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Plankton: general information

Plankton is the most abundant taxa in the ocean. It is divided into two
groups such as phytoplankton (algae) and zooplankton (animals).

Phytoplankton

e Marine food chain is based on
phytoplankton.

e Phytoplankton contains chlorophyll and
hence produces oxygen.
Zooplankton

e Zooplankton feed on phytoplankton (and is
consumed by larger animals)

e Zooplankton can respond rapidly to algal
blooms
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...or, rather, a food web (simplified)
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Importance of the marine systems

e 70% of the earth’s surface is covered by the oceans

e 70% of atmospheric oxygen is produced by phytoplankton in the
oceans due to the photosynthetic activity of phytoplankton

Photosynthesis R\ T /71

Zooplankton

Marine
Phytoplankton

http://www.marinephytoplankton.com/shop/



Oxygen is a vital component of marine ecosystem
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Dynamical systems approach to ecological modelling

Consider an ecosystem that consists of n species, uy, ..., up.

A generic model is

dU1 .
E — f‘](u17...,Ur;)7
du
dtn = fy(u1,...,Up).
A steady state (equilibrium) is an array (4, ..., Up) = U such that
fi(w) = ... = fr(u) = 0.

Of particular relevance are stable steady states.



Part I: Plankton-Oxygen Model



Oxygen-phytoplankton model

Natural Mortality €—

dc Au uc

=, v

a c+1 c+o

Photosynthetic
% —_ BC —ulu—-ocu A'-'“:i:\l Growth Respiration
at C+ Cq
iC —> Natural Depletion

¢ — Oxygen, —

A — is the rate of oxygen production,

c> — is half saturation constant,

B — is growth rate of phytoplankton,

o — is natural mortality rate of phytoplankton.

Sekerci & Petrovskii (2015) Bull. Math. Biol. 77, 2325-2353.
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Oxygen-phytoplankton-zooplankton model: flowchart

Moﬂalityx
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Oxygen-phyto-zooplankton model: equations

dc c uc vev
Al Ju- —-2,
at c+1 c+o c+cs
au ( Be o) u Buv

_ _ —oU—
at C+ ¢y +h

av nc? uv

— = = — uv.

dt c2+c2) u+h
where

vev

s describes the oxygen consumption by zooplankton,

% describes the zooplankton feeding on phytoplankton.

Sekerci & Petrovskii (2015) Bull. Math. Biol. 77, 2325-2353.



Stability of system’s steady states
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A map in the parameter plane (A, c¢;) where different domains correspond to different system’s stability.

Domain 1 — extinction I: disappearance of the positive steady state,
Domain 2 — E®?) and Ej are stable,

Domain 3 — E§ is stable,

Domain 4 — Ej is unstable focus,

Domain 5 — extinction Il: no stable attractor.

Sekerci & Petrovskii (2015) Bull. Math. Biol. 77, 2325-2353.



Examples of temporal (local) dynamics

0 500 1000 1500 2000 2500 3000 0 50 100 150
Time Time

The system is unsustainable when A is too large, i.e. for A > Ac.
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How to turn local dynamics to global — include space

Spatial transport & mixing of plankton in the ocean is mostly due to
the ocean turbulence:

oc Au ouc cv

% - Drvic + - R
ot c+1 c+c c+ecs

ou Bc uv

— = DrViu —u)u————ou
ot T +(c+01 ) utrh 7%
ov nc? uv

— = DV +——— —— — v,

ot T Jr024—042 utrh #

where Dt is the turbulent diffusion coefficient



In the parameter range where the coexistence state is unstable,
a generic property of this system is pattern formation, in 1D:
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Sekerci & Petrovskii (2015) Bull. Math. Biol. 77, 2325-2353.
Malchow, Petrovskii& Venturino(2008)SpatiotemporaPatternsn Ecology& Epidemiology.CRCPress.
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Part Il: Effect of the Global Warming



Effect of the global warming: biological evidence

Net oxygen production (by phytoplankton) is the difference between
the amount of oxygen produced in photosynthesis and the amount of
oxygen consumed due to phytoplankton breathing

Oxygen production rate and consumption rate depend on water
temperature differently (e.g. Jones 1977, Robinson 2000, Hancke & Glud 2004)

As a result, the net oxygen production is a function of water
temperature. For some plankton species, it can drop to zero if water
temperature increases by about 6 C (Robinson 2000).

Whether it typically increase or decrease remains unclear



Effect of the global warming: iow to model?

A:AO for t< t, A:Aoer(t*H) for t>1t.

t; — is the moment when global warming started,
Ao — is the rate of net O, production before changes,
w — quantifies the rate of global warming.

A function
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Time, t
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Response to warming - local dynamics
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Global warming in the spatially explicit model

dgc D-V2c 1 Alhu ~ bduc  wev ’
ot c+1 c+c c+c

ou Bc uv

= — DV? — S

ot v u+<c+01 u)” urh 7Y
ov nc? uv

— = DiViv+ L —— v

ot MVt @iz urn M

With an increase in A, spatiotemporal patterns are evolving with time
to eventually result in extinction ¥
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Spatial system’s response to global warming

Spatially average O. concentration and plankton densities over time:

Average density of ¢,u,v
Average density of ¢,uv
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Time. Time.

w=10"5 Ay =2.048 w=10"% Ay =2.05.

Global warming eventually results in complete depletion of oxygen



Spatial distribution changes when the system is approaching the

catastrophe:
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Regularity of the spatial distribution as an early warning signal?



Synopsis

The prediction of global oxygen depletion appears to be robust to the
model choice:

i Safe range of the i
: spatial system ;

Oxygen depletion
in all models

Oxygen depletion in
three-species model

Safe range of the i
nonspatial system ;

Low oxygen production rate High oxygen production rate



Part Ill: Scenarios of the Global
Warming



What if the global warming stops?
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The outcome is sensitive to the final value of A...
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...80 that a small change in Ay can turn persistence to extinction,
but only after a long-living transient dynamics:
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The system exhibits intermittency with regards to parameter A;:
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The long-term outcome of the oxygen-plankton system:

- existence, irregular spatial pattern,
- existence, “regular” spatial pattern,

red bar - extinction.



Summary & Conclusions

Net oxygen production by phytoplankton depends on water
temperature, hence it can be expected that oxygen production
can disrupted by the global warming

Our models show that oxygen production can stop suddenly,
i.e. without the O, concentration necessarily dropping down prior
to the disaster.

Increased regularity of the spatial pattern is an early warning
signal of the approaching catastrophe

Sustainable oxygen production is only possible in an
intermediate range of the O, production rate

For a more complex scenario of global warming, extinction can
be preceded by long-term transient dynamics



Open questions & future work

¢ To make the model more realistic, e.g. to include more
ecosystem components (nutrients, bacteria, etc.) and/or to take
into account details of ocean hydrodynamics
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e Laboratory study an a relevant plankton-oxygen system?

e To examining palaeontological records?

e The important role of oxygen in the geological history has
been recognized (e.g. Berner et al.: Oxygen and Evolution,
Science (2007) 316:557-558)

e Five events of mass extinction during the last 550 My, at
least some of them are thought to by caused by the drop in
atmospheric oxygen concentration — but the specific
mechanism remains unclear



Acknowledgement

 Yadigar Sekerci Firat (Leicester/Malatya)
 Nikolai Brilliantov (Leicester)

e Ezio Venturino (Torino)



Thanks for listening



An increase in the water temperature of the world's oceans of around six
degrees Celsius - which some scientists predict could occur as soon as
2100 -~ could stop oxygen production by phytoplankton by disrupting the
process of photosynthesis.

Credit: NOAA MESA Project.

Falling oxygen levels caused by global warming could be a
greater threat to the survival of life on planet Earth than
flooding, according to researchers from the University of
Leicester.

Emerging threats: Plankton peril
Depletion of ocean phytoplankton could
suffocate life on planet Earth

Published 3 December 2015 Eshare | IED@

hirds of the planet’s total atmospheric oxygen is
 ocean phytoplankton — and therefore cessation
would resuit in the depletion of atmospheric oxygen on a global
seale, which could threaten the mortality of animals

and humans.

Scientists reveal how
Earth's osygen could
dramatically fall due to
change in ocean
temperature of just
several degrecs.

Falling oxy gend levels
caused by glol
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greater threat to the
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Source: nosa g

Urban decay: Humanity faces an uncertain future

In the study, published in the Bulletin of Mathematical Biology , the professor and his
team developed a new model of ocean-based oxygen production.

The researchers suggested global warming could interrupt the process of
photosynthesis - the natural process by which phytoplankton produce up to half of
the world's oxygen supply.

Global warming could suffocate the planet before it
floods, say scientists from Leicester

By PA Waraynski | Decarnber 02,2015






