

3
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Dipartimento di Matematica, Universit

`

a di Pisa
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Scuola Normale Superiore, Pisa

3

Dipartimento di Matematica, Universit

`

a di Pisa

Abstract

In certain applications concerning stochastic processes, like the analysis of a random walk in the
quarter plane, one encounters semi-infinite matrices P = (pi,j)i,j2Z+ which can be written in
the form P = T (a) + F , where T (a) = (ti,j)i,j2Z+ is a Toeplitz matrix associated with the
symbol a(z) =

P
k2Z akz

k, i.e., ti,j = aj�i, moreover a(z) and F = (fi,j)i,j2Z are such thatP
k2Z |ak| < +1, and

P
i,j2Z+ |fi,j | < +1. We call a matrix P of this form a semi-infinite

quasi-Toeplitz matrix.
In this talk we present some results concerning this class of matrices together with some related

computations. More specifically, we show that quasi-Toeplitz matrices associated with a symbol
a(z) which is analytic over an annulus A(r, R) = {z 2 C : r < |z| < R}, where 0 < r < 1 <
R, form a matrix algebra endowed with a sub-multiplicative norm. As a consequence, we prove
that the matrix exponential Y = exp(X) of a quasi-Toeplitz matrix X is well defined and is still a
quasi-Toeplitz matrix. We also provide efficient algorithms for its computation. These results are
extended to the case of general matrix functions under suitable mild conditions.

We also prove that matrix equations of the kind AX2
+ BX + C = 0, which model infi-

nite random walks where the coefficients A,B,C are semi-infinite quasi-Toeplitz matrices, have
a nonnegative solution G which is still semi-infinite quasi-Toeplitz. We also provide effective
algorithms, for the computation of G, based on the cyclic reduction iteration.

Finally we present a Matlab implementation of the matrix arithmetic in the algebra of semi-
infinite quasi-Toeplitz matrices where T (a) is represented by means of the numerical truncation
of a(z) and F is represented as the product F = UV T where U and V have a finite number of
columns and their entries ui,j and vi,j are zero for i sufficiently large. This toolbox enables one
to easily implement algorithms for the computation of certain matrix functions f(X) of a semi-
infinite quasi-Toeplitz matrix X , and to solve quadratic matrix equations where coefficients and
unknown are semi-infinite quasi-Toeplitz matrices. Numerical experiments are presented.

References
[1] D.A. Bini, B. Meini, On the exponential of semi-infinite quasi-Toeplitz matrices, In

preparation (2016)

[2] D.A. Bini, S. Massei, B. Meini, Quasi-Toeplitz infinite matrix arithmetic with applica-
tions. In preparation (2016)
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Extrapolation

Claude Brezinski
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, Michela Redivo-Zaglia

2

, Yousef Saad
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1

University of Lille, France

2

University of Padua, Italy

3

University of Minnesota, USA

Abstract

In this talk, we compare two well-known schemes for accelerating sequences of vectors. The first

is Anderson mixing [1] which has been widely used in physics and the second is the Reduced

Rank Extrapolation (RRE) algorithm [2, 3] which is a standard ‘general’ technique designed for

accelerating arbitrary sequences. It is known that the two methods are mathematically equivalent

in the linear case. This paper establishes their equivalence in the nonlinear case.

References
[1] D.G. Anderson, Iterative procedures for nonlinear integral equations, J. Assoc. Comput.

Mach., 12 (1965) 547–560.

[2] R.P. Eddy, Extrapolation to the limit of a vector sequence, in Information Linkage Be-

tween Applied Mathematics and Industry, P.C.C. Wang ed., Academic Press, New York,

1979, 387–396.

[3] M. Me˘sina, Convergence acceleration for the iterative solution of the equations X = AX

+ f, Comput. Methods Appl. Mech. Engrg., 10 (1977) 165–173.
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Point-spread function reconstruction in ground-

based astronomy

Raymond H. Chan1

1Department of Mathematics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong

Abstract

Because of atmospheric turbulence, images of objects in outer space acquired via ground-based
telescopes are usually blurry. One way to estimate the blurring kernel or point spread function
(PSF) is to make use of the aberration of wavefront received at the telescope, i.e., the phase.
However only the low-resolution wavefront gradients can be collected by wavefront sensors. In
this talk, I will discuss how to use regularization methods to reconstruct high-resolution phase
gradients and then use them to recover the phase and the PSF in high accuracy.
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Stabilized Time Marching Schemes for High
Accurate Finite Differences Solutions of Non-
linear Parabolic Equations

Matthieu Brachet1, Jean-Paul Chehab2
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Institut Elie Cartan de Lorraine, Universit
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Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens France

Abstract
The present work deals with the stabilization of explicit time marching schemes for parabolic
equations, with a special attention to the high order finite differences discretization in space. These
type of stabilized schemes, have been introduced independently in [1] and [4] (but in a spectral
point of view) as a backward Euler’s method with a simplified implicit part for the solution of
parabolic problems, the simplification is realized by using proper pre-conditioners of the implicit
part. We propose here a unified framework and derive general stability properties in the linear and
in the nonlinear case. Practical implementations and extensions are proposed for the long time
simulation of nonlinear parabolic problems when discretized by using high order finite differences
compact schemes. Numerical simulations of Phase Fields problems in image processing as well
as in fluid dynamics (2D incompressible Navier-Stokes Equations) are presented [2].

References
[1] A.Averbuch, A. Cohen, M.Israeli, A fast and accurate multiscale scheme for parabolic

equations, rapport LAN 1998, unpublished.

[2] M. Brachet and J.-P. Chehab, Stabilized Times Schemes for High Accurate Finite Dif-
ferences Solutions of Nonlinear Parabolic Equations, Journal of Scientific Computing,
2016

[3] B. Costa, Time marching techniques for the nonlinear Galerkin method, Preprint series
of the Institute of Applied Mathematics and Scientific Computing, PhD thesis, Bloom-
ington, Indiana, 1998.

[4] B. Costa. L. Dettori, D. Gottlieb and R. Temam, Time marching techniques for the
nonlinear Galerkin method, SIAM J. SC. comp., 23, (2001), 1, 46-65.
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1Universidad Carlos III de Madrid, Avda. Universidad, 30, 28911, Leganés, Spain
2 Dipartimento di Matematica e Informatica, Università di Perugia, Via Vanvitelli 1, 06123 Perugia, Italy.
3Dipartimento di Informatica, Università di Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy
4Dept. Computerwetenschappen, KU Leuven, Celestijnenlaan 200A, 3001 Heverlee (Leuven), Belgium.

Abstract

The generalized Sylvester equation

AXB � CXD = E

has been a subject of interest since, at least, the early 20th century. Recently, the ?-generalized

Sylvester equation

AXB � CX?D = E,

with ? being either the transpose or the conjugate transpose, has attracted some attention within

the linear algebra community.

In this talk, we provide necessary and sufficient conditions for the uniqueness of solution of

homogeneous systems of generalized Sylvester and ?-Sylvester equations, namely

AiX
si
↵i
Bi � CiX

ti
�i
Di = 0, i = 1, . . . , r,

with si, ti 2 {1, ?}.

We focus on the case where the system has the same number of equations and unknowns

(namely, r), and where all coefficient matrices (and unknowns) are square and with the same size.
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Spectral analysis and numerical methods for

fractional diffusion equations

Mehdi Dehghan1, Marco Donatelli2, Mariarosa Mazza3, Hamid Moghaderi1,
Stefano Serra-Capizzano2

1Faculty of Mathematics and Computer Sciences, Amirkabir Universirty of Technology, No. 424, Hafez Avenue, Tehran,
IRAN
2Department of Science and High Technology, University of Insubria, via Valleggio 11, 22100 Como, Italy
3Max Planck Institute for Plasma Physics, Garching bei München, Germany

Abstract

Fractional partial diffusion equations (FDEs) are a generalization of classical partial differential
equations, used to model anomalous diffusion phenomena. Several discretization schemes (finite
differences, finite volumes, etc.) combined with (semi)-implicit methods leads to a Toeplitz-like
matrix-sequence.

In the constant diffusion coefficients case such a matrix-sequence reduces to a Toeplitz one,
then exploiting well-known results on Toeplitz sequences, we are able to describe its asymptotic
eigenvalue distribution. In the case of nonconstant diffusion coefficients, we show that the resulting
matrix-sequence is a generalized locally Toeplitz (GLT) and then we use the GLT machinery to
study its singular value/eigenvalue distribution as the matrix size diverges (see [4]).

The new spectral information is employed for analyzing preconditioned Krylov and multigrid
methods recently appeared in the literature [2, 3], with both positive and negative results. More-
over, such spectral analysis guides the design of new preconditioning and multigrid strategies. We
propose new structure preserving preconditioners with minimal bandwidth (and so with efficient
computational cost) and multigrid methods for 1D and 2D problems (see [1] for the 1D case).
Some numerical results confirm the theoretical analysis and the quality of the new proposals.

References
[1] M. Donatelli, M. Mazza, S. Serra-Capizzano: “Spectral analysis and structure preserv-

ing preconditioners for fractional diffusion equations”, J. Comput. Phys., Vol. 307, pp.
262–279, 2016.

[2] S.-L. Lei, H. W. Sun: “A circulant preconditioner for fractional diffusion equations”, J.

Comput. Phys., Vol. 242, pp. 715–725, 2013.

[3] H. Pang, H. Sun: “Multigrid method for fractional diffusion equations”, J. Comput.

Phys., Vol. 231, pp. 693–703, 2012.

[4] S. Serra-Capizzano: “The GLT class as a generalized Fourier Analysis and applica-
tions”, Linear Algebra Appl. Vol. 419, pp. 180–233, 2006.
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Abstract

Rational eigenvalue problems (REPs) G(�)x = 0, where G(�) is a regular matrix whose entries
are rational functions of the variable �, arise in interesting applications [3] [4] and their numerical
solution is a challenging problem [3]. Recently, a new method for solving REPs was proposed in
[4]. This method is based on constructing first a linear pencil whose finite eigenvalues are the finite
eigenvalues of G(�), i.e., those finite zeros of G(�) which are not poles, and then on applying a
standard algorithm for the generalized eigenvalue problem to such linear pencil. This linear pencil
is called a linearization of the rational matrix G(�). The method introduced in [4] has been
formalized and generalized in [1], where a formal definition of a linerization of a square rational
matrix is introduced, which indeed guarantees that the finite eigenvalues of the linearization are
the finite eigenvalues of the rational matrix. In addition, many examples of linearizations are
explicitly constructed in [1] based on the well known Fiedler linearizations of matrix polynomials.
However, apart from other technical drawbacks, the definition of linearization in [1] does not
guarantee that such pencils reflect the structure at infinity of the rational matrix. In this talk, we
introduce the new concept of strong linearization of an arbitrary rational matrix that may be square
or rectangular, regular or singular, and prove rigorously that such pencils reflect the complete finite
and infinite zero and pole structures of the rational matrix. Moreover, we construct explicitly
infinitely many examples of strong linearizations. These constructions take as inputs a minimal
state-space realization of the strictly proper part of G(�) and any strong block minimal bases
linearization [2] of its polynomial part.

References
[1] R. Alam, N. Behera, Linearizations for rational matrix functions and Rosenbrock sys-

tem polynomials, SIAM J. Matrix Anal. Appl., 37 (1) (2016) 354–380.
[2] F. M. Dopico, P. W. Lawrence, J. Pérez, P. Van Dooren, Block Kronecker linearizations

of matrix polynomials and their backward errors, submitted (available in MIMS EPrint

2016.34, Manchester Institute for Mathematical Sciences, UK, 2016).
[3] V. Mehrmann and H. Voss, Nonlinear eigenvalue problems: A challenge for modern

eigenvalue methods, GAMM-Reports, 27 (2004) 121–152.
[4] Y. Su, Z. Bai, Solving rational eigenvalue problems via linearization, SIAM J. Matrix

Anal. Appl., 32 (1) (2011) 201–216.
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Abstract
The inverse coefficient problems for large scale PDEs are notoriously computationally extensive.
They are normally solved by nonlinear (often nonconvex) data fitting via multiple PDE solves. A
popular approach to address computational complexity is to use reduced order models (ROMs)
for data simulation as proxies for expensive PDE solvers. Instead, here we directly image the
unknown coefficient distributions from ROMs obtained by interpolating measured data. We focus
on the time-domain problem of seismic exploration, which is possibly the most difficult inverse
problem for linear time-invariant dynamic systems due to huge sizes of PDE grids and Jacobians,
resulting in weeks and even months of processing time.

We consider multidimensional inverse problems for acoustic wave equation with an array of
m receivers (outputs). The shots are fired by moving the transmitter (input) consequently at the
receiver positions, so the data are the elements of the MIMO transfer function F (t) = F (t)⇤ 2
Rm⇥m, sampled at t = j⌧ , j = 0, . . . , 2n� 1. The imaging algorithm is outlined below.

1. Compute discrete-time ROM on data with stiffness and mass matrices as sums of block
Toeplitz and Hankel matrices of data [2].

2. Transform the above ROM to block-tridiagonal form via block-QR transform computed with
the help of block-Cholesky decomposition of the mass matrix [1].

3. Image unknown coefficient (reflectivity distribution) via approximate Galerkin approxima-
tion of the true (unknown) PDE operator with the help of the above block-tridiagonal matrix
and global basis functions for some known (e.g., constant coefficient) problem.

Steps 1 and 3 are linear and step 3 is not, and it suppresses nonlinear data artifacts such as multiple
reflections and de-focusing of the wave package. The success of our algorithm is based on week
dependence of the QR-reorthogonolized ROM basis on the PDE coefficient distribution, which
sets it (the algorithm) favorably apart from other known MOR approaches.

We present 2D numerical examples for geophysical (seismic, sonic) and medical (ultrasound)
applications.
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Abstract

In this work we present an efficient algorithm for solving a Tikhonov regularization problem for
multichannel image deblurring when the model is described by a linear system of equations with
multiple right-hand sides contaminated by errors. The proposed method is based on the symmetric
block Lanczos algorithm, in connection with block Gauss quadrature rules [1] to inexpensively
determine a value of the regularization parameter when using the discrepancy principle and an
associated approximate solution of colour images degraded by within- and cross-channel blurs, as
well as additive Gaussian noise [2].
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Abstract
Krylov methods are commonly used iterative methods for solving large sparse linear systems,
however they suffer communication bottlenecks on parallel computers. Therefore, s-step methods
have been developed where the Krylov subspace is built block by block, with a fixed block size s.
We develop an adaptive s-step GMRES algorithm, where the block size is variable and increases
gradually. We give lower bounds for the condition numbers of each block. In our numerical
experiments, we compare our variable approach to a fixed one. Results show that our strategy
allows a faster convergence in most cases.
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Abstract

Let us consider a functional equation Af = g characterized by an ill-posed linear operator A :
X �! Y between two Banach spaces X and Y . In this talk, we propose an extension of the
Tikhonov regularization approach to the (unconventional) setting where X and Y are both two
variable exponent Lebesgue spaces. Basically, a variable exponent Lebesgue space Lp(·) is a (non-
Hilbertian) Banach space where the exponent 1  p(·)  +1 used in the definition of the norm
is not constant, but rather is a function p(·) of the domain [1]. This way, instead of

R
|f(x)|pdx

with p constant, to measure a function f in such a L

p(·) Banach spaces we have to compute
Z

|f(x)|p(x)dx .

Inside the general framework of the regularization theory in Banach spaces [2], we develop
an iterative regularization method in variable exponent Lebesgue spaces L

p(·) based on duality
maps, which is able to adaptively and automatically set up pointwise different regularization levels.
Indeed, the formulation of the ill-posed problem in a variable exponent Lebesgue space L

p(·)

allows us to assign different regularization parameters, related to different values of the function
parameter p(·), on different regions of the domain.

In the case of image deblurring problems, different pointwise regularization is useful because
background, low intensity, and high intensity values of the image to restore require different filter-
ing (i.e., regularization) levels [3]. This way, the proposed iterative algorithm represents a natural
and continuous extension of early procedures based on image segmentation techniques, developed
to vary the “amount” of regularization depending on the “local” signal to noise ratios in all the dif-
ferent portions of the image domain. A numerical evidence of the proposal will be also discussed.
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Abstract

Many types of pairwise interaction take the form of a fixed set of nodes with edges that appear and
disappear over time.

In the case of discrete-time evolution, the resulting evolving network may be represented by a
time-ordered sequence of adjacency matrices. More precisely, let {G[k]}Mk=1 =

⇣
V, {E[k]}Mk=1

⌘

be a sequence of unweighted graphs evolving in discrete time, that is, the set of nodes V , with
|V | = n, is fixed and the dynamism is given by the change in the set of the arcs. With this
notation, given the ordered sequence of time points {tk}Mk=1, the network at time tk is represented
by its n ⇥ n adjacency matrix A[k]. As usual for unweighted networks, the (i, j)th entry of A[k]

equals 1 if there in an edge from node i to node j at time tk, and 0 otherwise. This type of
connectivity structure arises naturally in many types of human interaction. For example, within a
given population, we may record physical interactions, phone calls, text messages, emails, social
media contacts or correlations between behavior such as energy usage or on-line shopping [1].

Although we may regard {A[k]}Mk=1 as a three dimensional tensor, we emphasize that, in this
context, the third dimension is very different from the first two. Typical quantities of interest are
invariant to the ordering the nodes—we may consistently permute the rows and columns of each
A[k], or, equivalently, we may relabel the nodes, without affecting our conclusions. However, for
most purposes, it is not appropriate to reorder the time points.

We consider here the issue of representing the system as a single, higher dimensional block
matrix, built from the individual time-slices. We focus on the task of computing network centrality
measures, and present a particular block formulation that allows us to recover dynamic centrality
measures [2, 3] respecting times arrow.
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Abstract

Constrained linear least squares problems arise in a variety of applications, and many iterative

methods are already available to compute their solutions. This talk proposes a new efficient ap-

proach to solve nonnegative linear least squares problems. The starting points of the new method,

dubbed MFCGLS, are the KKT conditions associated to the nonnegativity constraints. The original

problem is thus reformulated as a nonlinear system, which is then solved using a CGLS scheme

with adaptive diagonal preconditioning. Since the preconditioner is updated at each iteration,

MFCGLS belongs to the framework of flexible Krylov subspace methods. Some properties of

MFCGLS are illustrated. MFCGLS can be easily applied to image restoration and reconstruction

problems, where the components of the solution represent nonnegative intensities. Data affected

by both Gaussian and Poisson noise are considered. Many numerical experiments and compar-

isons are provided in order to validate MFCGLS, which delivers results of equal or better quality

than many state-of-the-art solvers for nonnegative least squares, with a significant speedup.
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Abstract

Differential Riccati equations play a fundamental role in many areas such as control, filter design
theory, model reduction problems, differential equations and robust control problems. In our pre-
sentation, we consider large-scale continuous-time differential algebraic Riccati equations having
low rank right-hand sides. These equations are generally solved by Backward Differentiation For-
mula (BDF) or Rosenbrock methods leading to a large scale algebraic Riccati equation which has
to be solved for each timestep. A new approach, based on the reduction of the problem dimen-
sion prior to integration will be discussed. We project the initial problem onto an extended block
Krylov subspace and get a low-dimentional differential algebraic Riccati equation. The latter ma-
trix differential problem is then solved by Backward Differentiation Formula (BDF) method and
the obtained solution is used to reconstruct an approximate solution of the original problem. We
give some theoretical results and a simple expression of the residual allowing the implementation
of a stop test in order to limit the dimension of the projection space. Some numerical experiments
will be given.
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Abstract

Filtered back projection, FDK and similar “direct” reconstruction methods in computed tomog-
raphy (CT) give excellent results when we have plenty of data and when the noise in the data is
low. But for situations with high noise and/or limited data, or when it is desirable to incorporate
constraints, an algebraic approach is often preferred.

Row-action methods is a specific class of algebraic iterative methods. It includes Kaczmarz’s
algorithm, which was independently suggested under the name “ART” to solve tomographic re-
construction problems. It is also known how to base an algebraic iterative reconstruction algorithm
on columns rather than on rows. The main advantage of the column version is that it does not ex-
hibit the cyclic convergence of the row version, but converges to a least squares solution. Another
advantage is the possibility for saving computational work during the iterations, as demonstrated
by numerical examples in this talk.

Column-oriented algorithms have not been explored much in the literature. An exception is
Watt [3] who derives a column-based reconstruction method and compares it with ART (also using
nonnegativity constraints). A more recent paper is [1] where a two-parameter algorithm based on
a block-column partitioning is studied.

The row and column methods seek to solve different problems. The row methods aim to
compute a minimum-norm solution to a consistent system of equations, while the column methods
aim to compute a least squares solution. Hence, for inconsistent problems the asymptotic behavior
of the methods is different. The row-action methods exhibit cyclic convergence but not in general
to a least squares solution. The column methods, on the other hand, converge to a least squares
solution but not in general to the minimum norm solution.

This talk presents recent work related to [2]. We set the stage by briefly summarizing the well-
known row action methods, and then we introduce the column versions and derive and discuss the
associated convergence properties. We also demonstrate how computational work can be reduced
by not performing small updates, typically of solution elements that have converged.
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Abstract

Consider the nonnegative matrix factorization (NMF) [1]: minW,H kV � WHkF, where V 2
Rm⇥n is a given nonnegative matrix, W 2 Rm⇥r and H 2 Rr⇥n are unknown nonnegative
matrices, and k · kF represents the Frobenius norm of the corresponding matrix. Here, r ⌧
min(m,n) is assumed. Therefore, the NMF problem seeks a nonnegative low rank approximation
of a given nonnegative matrix.

NMF arises in many scientific computing and engineering applications, e.g., image processing,
spectral data analysis, audio signal separation, text mining, document clustering, recommender
system, etc.

For the solution of NMF, we propose a new alternating nonnegative least squares method by
utilizing the modulus method [2, 3] for solving the nonnegative constrained least squares (NNLS)
problems in each iteration. The method employs the modulus transform H = Z + |Z| and
W = Y + |Y | for each subproblem to transform the NNLS problem to a sequence of uncon-
strained least squares problems, which can be solved by a CGLS method for matrix variables.
Numerical experiments on random problems and ORL face image problems show the efficiency of
the proposed method compared to the multiplicative update method [4] and gradient-type methods.
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Abstract
In this talk, we describe a new block method for solving multi-input Sylvester-observer equations
that arise in the construction of the well known Luenberger observer. More precisely, we follow
the ideas developed in [1, 2] and show how to use the block Arnoldi process in order to generalize,
to the multi-input case, the method proposed by Datta and Saad for the single input Sylvester-
observer equation [1]. By using matrix valued polynomials which were used in [3, 4] for describing
some blok Krylov methods, we give some new algebraic properties and show how to construct the
Luenberger observer by solving a special large Sylvester equation for which two unknowns are to
be computed. The numerical tests show that the proposed approach is very effective and can be
used for large-scale Luenberger observer.

References
[1] B.N. DATTA AND Y. SAAD. Arnoldi methods for large Sylvester-like observer matrix

equations, and an associated algorithm for partial spectrum assignment, Linear Alge-
bra and its Applications, (154-156):225–244, (1991).

[2] B.N. DATTA, M. HEYOUNI AND K. JBILOU. The global Arnoldi process for solving
the Sylvester-Observer equation, Computational and Applied Mathematics, 527–544,
(2010).

[3] M. D. KENT. Chebyshev, Krylov, Lanczos: Matrix Relationships and Computations,
Ph.D. Thesis, Dept. of Computer Science, Stanford Univ., (1989).

[4] V. SIMONCICI AND E. GALLOPOULOS. Convergence properties of block GMRES and
matrix polynomials. Linear Algebra Appl., 247:97–119, (1996).

21



Fast computation of the matrix exponential

for a Toeplitz matrix

Daniel Kressner

1

, Robert Luce

2

1EPFL, 1015 Lausanne, Switzerland, daniel.kressner@epfl.ch
2EPFL, 1015 Lausanne, Switzerland, robert.luce@epfl.ch

Abstract

The computation of the matrix exponential is a ubiquitous operation in numerical mathematics, and

for a general, unstructured n ⇥ n matrix it can be computed in O(n3) operations. An interesting

problem arises if the input matrix is a Toeplitz matrix, for example as the result of discretizing

integral equations with a time invariant kernel. In this case it is not obvious how to take advantage

of the Toeplitz structure, as the exponential of a Toeplitz matrix is, in general, not a Toeplitz

matrix itself. In this talk, we present an algorithm of quadratic complexity for the computation of

the Toeplitz matrix exponential. It is based on the scaling and squaring framework, and connects

classical results from rational approximation theory to matrices of low displacement rank. As an

example, the developed methods are applied to Merton’s jump-diffusion model for option pricing.
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Abstract

We consider algorithms for going from a “full” matrix to a condensed “band bidiagonal” form
using orthogonal transformations. We use the framework of “algorithms by tiles”. Within this
framework, we study (1) the tiled bidiagonalization algorithm (bidiag) which is a tiled version
of the standard scalar bidiagonalization algorithm [3] and (2) the R-bidiagonalization algorithm
(R-bidiag) which is a tiled version of the algorithm which consists in first performing the QR
factorization of the initial matrix, then performing the band-bidiagonalization of the R-factor [1].
For both bidiagonalization algorithms (bidiag and R-bidiag), we use HQR-based reduction
trees [2]. We consider a variety of reduction trees, so called (A) Flat TS, (B) Flat TT or (C) Greedy
TT and more. Previous work on band bidiagonalization [4] has only focused on (1A), that is a
standard bidiagonalization algorithm with Flat TS tree. We provide a study of critical path length
for these algorithms and we provide an extensive set of experiments on a shared memory system
to show the superiority of the new algorithms for tall and skinny matrices.
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Abstract

Iterative methods are widely and indispensably used in numerical approximations. Basically, any
iterative method is a rule that produces a sequence of approximations and with a reasonable expec-
tation that newer approximations in the sequence are better. The goal of a doubling algorithm is to
significantly speed up the approximation process by seeking ways to skip computing most of the
approximations in the sequence but sporadically few, in fact, extremely very few: only the 2i-th
approximations in the sequence, kind of like computing ↵2i via repeatedly squaring. However,
this idea is only worthwhile if there is a much cheaper way to directly obtain the 2i-th approxima-
tion from the 2i�1-th one than simply following the rule to generate every approximation between
the 2i�1-th and 2i-th approximations in order to obtain the 2i-th approximation. Anderson (1978)
had sought the idea to speed up the simple fixed point iteration for solving the discrete-time alge-
braic Riccati equation via repeatedly compositions of the fixed point iterative function. As can be
imagined, under repeatedly compositions, even a simple function can usually and quickly turn into
nonetheless a complicated and unworkable one. In the last 20 years or so in large part due to an
extremely elegant way of formulation and analysis, the researches in doubling algorithms thrived
and continues to be very active, leading to numerical effective and robust algorithms not only for
the continuous-time and discrete-time algebraic Riccati equations from optimal control that moti-
vated the researches in the first place but also for M -matrix algebraic Riccati equations (MARE),
structured eigenvalue problems, and other nonlinear matrix equations. But the resulting theory is
somewhat fragmented and sometimes ad hoc. In this talk, we will seek to provide a general and
coherent theory, discuss new highly accurate doubling algorithm for MARE, and look at several
important applications.
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Abstract

Integral equations of the first kind with a smooth kernel and perturbed right-hand side, which

represents available contaminated data, arise in many applications. Discretization gives rise to

linear systems of equations with a matrix whose singular values cluster at the origin. The solution

of these systems of equations requires regularization, which has the effect that components in the

computed solution connected to singular vectors associated with small singular values are damped

or ignored. In order to compute a useful approximate solution typically approximations of only a

fairly small number of the largest singular values and associated singular vectors of the matrix are

required. The presentation will explore the possibility of determining these approximate singular

values and vectors by adaptive cross approximation. This approach is particularly useful when a

fine discretization of the integral equation is required and the resulting linear system of equations

is of large dimensions, because adaptive cross approximation makes it possible to compute only

fairly few of the matrix entries.
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Abstract

In this talk we revisit the problem of finding an orthogonal similarity transformation that puts an
n ⇥ n matrix A in a block upper-triangular form that reveals its Jordan structure at a particular
eigenvalue �0. The obtained form in fact reveals the dimensions of the null spaces of (A� �0I)

i

at that eigenvalue via the sizes of the leading diagonal blocks, and from this the Jordan structure at
�0 is then easily recovered. The method starts from a Hessenberg form that already reveals several
properties of the Jordan structure of A. It then updates the Hessenberg form in an efficient way to
transform it to a block-triangular form in O(mn2) floating point operations, where m is the total
multiplicity of the eigenvalue. The method only uses orthogonal transformations and is backward
stable. We illustrate the method with a number of numerical examples.
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Abstract

Let x0, x1, · · · , xn be a set of n+1 distinct real numbers (i.e., xi 6= xj , for i 6= j) and y0, y1, · · · , yn,
be real numbers, we know that there exist a unique polynomial pn(x) of degree n such that
pn(xi) = yi, for i = 0, 1, · · · , n, pn is the Lagrange interpolation polynomial for the set
{(xi, yi), i = 0, 1, · · · , n}. The polynomial pn(x) can be computed by using the Lagrange
method or the Newton method. This paper presents a new method for computing interpolation
polynomials. We will reformulate the interpolation polynomial problem and give a new algorithm
for giving the solution of this problem, the Recursive Interpolation Algorithm for Polynomials
(RIAP). Some properties of this algorithm will be studied and some numerical examples will also
be given.
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Abstract
In [2] it is shown that most Krylov methods for solving linear systems with nonsymmetric matrices
can be described as so-called quasi-orthogonal (Q-OR) or quasi-minimum (Q-MR) residual meth-
ods. There exist many pairs of Q-OR/Q-MR methods. Well-known examples are FOM/GMRES,
BiCG/QMR and Hessenberg/CMRH. These pairs mainly differ by the different bases of the Krylov
subspace they used.

In this lecture we will first recall the generic properties of the Q-OR methods that were studied
in [1]. Then, we will show how to construct a non-orthogonal basis of the Krylov subspace for
which the Q-OR method yields the same residual norms as GMRES up to the final stagnation
phase. Therefore, for a given Krylov subspace, this is the optimal Q-OR method. We will also
established some properties of this new basis that will help us simplifying the implementation of
the proposed algorithm.

We will illustrate the performances of the new algorithm with numerical experiments. In par-
ticular, for many linear systems, this new method gives a better attainable accuracy than GMRES
using the modified Gram-Schmidt algorithm as well as GMRES using Householder reflections.
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Abstract

In thepresent work, wepresent anumerical method for thecomputation of theApproximateLeast
CommonMultiple(ALCM) of univariatepolynomial sets. Thebasic characteristic of theproposed
method is that it avoids root finding algorithmsand computations involving theGreatest Common
Divisor (GCD) Themain tool is thealgebraic construction of aspecial matrix containing key data
from theoriginal polynomial set. From thismatrix isformulatedalinear systemwhichprovidesthe
degreeand thecoefficientsof theALCM using low-rank approximation techniquesand numerical
optimization tools particularly in the presence of inaccurate data. The stability and complexity
of the method is analysed. Furthermore, we present several numerical examples to illustrate the
effectivenessof themethod and acomparison with other methods isprovided aswell.
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Abstract

In this talk, we focus on the identification of the hydraulic conductivity K for saltwater intru-

sion problem for a nonhomogeneous, isotropic and free aquifer. The estimation of this parameter

is based on observations or field measurements made on the depth of the freshwater/saltwater

interface and on the depth of the water table. We note that concretely, we only have specific ob-

servations (in space and in time) corresponding to the number of monitoring wells. In addition the

seawater intrusion phenomenon is often transient and the study of sensitivity shows that the form

of freshwater/saltwater interface depends mainly on the hydraulic conductivity, the other parame-

ters such as especially porosity, have an impact mainly on the time taken to reach the steady state.

We formulate this identification problem by an optimization problem whose cost function mea-

sures the squared difference between experimental hydraulic heads and those given by the model.

Then, thanks to the regularity and the uniqueness of the exact solution, we can establish the exis-

tence of the control problem. Considering the exact problem as a constraint for the optimization

problem and introducing the Lagrangian associated with the cost function, we prove that the opti-

mality system has at least one solution.

Then we use the adjoint method to calculate the gradient of the cost function. Numerically, we

write an algorithm based on the method of descent direction, and we use the line search method

with the Wolf conditions to determine the step length. Finally, we present some numerical results.
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Abstract

Many applications in science and engineering require knowledge of the location of some or all
eigenvalues of a matrix and the sensitivity of the eigenvalues to perturbations of the matrix. The
sensitivity can be studied with the aid of the eigenvalue condition number, based on particular
rank-one perturbations of the matrix, as described by Wilkinson [2, Chapter 2], or by computing
pseudospectra. Let ⇤(A) denote the spectrum of the matrix A 2 Cn⇥n. The "-pseudospectrum of
the matrix A is defined as

⇤"(A) :=
�
� 2 C : � 2 ⇤(A+ E), E 2 Cn⇥n, kEk  "

 
(1)

for some " > 0. An insightful discussion of the "-pseudospectrum and many applications are
presented by Trefethen and Embree [1].

Algorithms for eigenvalue computations that respect the matrix structure may yield higher
accuracy and require less computing time than structure-ignoring methods. They also may pre-
serve eigenvalue symmetries in finite-precision arithmetic. The structured "-pseudospectrum can
be applied to measure the sensitivity of the eigenvalues of a structured matrix to similarly struc-
tured perturbations. Let S denote the subset of matrices in Cn⇥n with a particular structure,
such as bandedness, Toeplitz, Hankel, or Hamiltonian. Then, for some " > 0, the structured
"-pseudospectrum of a matrix A 2 S is given by

⇤S
" (A) := {� 2 C : � 2 ⇤(A+ E), E 2 S, kEk  "} ; (2)

see, e.g., [3] for discussions and illustrations.
The computation of pseudospectra and structured pseudospectra, however, can be very de-

manding for all but small matrices. In fact, there are few methods available for computing the
structured "-pseudospectrum besides plotting the spectra of structured random perturbations. A
new approach, based on determining the spectra of many suitably chosen rank-one or projected
rank-one perturbations of the given matrix is proposed. The choice of rank-one or projected rank-
one perturbations is inspired by Wilkinson’s analysis of eigenvalue sensitivity.
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Abstract

The Gauss quadrature can be formulated as a method for approximating positive definite linear
functionals. Its mathematical context is extremely rich, with orthogonal polynomials, continued
fractions and Padé approximation on one (functional analytic or approximation theory) side, and
with the method of moments, (real) Jacobi matrices, spectral decompositions, and the Lanczos
method on the other (algebraic) side. The quadrature concept can therefore be developed using
many different ways. This talk investigates the question of a meaningful generalization of the
Gaussquadrature for approximation of linear functionalswhich are not positive definite. For that
purpose we use the algebraic approach. As the main result we present the form of the general-
ized Gauss quadrature and prove that the quasi-definiteness of the underlying linear functional
represents the necessary and sufficient condition for its existence. The connections with Padé
approximantsand (complex) Jacobi matricesarepointed out.
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Abstract

Let (Sn) beasequenceof elementsof avector spaceE on afieldK (R or C) which converges to
a limit S. If the convergence is slow, it can be transformed, by a sequence transformation, into a
new sequence or a set of new sequenceswhich, under some assumptions, converges faster to the
same limit. WhenE isR or C, awell known such transformation is due to Shanks, and it can be
implemented by thescalar "–algorithm of Wynn.

This transformation was generalized in several different ways to sequences of elements of a
vector spaceE. WhenE isRp or Cp, thisgeneralization leadsto theReduced Rank Extrapolation

(RRE) and to the Minimal Polynomial Extrapolation (MPE). For a general vector space E, the
Modified Minimal Polynomial Extrapolation (MMPE) and the topological Shanks transformations

are obtained. The interest of these last two generalizations is that they can treat sequences or
matrices or even tensors, and that they can be recursively implemented, the first one by the S�
algorithm of Jbilou [3] and thesecond onesby the topological "–algorithmsof Brezinski [1].

However, the topological "–algorithms are quite complicated since they possess two rules,
they require the storage of many elements of E, and the duality product with an element y is
recursively used in their rules. Recently, simplified versionsof thesealgorithmswereobtained and
called the simplified topological "–algorithms [2]. They have only one recursive rule instead of
two, they require less storage than the initial algorithms, elements of the dual vector spaceE⇤ of
E no longer have to be used in the recursive rules but only in their initializations, the numerical
stability is improved, and it waspossible to prove theoretical resultson them.

In thistalk, wepresent several resultsobtainedby using thesimplified topological "–algorithms
for accelerating theconvergenceof sequencesof elementsof avector space: solution of linear and
nonlinear systemsof vector andmatrix equations, and computation of matrix functions. Thesolu-
tion of nonlinear Fredholm integral equationsof thesecond kind will also beevocated.
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Abstract

This talk presentsnew efficient approaches for thesolution of `p-`q minimization problemsbased
on the application of successive orthogonal projections onto generalized Krylov subspaces of in-
creasing dimension. The subspaces are generated according to the iteratively reweighted least-
squares strategy for the approximation of `p/`q-norms by weighted `2-norms. Computed image
restoration examples illustrate the performance of themethods discussed. The combination of a
fairly low iterationcount andamodest storagerequirement makestheproposedmethodsattractive.
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Abstract

The computation of matrix polynomials eigenvalues has gained some interest in the last decades,
especially the search for adequate linearizations and good scaling techniques.

The approach which is most often used to approximate the eigenvalues of a k ⇥ k matrix
polynomial of degree d is to construct a linearization, which is a kd⇥kd pencil, whose eigenvalues
coincide with the ones of the matrix polynomial and can be approximated using the QZ method.
The pencil A � �B typically built in this context is endowed with a particular structure: Both A
and B are rank k perturbations of kd⇥ kd unitary matrices. However, all the available structured
methods for this problem are effective only when k ⌧ d [2, 3].

We present a new structured method that allows to compute the eigenvalues of k ⇥ k matrix
polynomials of degree d in O(d2k3) flops, which is always asymptotically faster than the O(d3k3)
complexity obtained computing the eigenvalues of A � �B with an unstructured QZ. The result
is obtained by rephrasing the unitary plus rank k structure as the product of k unitary plus rank 1
matrices. This factorization can be obtained at (almost) no cost starting from the original structure,
but is much more convenient from the numerical perspective. In particular, we can develop a struc-
tured method by re-using some tools developed in [1]. Several choices for this initial factorization
and for the subsequent reduction to upper Hessenberg-triangular form are presented. We show that
some choices are more favorable from the numerical point of view.

We prove that the presented method is backward stable on A and B, and that it reaches the
same accuracy of the QZ iteration. Several numerical experiments confirm that the method is fast
and accurate.
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Abstract

Electromagnetic (EM) induction is a non-invasive technique used to characterize the spatial vari-
ability of soil properties, which has widespread use in archaeological, hydrological, and geotech-
nical applications. The inversion of EM data can be accomplished by a nonlinear model which
is dominated by error propagation. The ill-conditioning of the problem is further amplified in the
presence of strongly conductive materials in the subsoil. We will describe an extension of a regu-
larization algorithm originally described in [1, 2]. In particular, we will show that the knowledge of
the exact Jacobian matrix of the nonlinear model, coupled to suitable updating techniques, allows
one to improve both computing time and accuracy with respect to the standard approach, based on
finite difference approximation. We will also show that fast and accurate linear algebra tools are
needed in order to process in real time the large amount of complex valued data produced by re-
cent measuring devices. At the same time, the lack of information on the noise level in real-world
applications calls for an efficient strategy for estimating the regularization parameter.
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Abstract

Let A 2 Rp⇥p be a diagonalizable matrix, b 2 Rp a vector and f a smooth function. We are
interested in estimating the action of f(A) on a vector b, i.e. f(A)b, without computing f(A),
by using an extrapolation procedure. In the present work, we derive families of one-term and
two-term vector estimates for the quantity f(A)b and we connect them with the estimates for the
corresponding matrix functionals of a given diagonalizable matrix A. The quantity f(A)b arises
in many applications, especially those with a large, sparse matrix A, in which it is not feasible to
compute explicitly the whole matrix f(A) and those originating from partial differential equations
[3]. We present several numerical examples to illustrate the effectiveness of the derived families
for several functions f for the quantity f(A)b.
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Abstract
Divide-and-conquer paradigms can lead to efficient and flexible techniques for solving large Her-
mitian eigenvalue problems. This talk will discuss how these techniques can be put to work to
implement ‘spectrum slicing’ strategies, i.e., strategies that extract slices of the spectrum indepen-
dently. The presentation will begin with an overview of polynomial filtering, a general approach
that can be quite efficient in the situation where the matrix-vector product operation is inexpensive
and when a large number of eigenvalues is sought. We will present a few algorithms that combine
the Lanczos algorithm with and without restarts, as well as subspace iteration. An alternative to
polynomial filtering that is generating a growing interest is a class of methods that exploit filtering
by rational functions. Good representatives of this general approach are the FEAST eigensolver
and the Sakurai-Sugiura algorithm. Here we will argue that the standard Cauchy integral–based
approach can be substantially improved upon – especially when iterative solvers are involved. Fi-
nally, the talk will discuss our ongoing work to develop a code named EVSL (for eigenvalues
slicing library) that implements these ideas.
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Abstract

In the numerical solution of the algebraic Riccati equation A⇤X +XA�XBB⇤X +C⇤C = 0,
where A is large, sparse and stable, and B, C have low rank, projection methods have recently
emerged as a possible alternative to the more established Newton-Kleinman iteration [3]. In spite
of convincing numerical experiments, a systematic matrix analysis of this class of methods has
been lacking. We derive new relations for the approximate solution, the residual and the error
matrices, giving new insights into the role of the matrix A � BB⇤X and of its approximations
in the numerical procedure. In the context of linear-quadratic regulator problems, we show that
the Riccati approximate solution is related to the optimal value of the reduced cost functional, thus
completely justifying the projection method from a model order reduction point of view [2]. The
new results provide theoretical ground for recently proposed modifications of projection methods
onto rational Krylov subspaces [1].
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Abstract
We analyze the the convergence behavior of block GMRES and characterize the phenomenon of
stagnation which is then related to the behavior of the block FOM method. We generalize the
block FOM method to generate well-defined approximations in the case that block FOM would
normally break down, and these generalized solutions are used in our analysis. This behavior
is also related to the principal angles between the column-space of the previous block GMRES
residual and the current minimum residual constraint space. At iteration j, it is shown that the
proper generalization of GMRES stagnation to the block setting relates to the columnspace of the
jth block Arnoldi vector. Our analysis covers both the cases of normal iterations as well as block
Arnoldi breakdown wherein dependent basis vectors are replaced with random ones. Numerical
examples are given to illustrate what we have proven, including one constructed (artificially) from
small application problem to demonstrate the validity of the analysis in a less pathological case.
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Abstract

Block Krylov subspace methods have been successfully developed for linear systems and matrix
equations. When it comes to functions of matrices, their application has been less established. In
this talk, we present a general setting for block Krylov subspaces for functions of matrices with
several right hand sides. We focus in particular on methods analogous to the full orthogonalization
method (FOM) for linear systems, and therefore refer to these methods as B(FOM)2: block FOM
for functions of matrices. We prove error bounds, and present numerical experiments illustrating
the behavior of versions of B(FOM)2 with restarts on practical examples.
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Abstract

The convergence behavior of Krylov subspace methods has been linked to the convergence of
Ritz values, in particular for the CG method, see, e.g., [4]. For the GMRES method, some re-
sults suggest that the convergence of Ritz values often goes hand in hand with an acceleration of
residual norm convergence and may in fact be the cause of superlinear convergence [5]. However,
mathematically, any residual norm history is possible with any set of Ritz values in the individual
iterations of the GMRES process [1]. This result can be regarded as a generalization of the fact
that any residual norm history is possible with any set of final Ritz values, i.e., of eigenvalues [2].
It also shows that the Arnoldi method for eigenvalues can exhibit arbitrary convergence behavior.

However surprising this may seem, the Ritz values are not the roots of GMRES polynomials
and this makes it more credible that GMRES residual norms can be completely independent from
Ritz values. The roots of the GMRES polynomials are the harmonic Ritz values [3]. In our talk
we show that not even harmonic Ritz values need have any influence on the residual norm history
of GMRES (provided the stagnation case is treated correctly). In other words, any residual norm
history is possible with any set of harmonic Ritz values in the individual iterations of the GMRES
process.
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Abstract

We introduce a new family of strong linearizations of matrix polynomials, which we call “block

Kronecker pencils”, and perform a backward stability analysis of complete polynomial eigenprob-

lems. These problems are solved by applying any backward stable algorithm to a block Kronecker

pencil, such as the staircase algorithm for singular pencils or the QZ algorithm for regular pencils.

This stability analysis allows us to identify those block Kronecker pencils that yield a computed

complete eigenstructure which is exactly that of a slightly perturbed matrix polynomial. These

favorable pencils include the famous Fiedler linearizations, which are just a very particular case

of block Kronecker pencils. Thus, our analysis offers the first proof available in the literature of

global backward stability for Fiedler pencils. In addition, the theory developed for block Kro-

necker pencils is much simpler than the theory available for Fiedler pencils, especially in the case

of rectangular matrix polynomials. The global backward error analysis in this work presents for

the first time the following key properties: it is a rigurous analysis valid for finite perturbations

(i.e., it is not a first order analysis), it provides precise bounds, it is valid simultaneously for a large

class of linearizations, and it establishes a framework that may be generalized to other classes of

linearizations.
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Abstract

Let P (z) be a s ⇥ s matrix polynomial of degree d. The polynomial eigenvalue problem (PEP)

is to look for nonzero vectors v (right eigenvectors) and corresponding eigenvalues � such that

P (�)v = 0.

The standard way of solving the PEP is via linearization, that is, by constructing a ds ⇥ ds
matrix polynomial L(z) of degree one such that

E(z)L(z)F (z) =


P (z) 0
0 I(d�1)s

�

with E(z) and F (z) unimodular matrix polynomials. Then clearly P (z) and L(z) have the same

eigenvalues. Many linearizations have been proposed in the literature based on the basis in which

P (z) is represented, e.g., degree graded bases such as the monomial basis, the Chebyshev ba-

sis, . . . , or interpolation bases, such as the Lagrange polynomials. Companion linearizations are

commonly used in practice for matrix polynomials expressed in the monomial basis but these are

known to affect the sensitivity of eigenvalues and, when used with numerically stable eigensolvers

for generalized eigenproblems, they can compute eigenpairs for P with large backward errors un-

less the linear problem is solved several times with different scalings of the eigenvalue parameter.

The matrix polynomial P (z) is uniquely determined by its values Pi in d points �i, i =
1, 2, . . . , d and its highest degree coefficient Pd. A Lagrange-type linearization based on this

representation is

L(z) =

2

6664

Pd �1P (�1) · · · �dP (�d)
�Is (z � �1)Is

.

.

.

.

.

.

�In (z � �d)In

3

7775
,

where the �i are the so-called barycentric weights.

We show numerically that the (well-conditioned) eigenvalues of a PEP can be computed with

high relative precision using only one run of the QZ algorithm even when the eigenvalues have a

large variation in magnitude. To this end a particular choice of the interpolation points �i, i.e., well-

separated tropical roots, is taken in the Lagrange-type linearization as defined above together with

an appropriate scaling. Also the QZ algorithm has to be slightly adapted such that the QZ iteration

does not stop too early for eigenvalues with a large difference in magnitude. This is connected to

the fact that for certain matrix pencils the QZ algorithm exhibits a structured backward error as we

will illustrate by numerical experiments.
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Abstract

We present a framework for the construction of linearizations for scalar and matrix polynomials

based on dual bases which, in the case of orthogonal polynomials, can be described by the as-

sociated recurrence relations. The framework provides an extension of the classical linearization

theory for polynomials expressed in non-monomial bases and allows to represent polynomials ex-

pressed in product families, that is as a linear combination of elements of the form �i(x) j(x),
where {�i(x)} and { j(x)} can either be polynomial bases or polynomial families which satisfy

some mild assumptions.

We show that this general construction can be used for many different purposes. Among them,

we show how to linearize sums of polynomials and rational functions expressed in different bases.

As an example, this allows to look for intersections of functions interpolated on different nodes

without converting them to the same basis.
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Abstract
We design a fast contour-integral eigensolver for finding selected or all the eigenpairs of a non-
Hermitian matrix, and study the eigenvalue accuracy when some approximations are involved.
The design is based on a series of analytical and computational techniques, such as the analysis
of filter functions, quick and reliable eigenvalue count via low-accuracy matrix approximations,
and fast shifted factorization update. The quality of some quadrature rules for approximating a
relevant contour integral is analyzed. We show that a filter function based on the Trapezoidal rule
has nearly optimal decay in the complex plane away from the unit circle (as the mapped contour),
and is superior to the Gauss-Legendre rule. The eigensolver needs to count the eigenvalues inside
a contour. We justify the feasibility of using low-accuracy matrix approximations for the quick
and reliable count. Both deterministic and probabilistic studies are given. With high probabilities,
the matrix approximations give counts very close to the exact one. Our eigensolver is built upon
an accelerated FEAST algorithm. Both the eigenvalue count and the FEAST eigenvalue solution
need to solve linear systems with multiple shifts and right-hand sides. For this purpose and also to
conveniently control the approximation accuracy, we use a type of rank structured approximations
and show how to control the accuracy. The structured approximations also allow the fast update of
the factorization for varying shifts. The eigensolver may be used to find a large number of eigen-
values, where a search region is then partitioned into subregions. We give an optimal threshold
for the number of eigenvalues inside each bottom level subregion so as to minimize the complex-
ity, which is O(rn2) + O(r2n) to find all the eigenpairs of an order-n matrix with maximum
off-diagonal rank or numerical rank r.
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Abstract

For any real symmetric positive definite matrices K and M there exist an M -orthogonal matrix X
and a K-orthogonal matrix Y such that

KY = XB, MX = Y BT ,

where B is bidiagonal. Two versions of Lanczos-type iterative method are constructed based on

the factorizations, depending on whether B is upper or lower bidiagonal. In the upper bidiagonal

case, with an initial y1 as the first column of Y , a k-step of Lanczos-type iteration produces the

matrices Yk and Xk that consist of the first k columns of Y and X , respectively, as well as Bk,

the leading k ⇥ k principal matrix B, such that

KYk = XkBk, MXk = YkB
T
k + �kyk+1e

T
k .

The proposed methods are the weighted versions of the standard Golub-Kahan-Lanczos (GKL)

algorithms given in [4, 5]. They are also the special case of the more generalized GKL algorithms

developed in [1]. The proposed methods provide a simple and straightforward way for solving

the eigenvalue problem or a linear system associated with a matrix of the form KM , MK, or

H :=


0 M
K 0

�
. The eigenvalue problem of H arises from linear response theory ([2, 3]).

Another interesting fact is that they give a simple connection with the classical CG method.
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Abstract

We present a reduced-order multi-scale method for solving large time-domain wavefield simula-
tion problems. The algorithm consists of two main stages. During the first “off-line” stage the
computational domain is split into multiple subdomains. Then projection-type multi-scale reduced
order models (ROMs) are computed for the partitioned operators at each subdomain. The off-line
stage is “embarrassingly” parallel as ROM computations for the subdomains are independent of
each other. It also does not depend on the number of simulated right-hand sides and it is performed
just once before the entire time-domain simulation. At the second “on-line” stage the time-domain
simulation is performed within the obtained multi-scale ROM framework. The crucial feature of
our formulation is the representation of the ROMs in terms of matrix Stieltjes continued fractions
(S-fractions). This allows us to sparsify the obtained multi-scale subdomain operator ROMs and
to reduce both the computational cost and communications which is highly beneficial for serial as
well as parallel implementations of the on-line stage. The performance of the method is illustrated
on 3D composite anisotropic elastic problems.

References
[1] V. Druskin, A. Mamonov, and M. Zaslavsky. Multi-scale S-fraction reduced-order mod-

els for massive wavefield simulations. submitted to SIAM Journal of Multiscale Model-

ing and Simulation, also available at Arxiv:1604.06750, 2016

[2] V. Druskin, A. Mamonov, and M. Zaslavsky. Multiscale mimetic reduced-order mod-
els for spectrally accurate wavefield simulations. SEG Technical Program Expanded

Abstracts 2015, pages 3710–3715, 2015.

48



Phase-preconditioned Rational Krylov Subspaces

for model reduction of large-scale wave prop-

agation

J

¨

orn Zimmerling

1

, Vladimir Druskin

2

, Rob Remis

1

, Mikehail Zaslavsky

2

1 Delft University of Technology, Mekelweg 2, 2628 CD Delft, Nederlands, j.t.zimmerling@tudelft.nl
2Schlumberger-Doll Research, 1 Hampshire St, Cambridge, MA 02139, USA

Abstract

Rational Krylov Subspaces (RKS) is a powerful tool for interpolatory model-reduction of large-
scale dynamical systems. However, it is fundamentally limited by the Nyquist-Shanon sampling
rate for the transfer function of such a system. More specifically, at least two interpolation points
per period of the cut-off frequency of the transfer function are required, which can lead to thou-
sands of interpolation points for large-scale wave propagation and thus prohibitively large RKS
as these interpolation points need to be solved for every right hand side. We suggest to precondi-
tion the RKS via the phase term of the WKB approximation, easily obtainable from the eikonal
equation.

The advantage of the proposed formulation is threefold, as it allows reduction in frequency-
domain sampling, number of right hand sides, and spatial sampling. First, the preconditioning
method factors out the main part of the dependence of the RKS on the interpolation frequency.
This allows a reduction of the frequency domain sampling rate with respect to the Nyquist-Shanon
sampling rate. Secondly, after this factorization, the RKS basis is only weakly dependent on the
right hand side, which allows us to significantly reduce the complexity of MIMO problems. Third,
our approach also factors out the dominant part of the spatial dependence of the solution. This
allows us to reduce the spatial sampling required for the accurate computation of the RKS. The
latter is of special importance for three-dimensional problems.

We show large-scale numerical examples with dramatically model reduction for the acoustic
Marmousi model, a seismic exploration benchmark problem.
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