Species Diversity in Coupled Habitats: Going Beyond Homogeneous and Deterministic Models

TECHNISCHE UNIVERSITÄT DARMSTADT

Tatjana Thiel, Michaela Hamm, Barbara Drossel

Introduction Networks on networks

How does migration alter diversity of species on local and regional scales?

Introduction Networks on networks

- How does migration alter diversity of species on local and regional scales?
- Research approach: Modelling explicit population dynamics of metafoodwebs.

Basics Niche model

Usage of niche model for foodweb construction [1].

$$\begin{aligned} \frac{dB_{i}^{u}(t)}{dt} = &\lambda m_{i}^{-0.25} \sum_{j \in R_{i}} \frac{af_{i}^{u}B_{j}^{u}}{1 + \sum_{l \in R_{i}} af_{i}^{u}hB_{l}^{u}} B_{i}^{u} \\ &- \sum_{k \in C_{i}} m_{k}^{-0.25} \frac{af_{k}^{u}B_{i}^{u}}{1 + \sum_{m \in R_{k}} af_{k}^{u}hB_{m}^{u}} B_{k}^{u} \\ &- \rho m_{i}^{-0.25}B_{i}^{u} - \beta m_{i}^{-0.25} \left(B_{i}^{u}\right)^{2} \\ &+ d\sum_{v \in L_{u}} m_{i}^{-0.25} \left(B_{i}^{v} - B_{i}^{u}\right) \end{aligned}$$

$$\begin{aligned} \frac{\mathrm{d}B_{i}^{u}(t)}{\mathrm{d}t} = &\lambda m_{i}^{-0.25} \sum_{j \in R_{i}} \frac{af_{i}^{u}B_{j}^{u}}{1 + \sum_{l \in R_{i}} af_{i}^{u}hB_{l}^{u}} B_{i}^{u} \\ &- \sum_{k \in C_{i}} m_{k}^{-0.25} \frac{af_{k}^{u}B_{i}^{u}}{1 + \sum_{m \in R_{k}} af_{k}^{u}hB_{m}^{u}} B_{k}^{u} \\ &- \rho m_{i}^{-0.25}B_{i}^{u} - \beta m_{i}^{-0.25} \left(B_{i}^{u}\right)^{2} \\ &+ d \sum_{v \in L_{u}} m_{i}^{-0.25} \left(B_{i}^{v} - B_{i}^{u}\right) \end{aligned}$$

$$\begin{aligned} \frac{\mathrm{d}B_{i}^{u}(t)}{\mathrm{d}t} = &\lambda m_{i}^{-0.25} \sum_{j \in R_{i}} \frac{af_{i}^{u}B_{j}^{u}}{1 + \sum_{l \in R_{i}} af_{i}^{u}hB_{l}^{u}} B_{i}^{u} \\ &- \sum_{k \in C_{i}} m_{k}^{-0.25} \frac{af_{k}^{u}B_{i}^{u}}{1 + \sum_{m \in R_{k}} af_{k}^{u}hB_{m}^{u}} B_{k}^{u} \\ &- \rho m_{i}^{-0.25}B_{i}^{u} - \beta m_{i}^{-0.25} \left(B_{i}^{u}\right)^{2} \\ &+ d\sum_{v \in L_{u}} m_{i}^{-0.25} \left(B_{i}^{v} - B_{i}^{u}\right) \end{aligned}$$

$$\begin{aligned} \frac{dB_{i}^{u}(t)}{dt} = &\lambda m_{i}^{-0.25} \sum_{j \in R_{i}} \frac{af_{i}^{u}B_{j}^{u}}{1 + \sum_{l \in R_{i}} af_{i}^{u}hB_{l}^{u}} B_{i}^{u} \\ &- \sum_{k \in C_{i}} m_{k}^{-0.25} \frac{af_{k}^{u}B_{i}^{u}}{1 + \sum_{m \in R_{k}} af_{k}^{u}hB_{m}^{u}} B_{k}^{u} \\ &- \rho m_{i}^{-0.25} B_{i}^{u} - \beta m_{i}^{-0.25} (B_{i}^{u})^{2} \\ &+ d \sum_{v \in L_{u}} m_{i}^{-0.25} (B_{i}^{v} - B_{i}^{u}) \end{aligned}$$

$$\begin{aligned} \frac{\mathrm{d}B_{i}^{u}(t)}{\mathrm{d}t} = &\lambda m_{i}^{-0.25} \sum_{j \in R_{i}} \frac{af_{i}^{u}B_{j}^{u}}{1 + \sum_{l \in R_{i}} af_{i}^{u}hB_{l}^{u}} B_{i}^{u} \\ &- \sum_{k \in C_{i}} m_{k}^{-0.25} \frac{af_{k}^{u}B_{i}^{u}}{1 + \sum_{m \in R_{k}} af_{k}^{u}hB_{m}^{u}} B_{k}^{u} \\ &- \rho m_{i}^{-0.25}B_{i}^{u} - \beta m_{i}^{-0.25} \left(B_{i}^{v}\right)^{2} \\ &+ d\sum_{v \in L_{u}} m_{i}^{-0.25} \left(B_{i}^{v} - B_{i}^{u}\right) \end{aligned}$$

$$\begin{aligned} \frac{\mathrm{d}B_{i}^{u}(t)}{\mathrm{d}t} = &\lambda m_{i}^{-0.25} \sum_{j \in R_{i}} \frac{af_{i}^{u}B_{j}^{u}}{1 + \sum_{l \in R_{i}} af_{i}^{u}hB_{l}^{u}} B_{i}^{u} \\ &- \sum_{k \in C_{i}} m_{k}^{-0.25} \frac{af_{k}^{u}B_{i}^{u}}{1 + \sum_{m \in R_{k}} af_{k}^{u}hB_{m}^{u}} B_{k}^{u} \\ &- \rho m_{i}^{-0.25}B_{i}^{u} - \beta m_{i}^{-0.25} \left(B_{i}^{u}\right)^{2} \\ &+ d\sum_{v \in L_{u}} m_{i}^{-0.25} \left(B_{i}^{v} - B_{i}^{u}\right) \end{aligned}$$

TECHNISCHE UNIVERSITÄT DARMSTADT

 Robustness: Fraction of persisting species.

0.760

- Robustness: Fraction of persisting species.
- Weak migration strength: Patches are quasi unconnected.

TECHNISCHE UNIVERSITÄT DARMSTADT

- Robustness: Fraction of persisting species.
- Weak migration strength: Patches are quasi unconnected.
- High migration strength: Patches synchronize.

TECHNISCHE UNIVERSITÄT DARMSTADT

- Robustness: Fraction of persisting species.
- Weak migration strength: Patches are quasi unconnected.
- High migration strength: Patches synchronize.
- Intermediate migration strength: Peak in robustness due to:

- Robustness: Fraction of persisting ► species.
- Weak migration strength: Patches are quasi unconnected.
- High migration strength: Patches synchronize.
- Intermediate migration strength: ► Peak in robustness due to:
 - Bescue effect

0 760

0.730

-6

-5

-4

loa d

-3

TECHNISCHE

disconnected

chain

-1

-2

- Robustness: Fraction of persisting species.
- Weak migration strength: Patches are quasi unconnected.
- High migration strength: Patches synchronize.
- Intermediate migration strength: ► Peak in robustness due to:
 - Rescue effect 1
 - Dynamic coexistence

-6

-5

-4

loa d

-3

0 760

0.730

chain

-1

-2

Species survives in spite of unfavourable initial conditions.

TECHNISCHE UNIVERSITÄT DARMSTADT

TECHNISCHE UNIVERSITÄT DARMSTADT

Additional species to unconnected case.

- Additional species to unconnected case.
- Migration stopped \Rightarrow species go extinct.

• Migration events rare \Rightarrow Migration is a stochastic process.

• Migration events rare \Rightarrow Migration is a stochastic process.

^{8.} September 2016 | Technische Universität Darmstadt | T. Thiel, M. Hamm | 17

• Migration events rare \Rightarrow Migration is a stochastic process.

• Migration events rare \Rightarrow Migration is a stochastic process.

• Migration events rare \Rightarrow Migration is a stochastic process.

• Migration events rare \Rightarrow Migration is a stochastic process.

• Migration events rare \Rightarrow Migration is a stochastic process.

 Consider migrating biomass unit B_{migr}.

► Migration events rare ⇒ Migration is a stochastic process.

• Migration events rare \Rightarrow Migration is a stochastic process.

Stochastic Approach Results

 Increasing migrating biomass unit leads to:

Stochastic Approach Results

- Increasing migrating biomass unit leads to:
 - Intermediate migration strength: Local and regional robustness decrease.

Stochastic Approach Results

- Increasing migrating biomass unit leads to:
 - Intermediate migration strength: Local and regional robustness decrease.
 - Small migration strength: Local and regional robustness increase.

▶ log(d) = −4: Local and regional robustness decrease due to:

8. September 2016 | Technische Universität Darmstadt | T. Thiel, M. Hamm | 23

- ▶ log(d) = −4: Local and regional robustness decrease due to:
 - 1. Rescue effect

8. September 2016 | Technische Universität Darmstadt | T. Thiel, M. Hamm | 23

- ▶ log(d) = −4: Local and regional robustness decrease due to:
 - 1. Rescue effect
 - 2. Dynamic coexistence

8. September 2016 | Technische Universität Darmstadt | T. Thiel, M. Hamm | 23

- log(d) = -4: Local and regional robustness decrease due to:
 - 1. Rescue effect
 - 2. Dynamic coexistence

log(d) = −6: Local and regional robustness increase due to:

- log(d) = −4: Local and regional robustness decrease due to:
 - 1. Rescue effect
 - 2. Dynamic coexistence

- log(d) = −6: Local and regional robustness increase due to:
 - 1. Rescue effect

- Sufficiently frequent migration events enables survival.
- Sufficiently frequent migration events become less probable if time between two migration events increases.

Heterogeneous Approach Modifications to Homogeneous Model

Heterogeneous Approach Robustness

Compare heterogeneous system to homogeneous system (same amount of resource in total) regarding robustness:

Heterogeneous Approach Robustness

Compare heterogeneous system to homogeneous system (same amount of resource in total) regarding robustness:

Heterogeneous Approach Robustness

heterogeneous homogeneous

-1

-3

loa d

-2

Compare heterogeneous system to homogeneous system (same amount of resource in total) regarding robustness:

0.50

-7

-6

-5

-4

 Weak migration: Smaller robustness.
Intermediate migration: Increase in robustness.
Strong migration: Reaching value of homogeneous system.

Heterogeneous Approach Biomass Distribution

▶ Biomass in R₁ patches smaller than in R₂ patches.

Heterogeneous Approach Biomass Distribution

- Biomass in R₁ patches smaller than in R₂ patches.
- R₂ patches contain significant more biomass than patches of the homogeneous system (same amount of total resource).

What happens at the edge between patches of different resource abundance?

8. September 2016 | Technische Universität Darmstadt | T. Thiel, M. Hamm | 28

What happens at the edge between patches of different resource abundance?

8. September 2016 | Technische Universität Darmstadt | T. Thiel, M. Hamm | 28

What happens at the edge between patches of different resource abundance?

- Evaluate robustness for each habitat separately:
- Robustness depicts resource abundance for small migration.

What happens at the edge between patches of different resource abundance?

- Evaluate robustness for each habitat separately:
- Robustness depicts resource abundance for small migration.
- Higher migration strength allows immigrant species to persist in foreign habitats.

What happens at the edge between patches of different resource abundance?

- Evaluate robustness for each habitat separately:
- Robustness depicts resource abundance for small migration.
- Higher migration strength allows immigrant species to persist in foreign habitats.
 - Source-sink effect

8. September 2016 | Technische Universität Darmstadt | T. Thiel, M. Hamm | 28

- Trophic level 1:
 - Robustness is not affected by resource abundance.

- Trophic level 1:
 - Robustness is not affected by resource abundance.
 - Biomass distribution depicts resource distribution for small migration strength.

TECHNISCHE UNIVERSITÄT DARMSTADT

- Trophic level 1:
 - Robustness is not affected by resource abundance.
 - Biomass distribution depicts resource distribution for small migration strength.
 - Biomass flow from high resource area to low resource area for larger migration strength.

- Trophic level 2:
 - Depicts result from total robustness.

- Trophic level 2:
 - Depicts result from total robustness.
 - Robustness peak at edge (low resource side).

Which trophic levels participate in source-sink effect?

- Trophic level 2:
 - Depicts result from total robustness.
 - Robustness peak at edge (low resource side).
- Trophic level 3
 - No trophic level 3 in low resource area without migration.

8. September 2016 | Technische Universität Darmstadt | T. Thiel, M. Hamm | 30

- Trophic level 2:
 - Depicts result from total robustness.
 - Robustness peak at edge (low resource side).
- Trophic level 3
 - No trophic level 3 in low resource area without migration.
 - Source-sink effect from high to low resource area.

Heterogeneous environments:

- Heterogeneous environments:
 - Areas of high resource abundance lead to building of large amounts of biomass.

- Heterogeneous environments:
 - Areas of high resource abundance lead to building of large amounts of biomass.
 - Source-sink effects arise for intermediate and larger migration strength.

- Heterogeneous environments:
 - Areas of high resource abundance lead to building of large amounts of biomass.
 - Source-sink effects arise for intermediate and larger migration strength.
 - Leading to an local and regional increase in robustness.

- Heterogeneous environments:
 - Areas of high resource abundance lead to building of large amounts of biomass.
 - Source-sink effects arise for intermediate and larger migration strength.
 - Leading to an local and regional increase in robustness.
- Stochastic migration:

- Heterogeneous environments:
 - Areas of high resource abundance lead to building of large amounts of biomass.
 - Source-sink effects arise for intermediate and larger migration strength.
 - Leading to an local and regional increase in robustness.
- Stochastic migration:
 - Increasing migrating biomass units:

- Heterogeneous environments:
 - Areas of high resource abundance lead to building of large amounts of biomass.
 - Source-sink effects arise for intermediate and larger migration strength.
 - Leading to an local and regional increase in robustness.
- Stochastic migration:
 - Increasing migrating biomass units:
 - 1. Rescue effect can occur for smaller migration strengths.

- Heterogeneous environments:
 - Areas of high resource abundance lead to building of large amounts of biomass.
 - Source-sink effects arise for intermediate and larger migration strength.
 - Leading to an local and regional increase in robustness.
- Stochastic migration:
 - Increasing migrating biomass units:
 - 1. Rescue effect can occur for smaller migration strengths.
 - 2. Dynamic coexistence happens less frequently.
Summary

- Heterogeneous environments:
 - Areas of high resource abundance lead to building of large amounts of biomass.
 - Source-sink effects arise for intermediate and larger migration strength.
 - Leading to an local and regional increase in robustness.
- Stochastic migration:
 - Increasing migrating biomass units:
 - 1. Rescue effect can occur for smaller migration strengths.
 - 2. Dynamic coexistence happens less frequently.

 \Rightarrow Sufficiently frequent migration events enable survival.

Summary

- Heterogeneous environments:
 - Areas of high resource abundance lead to building of large amounts of biomass.
 - Source-sink effects arise for intermediate and larger migration strength.
 - Leading to an local and regional increase in robustness.
- Stochastic migration:
 - Increasing migrating biomass units:
 - 1. Rescue effect can occur for smaller migration strengths.
 - 2. Dynamic coexistence happens less frequently.
 - \Rightarrow Sufficiently frequent migration events enable survival.
 - 3. For small migration strengths, diversity can be higher than for deterministic approach.

Species Diversity in Coupled Habitats: Going Beyond Homogeneous and Deterministic Models

TECHNISCHE UNIVERSITÄT DARMSTADT

Thank you for your attention!

8. September 2016 | Technische Universität Darmstadt | T. Thiel, M. Hamm | 32

Bibliography

- [1] Williams and Martinez Simple models yield complex foodwebs. Nature (2014)
- [2] Yodzis, Peter and Innes Body size and consumer-resource dynamics. American Naturalist(1992)
- [3] Plitzko, Sebastian J and Drossel, Barbara

The effect of dispersal between patches on the stability of large trophic foodwebs. Theoretical Ecology (2014)