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•  In the case of polygamous species both the formation of the sex 
structure and the entire pattern of population dynamics are strongly 
related to the parameters determining the type of “mating relations” and 
the role of males in reproduction 

•  We suggest a simple mathematical model that enables the simultaneous 
observation of the formation of both age and sex structures and the 
explicit consideration of the asymmetry of the effects of females and 
males on population processes 

•  Analysis of the problem allows for the description of qualitative 
changes in population dynamics, which depends on the difference 
between the characteristics of sexes that determine survival and 
reproduction 

•  The purpose of this research is to investigate evolutionary scenarios of 
the oscillatory dynamics origination in populations with a simple age 
and sex structures and density-dependent regulation of the offspring 
survival 
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  Model assumptions 
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Fig. 1. Diagram of modelling population structure  

•  By the end of each reproduction 
season the population consists: 
juveniles (immature individuals) 
and two adult groups (mature 
females and males);  

•  The time between two 
reproduction seasons is sufficient 
for juveniles to become adults; 

•  A change in the number is 
determined by reproduction and 
death rate processes; 

•  Increase in the population size is 
regulated by density-dependent 
limitation of the juvenile 
survival rate. 
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a is the reproductive potential of the population (the maximum possible mean 
number of offspring per fertilized female) 
h is a coefficient characterizing the type of mating relations in the population  
(h=1 corresponds to monogamy, h>1 to polygyny,  h<1 to polyandry) 

(1) 

n is a number of a reproduction season 
δ is immature females quantity,  
w1 and w2 are the survival rates of immature females and males,   
s and v are the survival rates of mature females and males, respectively 
The birth rate r is assumed to depend on the ratio between the numbers of males 
and females in the population 
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The discrete-time model of population dynamics  
with age and sex structures 
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(2) 

  The survival rates of immature females and males are assumed to be the 
population parameters most sensitive to the population density and to linearly depend 
on the population size:  
     
where β1 and β2 are coefficients describing the intensity of intrapopulation 
competition. We further interpret negative values of survival rates as zeros. 

 Let us assume that equal numbers of females and males are born (δ=0.5). 
Substitution of variables allows us to exclude the parameter β2 and to write model (1) 
in terms of new variables, namely “relative” numbers 

where    ρ= β1/ β2 
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The discrete-time model of population dynamics  
with age and sex structures 
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We have found the equilibrium points. The non-trivial solution stability is defined by 
eigenvalues, which are the solutions of the characteristic equation for the system (2). 
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Classification of scenarios for stability loss  
by the non-zero solution of the system (2) 

I. The equilibrium loses its stability 
under the Neimark–Sacker 
bifurcation, and the dynamics of the 
population size demonstrates quasi-
periodic fluctuations  

II. The non-trivial solution loses its stability 
under the Feigenbaum scenario. The 
equilibrium stability loss is accompanied by 
a cascade of period-doubling bifurcations  

Fig. 2. Stability domain of 
the non-trivial solution and 
bifurcation diagrams of 
dynamic variable f of the 
system (2) dependent on 
the parameter a 

III. Within the range of the 
parameter ρ, two possible 
scenarios of stability loss may 
occur, namely, the emergence of a 
cycle length 2 or the emergence 
and destruction of the invariant 
curve 
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Stability domain of the non-trivial stationary solution 
with a change of the model parameters 

Fig. 3. Stability domain of the non-trivial solution with a change 
of the model parameters 

Increase in the 
coefficients s and v 
(survival rates of 
female and males) 
leads to expansion 
of the non-trivial 
equilibrium stability 
domain. 
 
Increase in the 
parameter h leads to 
decrease of stability 
domain. 



8 

The system dynamics depending on  
the reproductive potential a and parameter h 

•  It is shown that an increase in the 
reproductive potential a leads to the 
loss of stability of the equilibrium 
solution of the system and appearance 
of oscillations.  

•  A increase in h, which characterizes 
average size of harem (in fact, 
decrease in the “role” of males or an 
increase in their sexual activity) also 
leads to the loss of stability of the 
equilibrium and transition to cyclic or 
chaotic modes.  

Fig. 4. The bifurcation diagrams of the dynamic variables p at 
change of the coefficients a and h at s=0.775, v=0.1, ρ=1.5 

h=2 

a=3.5 
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The system dynamics depending on  
the survival rates of females (s) and males (v) 

•  The exotic scenarios of population 
dynamics are observed at variation the 
parameters s and v. They are 
characterized by the appearance 
“bubbles of instability” limited 
stationary modes on the bifurcation 
diagrams 

•  The increase of survival rate leads to 
complex scenarios of modes change 
population dynamics, which consists in 
the repeated transitions from 
stationary or cyclic modes to chaos 
and back to fluctuation and stationary 

Fig. 5. The bifurcation diagrams of the dynamic variable p  
at change of the coefficients s and v 
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Dynamic regimes of the model (2) 

Fig. 7.  
Map of 
Lyapunov 
exponents 
for the 
system (2) 

Fig. 6. 
Dynamic 
mode map 
of the 
system (2) 

The figures correspond to the 
period of observed cycles 
Types of dynamics modes:  
P (λ3<λ2<λ1<0) – periodic,  
Q (λ3<λ2<λ1=0)  – quasi-
periodic,  
C (λ1>0>λ2>λ3) –chaotic, CH 
(λ1>λ2>0>λ3) – hyper-chaotic h=2, v=0.1, s=0.775 

Fig. 8. Combined map 
of dynamic mode 
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Types of dynamic regimes for the model (2) 

Type of dynamic modes is  
quasi-periodic (λ3<λ2<λ1=0)  

h=2, v=0.1, s=0.775, a=3.1, ρ=0.6 

h=2, v=0.1, s=0.775, a=3.54, ρ=0.6 

h=2, v=0.1, s=0.775, a=3.58, ρ=0.55 

Type of dynamic modes is  
chaotic (λ1>0>λ2>λ3) 

Type of dynamic modes is 
hyper-chaotic (λ1>λ2>0>λ3)  

Fig. 9. Attractors of system (2) 
and changes in population size 
in time n (trajectories) 
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Dynamic regimes of the model (2) 

There exist the areas 
where resonance cycles of 
different lengths overlap. 
They correspond to a 
simultaneous realization 
of several modes 
(dependent on the initial 
conditions), or, in other 
words, to multistability. 

Fig. 10. Combined map 
of dynamic mode  and its 
enlarged fragment at h=2, 
v=0.1, s=0.775 

The maps shows the so-
called Arnold tongues 
(resonance cycles). They are 
immersed in the area of 
quasi-periodic regimes. 
With increase a, at first, 
there occurs chaos in the 
area of the tongues overlap, 
and later - hyper-chaos. 
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The emergence of the cycle with length 3 

Fig. 11. 
Grapho-

numerical 
solution  of 

model equations 
(3) iterated 

three time at 
s=0.1 ρ=2.15 

The cycle with period 3 emerges in the stability domain of non-trivial stationary 
point as a result of tangent bifurcation. Consequently, the population shift to 
equilibrium or to oscillations with period 3 depends on the initial condition. 
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1At r=a/(1+1/h),  
x=p, y=f+m the system (2) transforms to (3) 

The system has a unique 
non-trivial solution, since the 
curves cross at two points  

It is the process  
of semistable critical 
point emergence 

and its desintegration 
on stable and 
unstable points  

5 cross 
points  

8 cross 
points  

2 cross 
points  
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Attraction basins of the model (3) 

Fig. 12. The attraction basins of the model (2 )  
at s=v=0.1 ρ=2.15, h=1, r=a/(1+1/h), x=p, y=f+m 

The unstable cycle of length three is located on the borders of attraction basins. 
The stable one is "inside" its attraction basin, far from the basin of stable 

equilibrium. 

The attraction basins 
of stable equilibrium 

The attraction basins 
of stable cycle of length 3 

The stable  
equilibrium 

The stable  
cycle of length 3 
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Fig. 13. The bifurcation diagram of dynamic variable x of the system (3)  
dependents on the parameter a at v=0.1 ρ=1.355  for different initial conditions 

  Bifurcation diagrams of the model (3)   

With the reproductive potential rise under some initial conditions, the cycle of 
length 3 emerges in the system.  
At further increase of the parameter r, they lose stability and there appear three 
limiting invariant curves (Q3).  
At other initial values, the fixed point of the system (3) becomes unstable and the 
population size dynamics demonstrates quasi-periodic fluctuations (Q1). 

Q3 
Q1 Q1 

x0=0.5, y0=0.15   x0=0.5, y0=0.05 
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Conclusions 

• We have demonstrated that an increase in birth and survival 
rates in the course of natural evolution in ecologically limited 
populations may result in instability and the appearance of 
chaotic attractors, the structures and dimensions of which 
change when model parameters are changed.  

• The possibility of the appearance of chaotic population dynamic 
with an increase in the sexual potency of males (e.g., upon 
transition to polygamous reproduction) and a decrease in the 
proportion of males necessary for successful reproduction is 
showed.  
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•  It is shown the offspring survival density-dependent regulation, 
which can lead to periodic and chaotic fluctuations in the 
number of population. 

• Moreover, there exist the multistability areas where different 
dynamic regimes realize, dependent on the initial conditions. In 
particular, it is revealed coexistence of the stable non-zero fixed 
point and 3- length cycle. These aspects of dynamic behavior 
can explain a change in the oscillation period, appearance and 
disappearance of fluctuations in the population number. 

Conclusions 


