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The mathematical model of the chemostat
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The multi-species chemostat model

n

5 = = pi(s)xi+ D(sin—5)
i=1
)'(,' = /,L,'(S)X,' — DX,' (i =1--. n)

extensively studied in the bio-mathematics literature, with
several extensions such as
> spatialization
e.g. H. Smith, P. Waltman. The Theory of the chemostat, 1995
» adaptive dynamics

e.g. O. Diekmann. A beginner’s guide to adpative dynamics, 2004



Resource-consumers models

» in (theoretical) ecology for understanding, prediction...

» in biotechnology for control, optimization...




Common questionning

1. What are the effects of a spatialization?

2. What are the effects of a time-varying inputs?

3. Is biodiversity always favorable?

4. What are the impacts of populations patterns (e.g.

attachement, floculation, biofilms...) ?

Many studies about coexistence, persistence... but relatively few
about performances of microbial ecosystems.



input-output approach

Bioconversion performance: S,,:/Si, to be minimized.
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Determination of equilibria

$ = —p(s)x + D(sin — s)

x = p(s)x — Dx

The Monod function:
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Null-clines

$ = —pu(s)x + D(sin — s)
x = p(s)x — Dx




Vector field

$ = —pu(s)x + D(sin — s)
x = p(s)x — Dx




Phase portrait
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For various increasing dilution rates
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For various increasing input concentrations




About conversion yield at equilibrium

» The mathematical model of the chemostat predicts that the
substrate concentration at equilibrium is independant of the
input concentration s;, (provided that u(si,) > D).

» Micro-biologists report that this property is not verified when
the tank is not homogeneous or in natural ecosystems such as
soil ecosystems.

Question: What is the influence of a spatial repartition on output
substrate concentration at steady state?



Considerations of
simple spatial representations



A motivation: study of soil ecosystems
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Different kind of soils
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Study of some simple spatial configurations
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Another motivation: dead zones in bioreactors
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Simulations of performances at steady state
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From the mathematical point of view
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Serial configuration with linear growth
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Parallel configuration with linear growth
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Roles of spatial structure and diffusion

Proposition 1. For any monotonic concave p(-), there exists a
threshold s;, such that

» for s;, > S, the serial configuration is more efficient,

» for s;, < Sjn, the parallel configuration is more efficient,

Proposition 2. For the parallel configurations,
» for sj, > 5, the map d +— s},.(d) is decreasing,
» for sj, < 5y, the map d — s},,(d) admits an unique minimum
for d* < 400
Furthermore, there exists another threshold s;, < 5j, s.t. d* =0
for sip < s

see Haidar R. Gérard. Effects of spatial structure and diffusion on the performances of

the chemostat, Math. Biosciences Eng. 2011



Message

In rich environments (i.e. for sj,
large), the serial pattern is more
efficient with moderate diffu-
sion.

In poor environments (i.e. for
sin small), the parallel pattern is
more efficient (with a moderate
diffusion).




About time-varying inputs



Time-varying inputs

Consider T-periodic Sjy(+) and/or D(-) such that

1 rt+T _ 1 rt+T -
?/t Sin(T)dT = Sip ?/t D(r)dT =D

Then, periodic solutions satisfy

tTf(T t+T _
0:71_/t+ XET;dT:_}_/t+ wu(s(r))dr — D

1 rt+T _
u(+) concave = 5 = 7/ s(r)dT > u~Y(D)
t



Interplay between diversity and patterns



Having two species in the chemostat

5 = —p(s)a — p2(s)xe + D(sin — )
Xl = Ml(s)xl — DX1
X2 = /,LQ(S)XQ — DX2
Equilibria:
wash-out | species 1 only | species 2 only ‘ species coexistence
Sin st sy would require
0 Sin — S{ 0 p1(s*) = po(s*) = D

0 0 Sin — S} non generic condition!



Having two species in the chemostat

5 = —p(s)a — p2(s)xe + D(sin — )

Xl = Ml(s)xl — DX1

X2 = /,LQ(S)XQ — DX2

Equilibria:
wash-out | species 1 only | species 2 only ‘ species coexistence
Sin st sy would require
0 Sin — S{ 0 p1(s*) = po(s*) = D
0 0 Sin — S} non generic condition!
X1 .
p= = p=(m(s) — p2(s))p(1l - p)

X1+ X2



Species competition

species 1

species 2




Species competition
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Species competition
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Species competition
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The Competitive Exclusion Principle

n

s = Z#J s)x; + D(sin — s)
j=1

xi = pi(s)x;—Dx; (i=1---n)

Proposition (Hsu Hubbell Waltman 77...) Under the conditions
0 < '(D) < py (D) < -~y (D)
p7 H(D) < sin

any solution with x;(0) > 0 satisfies

im_(s(t), x1(t), -~ xa(t) = (47 (D), 5 — 1 *(D), 0, -+ ,0)

t—+00



About niches and over-yielding

Consider two species: and the spatial structure:

D*
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Bioconversion and over-yielding

S,

(1-0Q

Sy S, Sy S,

S out S out

What is the most efficient configuration?



Same species in both compartments

Define
D) = u (D)

AD) = min(\(D), Sin)

» Steady-state output:

D

F(a,r) = a) (?D) +(1—a)X (11

—

—r

°)

Proposition. Assume p(-) is concave, then

F(a, ), Ya €]0,1] for S;, > T™"(D)
0) < AX(D) for S;, < T'(D)

. AD) =
min F = .
[071]2 moin F(Oé,
where

T'"(D) = \(D) 4+ DX (D)




Different species in each compartment

Steady-state output: | G(a, r) := aX; (O;D> + (1 —a)X, (1

l—«o

—r

%)

Proposition. Assume there exists D* such that \;(D*) = \a(D*).

Then for any D and («, r) such that

- 1-
%D <D< 17“0 < min(u1(Sin), 112(Sim))

—r
one has over-yielding:

G(o, r) < min(Fi(a, r), Fa(a, r))

see Dochain De Leenheer R. About trangressive over-yielding in the chemostat, Proc.

MathMod 2012




Growth inhibition and spatial patterns



Growth inhibition by the resource

Monod

Haldane

~S
iiS

MO = sy sk

e.g. J. F. Andrews, A mathematical model for the continuous culture of

microorganisms utilizing inhibitory substrates, Biotech. Bioengrg. 1968



The chemostat model with the Monod law

_ HmaxS B

“(5)_K+S

S*



The chemostat model with the Haldane law

_ @S B
Hs) = K+S+S%/K;




Possible behaviors

D >
[max ils)

1 equilibrium: wash-out

in) < D
1(sin) < <S€n[10?§m]u(5)

3 equilibria : bi-stability

D < u(sin)
2 equilibria : stability



Playing with interconnections
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Serial and parallel patterns
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V1<V¢Q>D, V2<V¢Q>D
V1 V2
The wash-out equilibrium is attractive
in both tanks.

— < ul(sin) = Q > p(sin) (and vice-versa)
Vi Vo

The wash-out equilibrium is attractive
in at least one tank.



The buffered pattern
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The buffered chemostat

Q=Q;+Q»
)
) w Two parameters: («, r) with
NN o
@ X2 —aDet Vi =rV
V2
o

» buffer tank: classical chemostat

= unique positive equ. if aD < p(sin)

» main tank: chemostat with double inputs:

D 1\ si, — s¥
*) — — D(1-2= n 2
u(sy) ; « ( r) Sin — St




A graphical characterization

> There always configurations that are globally stable!

see R. Haidar & Harmand. Global dynamics of the buffered chemostat for a general

class of growth functions. J. Math. Bio. 2014.



The set of (globally) stable configurations
Examples with the Haldane law and D = 1:

X Sin=1.8 Sin=1.4 Sin=1
B AT Rt 4] L O
B(Sin) ° s @ WS
limiting hyperbola when
/ §1>7\‘+
1 ]
u
Limiting cases: 3; = AT
7\.+ Sin

limiting hyperbola when

Sl<)\.+



Performances of the “buffered” chemostat

St

1.27)

smallest output concentration at steady state
as function of sj,



Performances of the buffered chemostat

Consider ‘ P(s) = p(s)(Sin — s) ‘

Let " = maxse(o,5 ¥(s) where 1u(3) = pu(sin).
Let s* € argmax¢* and define o = pu(s*).

Proposition.
The best stable configuration consists in having & = o* and

» making a by-pass of the volume V with a flow rate equal to
(1 —a*)Q, when * < S;, — Ay

» choosing any value of r € (0,7(a*)), when ¢¥* = S;;, — A4

» taking r smaller and arbitrarily close to F(a*), when
'L/J* > Sip — )\_|_.



Adding a “buffer”

What is the smallest volume to add to obtain global stability?



Comparison with a single tank

1
For a single tank, one should have AV > V ( — 1).
w(sin)

147 AV
V' single tank
o
o
V2
0
v
o buffered
Pos Toe oz e s w208y



Comparison with a single tank

Let ‘ ©(s) = (sin — s)(D — p(s)) ‘

Sin

Proposition.
The G.A.S. property is fulfilled for an additional volume such that

Vv
Va > %se(n;gfsin)w(S)



Main messages

> A buffered interconnection of two volumes can globally
stabilize the chemostat, preserving the total volume and input
rate (while this is not possible with serial or parallel
interconnections).

» The input concentration impacts the shape of C. There exits
a threshold above it a by-pass is more efficient.

» The minimum volume to add to a given single tank for
obtaining the global stability van be significantly reduced
using a “buffered” interconnection.



About bio-augmentation



Bio-augmentation
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What is the effect of adding a “blue” or a “green” one?
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Species red only

16 , substrate

0.0 T T T T T T T T T tlme

0 100 200 300 400 500 600 700 800 900 1000



Adding green species
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Phase portrait

with green strain
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Adding blue one
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Generalizing the Competitive Exclusion Principle

Hypothesis: E;(D) = {s > 0| ui(s) > D} is an interval
(A7 (D), A (D))

u

o o N

~




Generalizing the Competitive Exclusion Principle

Proposition. Let Q(D) = | J £(D) = [ (A7 (D), Af (D))
i i
> There is generically competitive exclusion.
» There is as many possible winners as connected components
of the set Q(D).

[1] Butler & Wolkowicz. A mathematical model of the chemostat with a general class

of functions describing the nutrient uptake. SIAM J. Appl. Math. 1985.

[2] R. & Harmand. Biological control of the chemostat with nonmonotonic response

and different removal rates. Math. Bio. Eng. 2008.



Main message: the biological control

Let £ = (A ,A") be the set for a red species.
Let A be the break-even conc. for an additional monotonic species.

» )\ € E: global stabilization of the red species
» )\ ¢ E: possibility of invasion

» In practice one can add periodically the “right” species the
robustify the performances

cf R. & Harmand. Biological control of the chemostat with nonmonotonic response

and differnt removal rates. Math. Bio. Eng. 2008.



About modelling flocculation
and bacteria attachment
(at a macroscopic level)



Main objective
Introduce in the simple chemostat model:

$ = —pu(s)x+ D(sj —s) (substrate concentration)
x = p(s)x — Dx (biomass concentration)

a consideration of planktonic bacteria and attached bacteria:

s good access to substrate

bad access to substrate



Attachment and detachment processes



A simple modelling

An extension with planktonic bacteria (of concentration v) and
attached bacteria (of concentration w) with x = v + w:

—pv(8)v — pw(s)w + D(sin — 5)
v = py(s)v—Dyv—a(-)v+b(-)w
w = pw(s)w — Dyw+a(-)v—>b(-)w
where a(-)v: specific attachment
b(-)w : specific detachment

Assumptions.

1. py(s) > pw(s), Vs >0
2. D, > D,



Examples

» adaptive nutrient uptake. a(-) = a(s), b(-) = b(s)
Tang Sitomer Jackson 97

» wall attachement. a(:) = a, b(-) =b
Pilyguin Waltman 99

> intestine model.
a() =2 (1= 75), b() = bt (s) (1= G(55)) with G() \,
Freter 83

» flocs. a(:) = av, b(-)=b
Haegeman R. 08



Slow-fast dynamics

= —pv(s)v — pw(s)w + D(sin — s)
py(s)v — Dyv—a(-)v+b(-)w
w = pw(s)w— Dyw+a(-)v—>b(-)w

< ®
I

Assumption a(-) = %a(-) and b(:) = %B() with ¢ small

= quasi-stationnary approximation:

a(s,v,w)v = B(s,v,w)w
v+w=x



The slow manifold

Proposition. Under the assumptions
1. « depends only on v, w and v > 0 = a(v,0) >0
2. 3 depends only on w and w > 0 = 3(w) >0
3. a(v,w) = ay(v) + aw(w) with o, (v) > o, (w) >0
4. w+— fB(w)w increasing with 5'(w) <0

there exists a regular decreasing function x — p(x) such that

a(v,w)v = g(w)w v = p(x)x
{v+W:X — {W:(lp(x))x



Examples

» flocs of two individuals:

o) =av. B()=b
2

=P = T A

» undifferentiated flocs:

a(-)=a(v+w), B()=b

_ 1
- 1+4a/bx

= p(x)



Reduced dynamics

Define ju(s, x) = p(x)itu(s)+(1 — p(x))w(s).

_,U(S7X)X + D(Sin - S) if D, =D, =D

S
= Model 1.{ 5 (5, x)x — Dx

= —u(s,x)x + d(x)(sin — 5) if D, # D,

5
= Model 2.{ % = (s, x)x — d(x)x

with d(x) = p(x)Dy+(1 — p(x)) Dy

Remark. The functions y(-) and d(-) are decreasing w.r.t. x



Remark about time-varying inputs

Consider model 1 with D(-) time-varying. Asymptotically, one has
x = fi(s)x — D(t)x

with fi(s) = 1 (s)p(sin — 5) + pw(s)(1 = p(sin — 5)).

~/

= "= pyp + (1= p) + 20, — p,)P + (11 — p2)p

2

Ex.: py,w linear and p convex = f convex.

» Overyielding with periodic D(-) is possible !



Competition with mono-specific flocs

n
5 = — Z pi(s, x;))xj + D(sin — s)
Jj=1
X,' = ,u,-(s,x,-)x,-—Dx,- i=1---n

Example. Species 1 makes flocs and not species 2
(see Haegeman R. 08)

Proposition (Lobry Mazenc R. 05, 07) Under the conditions

wi(+,-) increasing w.r.t. s, decreasing w.r.t. x;
,U,,'(S,'n,O) >D
wi(s,+00) =0, Vs >0

there exists an unique positive equilibrium, that is globally
exponentially stable.



Sketch of proof in 2D

Example of two species on the attractive manifold x; +x = s;, — s

without density dependency with density dependency



Sketch of proof in higher dimensions

Xi = fi(xi,s) = pi(s, x;)xi — Dx;
yi = hi(x;) =x

An input-output approach: {




Sketch of proof in higher dimensions

Xi = fi(xi,s)=
yi = hi(x;) =x

An input-output approach: {




Sketch of proof in higher dimensions

Xi = fi(xi,s)=
yi = hi(x;) =x

An input-output approach: {




Sketch of proof in higher dimensions

— F(x.8) = ui(s. x)x — Dx
An input-output approach: { X i(xi, 5) = i, xi)x Xi

yi = hi(x;) =xi

see also de Leenheer Angeli Sontag. Crowding effects promote coexistence in the
chemostat. JMMA 06



A multi-phase portrait analysis

Xi = xifi(x;, u)

Hypotheses.
L. Fi(+) st fi(xi,i(x)) = 0 with

u 7 ¥i(xi) = (u—¥i(x)).filxi, u) > 0

2. 3r(:) s.t. 8’ > a; >0 for any i
3. Ix* s.t. fi(xF, —r(x*)) =0 for any i

Proposition. Any bounded positive solution of
x;i = x;fi(x;, —r(x))
converge asymptotically to x*.

see Lobry Mazenc R. Persistence in ecological models of competition for a single

resource, C.R.A.S. 05



Chemostat model with multi-specific flocs

n
§ = = pi(s,x1,+ . xa)x+ D(sin — )
=1

Xi = pi(s,x1, -, x,)x;i — Dx; i=1---n

1
Typically a;(:) = - Za,-jxj and b;(-) = 18
J

Bi

= . R - =
p/(Xl Xn) 6i n Zj OCUXJ

Lobry Harmand 06: Under the conditions

pi(-) increasing in s, decreasing in each x;
X,'ZOZ>M,'(S,',,,~~-) > D
Xj = +00 = u;(-) =0

simulations show the existence of asymptotically stable positive
equilibrium, but the theory is not ready at the moment...



The case of density-dependent dilution rate

{ /,L(S*,X*)X* = D(S,‘n — S*) — { s* = g(X*) = Sin — X% \(
s f

(s, x7) = d(x")

Dw

F(<*) o (™) [uv(s) = D] +(1 = p(x7)) [pw(s") — Dw] =0

=0 for s* = )\, =0 for s* =\,
1% My
Dyfommmm e e T
------------------- by - By
O Y e
)\\ }“W }"W 7\\



Multiplicity of equilibria

Proposition

Ay < Ay Av > Ay
(f ) (f ™)

)\V < Sin /\V > Sip )\V < Sin )\V > Sip
3I(s*,x*) | no positive even nb. uneven nb.
G.AS. equ. of equ. alter. of equ. alter.

stab. and unstab. | stab. and unstab.

wash-out eq. wash-out eq.

repulsive attractive

Fekih-Salem Harmand Lobry R. Sari Extensions of the chemostat model with
flocculation JMMA 2013



Example
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The multiple species case

n
5 = - Zuj(s./x)xj + D(sin — 5)
j=1
).<,' = ,u,-(s,x)x,-—d,-(x)x,- i=1---n

Define | Ay = max A, ;i|and |\, = min A, ;
1 1

Assumptions. A, ; < A, ;,
di(x;) > Oxpui(s, xi),

Ay < min(Ay,, Sin)-

Proposition (Fekih-Salem Harmand Lobry R. Sari 12) Dynamics
admits an unique positive equilibrium E* if and only if

> (.87 ()8 () < Disia — 1)

When E* exists, it is locally exponentially stable.



Ongoing work
Consider a species with | 1, () non monotonic (Haldane)
tw(+) monotonic (Monod)

— Possible behaviors: i. no positive equilibrium
ii. one positive equilibrium (L.A.S)
iii. bi-stability

Add a species with monotonic growth, that does not
aggregate:

Fekih-Salem R. Sari T Emergence of coexistence and limit cycles in the chemostat
model with flocculation for a general class of functional responses

App. Math. Mod. 2016



Concluding remarks and perspectives

» Macroscopic models of flocs with same dilution rate lead to
density-dependent growth rate for the overall biomass.

» Macroscopic models of flocs with different dilution rate lead in
addition to density-dependent dilution rate for the overall
biomass.

» Richness of possible behaviors with possibly multiple positive
equilibria, bi-stability, limit cycle... How to infer the right
attachment and detachment terms?



Conclusion

There are still many works and open problems with systems of
(deterministic) ordinary differential equations for chemostat-like or
resource-consumers models...



Thank you !



