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Kermack and McKendrick (1927)-(1933)

Epidemic model for a single population possibly with age of
infection was introduced by Kermack and McKendrick. In
this model, the population is decomposed into

I the class (S) of susceptible individuals
I the class (I) of infected individuals
I the class (R) of recovered (without reinfection)
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Kermack and McKendrick without entering flux

This SIR model takes the following form

dS(t)
dt

= −βS(t)I(t)
dI(t)
dt

= βS(t)I(t)− ηI(t)
dR(t)
dt

= ηI(t)

(1)
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Figure: Diagram flux.
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Figure: When η > 0 some susceptible can escape the epidemic.
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We have the conservation formula
d

dt

[
S(t) + I(t)− η

β
ln(S(t))

]
= 0. (2)

By exploiting this conservation formula Hethcote (1976) proved.
Theorem
Let S(0) > 0 and I(0) > 0. If R0 := βS0/η ≤ 1, then I(t) decreases to zero
as t→ +∞. If R0 := βS0/η > 1, then I(t) first increases up to a maximum
value

Imax = S0 + I0 −
η

β
ln(S0)− η

β
+ η

β
ln( η

β
)

and then decreases to zero as t→ +∞. The susceptible S(t) is a decreasing

function and the limiting value S(+∞) is the unique root in
(

0, η
β

)
of the

equation
S(+∞)− η

β
ln(S(+∞)) = S0 + I0 −

η

β
ln(S0)

or equivalently

ln
(
S(+∞)
S0

)
= R0

(
S(+∞)
S0

− 1
)
− R0

S0
I0.
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Two groups Kermack and McKendrick without entering
flux


dS(t)
dt

= −diag (S(t))BI(t)
dI(t)
dt

= diag (S(t))BI(t)− EI(t)
dR(t)
dt

= EI(t)

(3)

The recovery of individuals (or quarantine of infectious) is described
by the matrix

E =
(
η1 0
0 η2

)
while the transmission of pathogen is described by the matrix

B =
(
β11 β12
β21 β22

)
.
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Examples of two groups diseases

I Vector born diseases (i.e. diseases transmitted by a
parasite)

I Mosquito-Borne Diseases (Malaria, Chikungunya etc )
I Two groups populations with asymmetric transmission

probability or susceptibility
I Hospital-acquired infection where the probability of

transmission from the health care worker and the patients
are not symmetric

I Co-infection (ex. HIV and tuberculosis)
I Super-spreaders in infectious diseases (see Stein Inter. J. of

Infectious Diseases (2011))
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Diagram flux

Figure: The figure represents a transfer diagram of the individual fluxes
of the system. In this diagram each solid arrow represents a flux of
individuals, while the dashed arrows represent the influence of either
infectious of sub-population 1 or infectious of sub-population 2.
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Assumption
We assume that

(i) B is a non negative matrix irreducible;
(ii) η1 > 0 and η2 > 0.

Remark
One may observe that B irreducible is equivalent to assume that

β12 > 0 and β21 > 0.
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Conservation formula

We obtain

d

dt

[
BE−1(S + I)(t)− ln(S(t))

]
= 0, ∀t ≥ 0

and since I(+∞) = 0 we obtain

BE−1S(+∞)− ln(S(+∞)) = BE−1(S + I)(0)− ln(S(0)).
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Reformulation of the conservation formula

The conservation formula can be rewritten as the fixed point
problem S1(+∞) = S1(0) exp

(
β11
η1

[S1(+∞)− V1] + β12
η2

[S2(+∞)− V2]
)

S2(+∞) = S2(0) exp
(
β21
η1

[S1(+∞)− V1] + β22
η2

[S2(+∞)− V2]
)
.

where
V := (S + I)(0).
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The equation can be rewritten as

S(+∞) = T (S(+∞))

Assuming that S(0)� 0 then by using the fact that T is
monotone increasing and that

0� T (0) ≤ T (S(0)) ≤ S(0)

We deduce that the following limits exit

0� S− := lim
n→+∞

Tn(0) ≤ S+ := lim
n→+∞

Tn(S(0)) ≤ S(0).
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The map T is monotone increasing and convex.

Theorem
The map T has at most two equilibrium. More precisely we have
the following alternative either

(i) S− = S+ and T has only one equilibrium in [0, S(0)]
or

(ii) S− � S+ and the only equilibrium of T in [0, S(0)] are S−
and S+.
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Final size of the epidemic

The main result is this work is the following theorem.

Theorem
Let S(0) = S0 � 0 and I(0) = I0 > 0. Then the final size of an
epidemic of model is given by

lim
t→+∞

S(t) = S−, lim
t→+∞

I(t) = 0 and lim
t→+∞

R(t) =
(
N1
N2

)
− S−.

Remark
Due to the above theorem and due the approximation formula
S− = limn→+∞ Tn(0), we can compute numerically the finale size of
the epidemic.
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Numerical simulations
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Figure: Figure (a) (resp. (b)) represents the evolution of the fraction of susceptible s1 of
sub-population 1 (resp. s2 of sub-population 2) with respect to the fraction of infectious i1 of
sub-population 1 (resp. i2 of sub-population 2).
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Figure:
Figure (c) (resp. (d)) represents the evolution of the fraction of susceptible s2 (resp. removed
r2) of sub-population 2 with respect to the fraction of susceptible s1 (resp. removed r1) of
sub-population 1.
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Figure: Figure (a) (resp. (b)) represents the evolution of the fraction of susceptible s1 of
sub-population 1 (resp. s2 of sub-population 2) with respect to the fraction of infectious i1 of
sub-population 1 (resp. i2 of sub-population 2).
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Figure: Figure (c) (resp. (d)) represents the evolution of the fraction of susceptible s2 (resp.
removed r2) of sub-population 2 with respect to the fraction of susceptible s1 (resp. removed
r1) of sub-population 1.
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Basic reproduction number

We define R0 as the spectral radius of the matrix

diag (S0)BE−1 =


S10β11
η1

S10β12
η2

S20β21
η1

S20β22
η2

 .
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Behaviour of the infectious classes
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Figure: In this figure we plot the fraction of susceptible (blue line), the fraction of infectious
(red line) and the fraction of removed (green line) for system. The sub-population 1 is
represented on the left side and the sub-population 2 is represented on the right side. We fix
β̂11 = β̂22 = 0 ; β̂12 = 0.5 ; β̂21 = 0.1 ; η1 = 0.02 ; η2 = 0.1 ; s10 = 0.4 ; i10 = 0.3 ; r01 = 0.3
; s20 = 0.45 ; i20 = 0.001 ; r20 = 0.549. Here R0 = 2.1213 > 1. The map i2(t) is decreasing,
then increasing and finally decreases to 0. The kind of behavior does exit for a single
population model.
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The Role of Super Spreaders in the 2003 SARS
Epidemic in Singapore

SARS = Severe Acute Respiratory Syndrome

We will subdivide the population into two classes the super spreader
individuals and the non super spreader individuals. In the context of
epidemiology the super spreader individuals are known as 20/80 rule
(i.e. 20% of the individuals within any given population are thought
to contribute at least 80% to the transmission potential of a
pathogen).
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Network of transmission
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Figure: Case data from March 25, 2003 to April 27, 2003: Centers for Disease Control and
Prevention (CDC), Severe Acute Respiratory Syndrome in Singapore, 2003, Morbidity and
Mortality Weekly Report, Vol. 52, No. 18, May 9, 2003. Light gray bars: new I1 cases (outside
hospital); Dark gray bars: new I2 cases (inside hospital); Black bars: total new cases.
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Figure: New cases from March 25, 2003 to April 27, 2003. Gray dashed graph: new I1 cases
(outside hospital); Gray solid graph: new I2 cases (inside hospital); Black graph: total new
cases. The simulation aligns with the data in the CDC report.
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Figure: Cumulative cases from March 25, 2003 to April 27, 2003. Gray dashed graph:
cumulative I1 cases (outside hospital); Gray solid graph: cumulative I2 cases (inside hospital);
Black graph: total cumulative cases. The simulation aligns with the data in the CDC report.
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