Towards a general theory for modelling animal movement patterns in ecology

Mark Lewis (Alberta) Jonathan Potts (Sheffield)

Movement as a biased random walk: Wolf 77 from Ya Ha Tinda Ranch pack, Jan-Mar 2004

Movement pattern with background terrain and prey included

Phenomenological versus mechanistic models for patterns

- **Phenomenological models** describe patterns at the same level they are observed
- Mechanistic models posit rules for interactions at one level of organization, and then deduce the patterns that emerge at another level

Connecting movement models to data

Talk Outline

- Mechanistic modelling of home range behaviour: two approaches to parameterizing the same model
- Using *advection-diffusion equations* to understand territorial structures (eg. coyotes, meerkats, gang activity)
- Using statistical *resource selection* and *step selection functions* to understand movement and space use
- Connecting resource selection with advection-diffusion
- Using *coupled step selection functions* to understand territorial and home range structures (e.g. Amazonian birds)
- Challenges for the future

Connecting movement models to data

Mechanistic modelling of home range behaviour: two approaches to parameterizing the same model

- Home range model (Holgate, 1971): individuals move via random motion plus a constant bias towards a den site.
- Here u(x,t) denotes the intensity of space use by an individual

Biased random walk relative to a den site

 $+\pi$

Direction of movement relative to den site

Siniff and Jessen, 1969)

Equation for space use: advection-diffusion

 $u(\mathbf{x},t)$ is density function for the location of individual at time t.

Red fox space use

• $f_{\tau}(x, x', t) = \rho_{\tau}(x - x')V_{\tau}(\theta - \hat{\theta})$ and the coefficients for the advection-diffusion equation can be calculated.

$$c(x,t) = \lim_{\tau \to 0} \frac{1}{\tau} \int (x' - x) f_{\tau}(x, x', t) dx'$$
$$d_{ij}(x,t) = \lim_{\tau \to 0} \frac{1}{2\tau} \int (x'_{i} - x_{j}) (x'_{j} - x_{j}) f_{\tau}(x, x', \tau, t) dx'$$

Red fox space use

- $k(\mathbf{x}, \mathbf{x'\tau}, t) = f_{\tau}(\rho)K_{\tau}(\phi \hat{\phi})$ and the coefficients for the advection-diffusion equation can be calculated.
- After a period of time the space use settles down to a steady state solution $(\partial u/\partial t = 0)$.
- Alternatively we could have first calculated the steady state solution to the advection diffusion equation,

$$u(r) = \frac{c}{d} \exp\left(-\frac{c}{d}r\right)$$

• and then fit the solution to "independent" relocation data (macrodata).

(Moorcroft and Lewis 2006)

Talk Outline

- Mechanistic modelling of home range behaviour: two approaches to parameterizing the same model
- Using *advection-diffusion equations* to understand territorial structures (eg. coyotes, meerkats, gang activity)
- Using statistical *resource selection* and *step selection functions* to understand movement and space use
- Connecting resource selection with advection-diffusion
- Using *coupled step selection functions* to understand territorial and home range structures (e.g. Amazonian birds)
- Challenges for the future

Connecting movement models to data

Mechanistic Home Range Model

- Individuals have random and biased components of motion.
- Biased component is directed towards den site/ rendezvous site
- Rate of biased movement is proportional to density of *foreign* scent marks
- Scent marks are deposited at an underlying rate that is increased in the presence of *foreign* scent marks

Lewis and Murray, *Nature* (1993) Moorcroft (1997)

Mathematical description of model

plus boundary and initial conditions

Steady state solutions give complex territorial patterns

Positive feedback in scent-marking dynamics gives "bowl" shape scent-mark densities

Qualitative analysis in two dimensions

Lewis, White and Murray (1997)

Coyote locations from Hanford Arid Lands Ecosystem

Applying Maximum Likelihood to the territoriality model

- For each parameter set, the model generates a probability density function for the locations of an individual in a territory u(x, y)
- Using radio tracking data locations (x_i, y_i) , which are independent observations of where the territorial individual is found, the likelihood that the data locations would come from this model is

$$L = u(x_1, y_1)u(x_2, y_2)...u(x_n, y_n)$$

• We choose the model parameters so as to give the maximum possible value for *L*

Fit of the mechanistic home range model

Numerical Maximum Likelihood fit of model to radio-location data

Inferred foreign scent mark levels

Relationship to a Random Walk Model

• The nonlinear PDE model for densities can be related to an underlying random walk model for individuals

$$f_{\tau i}(x, x', t) = \rho_{\tau}(x - x')V_{\tau}\left(\theta - \hat{\theta}, \sum_{j \neq i} p_{j}(x, t)\right)$$
Preferential movement direction
$$V_{\tau} = \frac{\theta^{3}}{\theta} = \frac{\theta^{3}}{\theta$$

Hanford vs. Yellowstone

Moorcroft and Lewis (2006)

Scent avoidance model with added "terrain taxis" $f_{\tau i}(x, x', t) = \rho_{\tau}(x - x')V_{\tau}\left(\theta - \hat{\theta}, \sum_{j \neq i} p_{j}(x, t), \nabla z\right)$ $0 = \Delta u_{i} - \nabla \cdot \left(\beta x_{i} u_{i} \sum_{j \neq i} p_{j}\right) + \nabla \cdot (\alpha_{z} u_{i} \nabla z)$

Prey density, as indicated by habitat type

Moorcroft, Lewis and Crabtree Proc Roy Soc. Lond B (2006)

Moorcroft, Lewis and Crabtree Proc Roy Soc. Lond B (2006)

Observed and predicted shift in territories after loss of Norris Pack, 1993

4972000

Quantitative analysis

Emerging Meerkat Territories in the Kalahari

Gang Territories in Hollenbeck Los Angeles County

Observed Gang Network

- 29 active gangs in Hollenbeck.
- 69 Rivalries among gangs.
- A "set space" is a gang's centre of activity where gang members spend a large quantity of their time.
- Gang set spaces studied mathematically using a version of the "terrain-taxis coyote territory" model (Laura Smith, Andrea Bertozzi and coworkers at UCLA).
- Here "terrain" involves geographical landmarks that could inhibit movement (rivers, freeways, major roads).

Resulting set spaces and marking densities

• These were compared police records for locations of gang members and to locations of gang-related violence.

Smith et al (2012)

Talk Outline

- Mechanistic modelling of home range behaviour: two approaches to parameterizing the same model
- Using *advection-diffusion equations* to understand territorial structures (eg. coyotes, meerkats, gang activity)
- Using statistical *resource selection* and *step selection functions* to understand movement and space use
- Connecting resource selection with advection-diffusion
- Using *coupled step selection functions* to understand territorial and home range structures (e.g. Amazonian birds)
- Challenges for the future

Connecting movement models to data

Where are animals found? <u>Resource</u> Selection Functions

Where are animals found? <u>Resource</u> Selection Functions

Each location in space x has attributes

 E_1 = slope E_2 = vegetation density E_3 = estimated prey density etc

Habitat use has probability density function

$$u(x) = \frac{\exp\left(\beta_0 + \sum_i \beta_i E_i(x)\right)}{\int_{\Omega} \exp\left(\beta_0 + \sum_i \beta_i E_i(x')\right) dx'}$$

The model is fit to spatial observations of individuals in different habitats via a Generalized Linear Model (GLM)

Hebblewhite, M., & Merrill, E. (2008). Modelling wildlife-human relationships for social species with mixed-effects resource selection models. *Journal of Applied Ecology*, *45*(3), 834-844.)

Connecting movement models to data

How do animals make movement decisions? <u>Step</u> Selection Functions

How do animals make movement decisions? Step Selection Functions

Models a step from y to x, given that the animal arrived at y with bearing θ_0 , with probability density function

$$f(x|y,\theta_0) = \frac{\rho(|x-y|) V(x,y,\theta_0) W(x,y,E)}{\int_{\Omega} \rho(|x'-y|) V(x',y,\theta_0) W(x,y,E) dx'}$$
where
$$\rho(|x-y|) \text{ is the step length distribution}$$

$$V(x,y,\theta_0) \text{ is the turning angle distribution}$$

$$W(x,y,E) \text{ is the weighting function}$$

E differs in different habitat type: A, B, C, ...

Fortin D, Beyer HL, Boyce MS, Smith DW, Duchesne T, Mao JS (2005) Wolves influence elk movements: Behavior shapes a trophic cascade in Yellowstone National Park. *Ecology* 86:1320-1330.

$f(\mathbf{x}|\mathbf{y},\theta_0) \propto \rho(|\mathbf{x}-\mathbf{y}|)V(\mathbf{x},\mathbf{y},\theta_0)W(\mathbf{x},\mathbf{y},E)$ Example : Amazonian bird flocks

 $f(\mathbf{x}|\mathbf{y},\theta_0) \propto \rho(|\mathbf{x}-\mathbf{y}|)V(\mathbf{x},\mathbf{y},\theta_0)W(\mathbf{x},\mathbf{y},E)$

Hypotheses

1. Birds are more likely to move to higher canopies:

 $W_1(\mathbf{x}, \mathbf{y}, E) = (\text{canopy height at } \mathbf{x})^{\boldsymbol{\alpha}}$

Maximum likelihood technique

1. Find the α that maximises:

$$\prod_{n=1}^{N} f_1(\boldsymbol{x}_n | \boldsymbol{x}_{n-1}, \boldsymbol{\theta}_{n-1}, \boldsymbol{\alpha})$$

where $x_0, ..., x_N$ and $\theta_0, ..., \theta_N$ are, respectively, the sequence of positions and trajectories from the data, and

$$f_1(\mathbf{x}|\mathbf{y},\theta_0) \propto \rho(|\mathbf{x}-\mathbf{y}|)V(\mathbf{x},\mathbf{y},\theta_0)W_1(\mathbf{x},\mathbf{y},E)$$

Avgar, T., Potts, J.R., Lewis, M.A, Boyce, M.S. (2016) Integrated step selection analysis: Bridging the gap between resource selection and animal movement. *Methods in Ecology and Evolution*. doi: 10.1111/2041-210X.12528

 $f(\mathbf{x}|\mathbf{y},\theta_0) \propto \rho(|\mathbf{x}-\mathbf{y}|)V(\mathbf{x},\mathbf{y},\theta_0)W(\mathbf{x},\mathbf{y},E)$

Hypotheses

1. Birds are more likely to move to higher canopies:

 $W_1(\mathbf{x}, \mathbf{y}, E) = (\text{canopy height at } \mathbf{x})^{\alpha}$

2. In addition, birds are more likely to move to lower ground:

 $W_2(\mathbf{x}, \mathbf{y}, E) = (\text{canopy height at } \mathbf{x})^{\alpha} (\text{ground height at } \mathbf{x})^{-\beta}$

Resulting model

 $f(\mathbf{x}|\mathbf{y},\theta_0) \propto \rho(|\mathbf{x}-\mathbf{y}|)V(\mathbf{x},\mathbf{y},\theta_0)C(\mathbf{x})^{\alpha}T(\mathbf{x})^{-\beta}$

Step length distribution Canopy height at end of step Turning angle distribution Topographical height at end of $\alpha = 0.227, \beta = 1.697^{\text{step}}$

How does this movement pattern relate to a distribution pattern arising from habitat use?

Consider simple case:

- (i) turning angle is uniform,
- (ii) step selection depends only on destination x so w(x) and (iii) small step length τ

$$f_{\tau}(x | y) = \frac{\rho_{\tau}(|x - y|) w(x)}{\int_{\Omega} \rho_{\tau}(|x' - y|) w(x') dx'}$$

Talk Outline

- Mechanistic modelling of home range behaviour: two approaches to parameterizing the same model
- Using *advection-diffusion equations* to understand territorial structures (eg. coyotes, meerkats, gang activity)
- Using statistical *resource selection* and *step selection functions* to understand movement and space use

• Connecting resource selection with advection-diffusion

- Using *coupled step selection functions* to understand territorial and home range structures (e.g. Amazonian birds)
- Challenges for the future

From movement patterns to distribution patterns

u(x,t) is density function for the location of individual at time t.

eg, Okubo (1980)

From movement patterns to distribution patterns

The simplified step selection function

$$f_{\tau}(x \mid y) = \frac{\rho_{\tau}(|x-y|) w(x)}{\int_{\Omega} \rho_{\tau}(|x'-y|) w(x') dx'}$$

diffusion and advection coefficients

$$d = \lim_{\tau \to 0} \frac{M_2(\tau)}{2\tau} \text{ where } M_2(\tau) = \int_{\Omega} r^2 \rho_{\tau}(r) dr$$
$$c(x) = \lim_{\tau \to 0} \frac{M_2(\tau)}{\tau} \frac{\nabla w}{w} = 2d \frac{\nabla w}{w}$$

Moorcroft and Barnett (2008) Mechanistic home range models and resource selection analysis: a reconciliation and unification. *Ecology* 89(4), 1112–1119

Distribution pattern as an equilibrium solution The equilibrium solution to the advection diffusion equation is

Integration and application of zero-flux boundary conditions gives

$$u_{*}(x) = \frac{1}{W_{0}}w^{2}(x)$$
 where $W_{0} = \int_{\Omega}w^{2}(x) dx$

The equilibrium solution is proportional to the step selection function squared!

Moorcroft and Barnett (2008) Mechanistic home range models and resource selection analysis: a reconciliation and unification. *Ecology* 89(4), 1112–1119

Distribution pattern as an equilibrium solution

Moorcroft and Barnett (2008) Mechanistic home range models and resource selection analysis: a reconciliation and unification. *Ecology* 89(4), 1112–1119

Steady-state solution

$$u_*(x) = \lim_{t \to \infty} u(x, t) \approx \frac{1}{W_0} w(x)^2,$$

where $W_0 = \int w(x)^2 dx.$
Step weighting function
based on resources

For the Amazonian birds, ignoring correlations in movement:

$$u_*(\boldsymbol{x}) \propto C(\boldsymbol{x})^{0.45} T(\boldsymbol{x})^{-3.40}$$

Steady-state solution

$$u_*(x) = \lim_{t \to \infty} u(x, t) \approx \frac{1}{W_0} w(x)^2,$$

where $W_0 = \int w(x)^2 dx.$
Step weighting function
based on resources

For the Amazonian birds, ignoring correlations in movement:

 $u_*(x) \propto C(x)^{0.45} T(x)^{-3.40}$

Resource selection function

Amazonian bird flocks

How well does the approximation hold up?

Consider a more realistic situation:

- (i) turning angle is not uniform,
- (ii) step selection depends on start and destination points so w(x,y) and
- (iii) longer step length τ
- (iv) step length and turning angles vary as a function of space

Eg. Barren land caribou

Potts, J.R., Bastille-Rousseau, G., Murray, D., Schaefer, J., Lewis, M.A. (2014) Predicting local and nonlocal effects of resources on animal space use using a mechanistic step-selection function. *Methods in Ecology and Evolution*. 5(3): 253-262.

How well does the approximation hold up?

Consider a more realistic situation:

- (i) turning angle is not uniform,
- (ii) step selection depends on start and destination points so w(x,y) and (iii) longer step length τ
- (iv) step length and turning angles vary as a function of location

0.008 Coniferous dense 0.007 0.30 Probability density turning angle 0.006 0.25 0.002 Coniferous dense 0.20 0.004 step length 0.15 0.003 0.10 0.002 0.05 0.001 0.000 0.00 2000 2500 -2 1000 1500 -3 2 500 radians meters

Eg. Barren land caribou

Potts, J.R., Bastille-Rousseau, G., Murray, D., Schaefer, J., Lewis, M.A. (2014) Predicting local and nonlocal effects of resources on animal space use using a mechanistic step-selection function. *Methods in Ecology and Evolution*. 5(3): 253-262.

3

Approximation breaks down when step length and turning angle are functions of location

Potts, J.R., Bastille-Rousseau, G., Murray, D., Schaefer, J., Lewis, M.A. (2014) Predicting local and nonlocal effects of resources on animal space use using a mechanistic step-selection function. *Methods in Ecology and Evolution*. 5(3): 253-262.

Summary: Resource and Step Selection models

- **Resource Selection Models** correlate space use with available habitat type.
- Step Selection Models correlate movement decisions over fixed (specified) time steps with available habitat type, and also include step length and turning angles.
- Both types of models allow the inclusion of detailed habitat features based on geographical information systems.
- Step Selection Models can be approximated with PDEs and this allows for simple analytical approximations for resource selection.
- However, the approximations can break down, especially when step length and turning angle differ in different habitat types.

Talk Outline

- Mechanistic modelling of home range behaviour: two approaches to parameterizing the same model
- Using *advection-diffusion equations* to understand territorial structures (eg. coyotes, meerkats, gang activity)
- Using statistical *resource selection* and *step selection functions* to understand movement and space use
- Connecting resource selection with advection-diffusion
- Using *coupled step selection functions* to understand territorial and home range structures (e.g. Amazonian birds)
- Challenges for the future

Including behavioral interactions

- Individuals interact and may be territorial. The same holds true for groups of individuals such as packs.
- As we have seen earlier in the lecture, there is a history of mechanistic home range models, which use PDEs to model interactions.
- One can undertake the same kind of extension to include interactions with **Coupled** Step Selection Functions

Coupled step selection functions

One step selection function for each agent and include an interaction term $C_i(\mathbf{x}, \mathbf{y}, P_{i,t})$:

$$f_{i,t}(\boldsymbol{x}|\boldsymbol{y},\theta_0) \propto \rho_i(|\boldsymbol{x}-\boldsymbol{y}|) V_i(\boldsymbol{x},\boldsymbol{y},\theta_0) W_i(\boldsymbol{x},\boldsymbol{y},E) C_i(\boldsymbol{x},\boldsymbol{y},P_{i,t})$$

where $P_{i,t}$ represents both the population positions and any traces of their past positions left either in the environment or in the memory of agent *i*.

Detecting the territorial mechanism: the example of Amazonian birds

Territorial marking (vocalisations):

 $\begin{aligned} P_{i,t}(\boldsymbol{x}) &= T \text{ if any flock } j \neq i \text{ is at position } \boldsymbol{x} \text{ at time t} \\ \hat{P}_{i,t}(\boldsymbol{x}) &= \min\{P_{i,t-\tau}(\boldsymbol{x}) - \tau, 0\} \text{ otherwise.} \end{aligned}$

Hypothesis 1 (tendency not to go into another's territory):

Hypothesis 2 (tendency to retreat after visiting another's territory):

Detecting the territorial mechanism: the example of Amazonian birds

Territorial marking (vocalisations):

 $\begin{aligned} P_{i,t}(\boldsymbol{x}) &= T \text{ if any flock } j \neq i \text{ is at position } \boldsymbol{x} \text{ at time t} \\ \hat{P}_{i,t}(\boldsymbol{x}) &= \min\{P_{i,t-\tau}(\boldsymbol{x}) - \tau, 0\} \text{ otherwise.} \end{aligned}$

Hypothesis 1 (tendency not to go into another's territory):

Hypothesis 2 (tendency to retreat after visiting another's territory):

Amazonian birds: territorial space use patterns

Potts, J.R., Mokross, K., Lewis, M.A. (2014) A unifying framework for quantifying the nature of animal interactions. *Journal of the Royal Society Interface*. 11(96): 20140333.

Quantitative analysis

Unifying collective behaviour and resource selection

Types of interaction: (E) Environmental, (BD) between-animal direct interactions, (BM) between-animal mediated; (AA) alignment-attraction models, (CA) conspecific avoidance models

Model	Reference	Interaction type
Resource selection	Boyce et al. (2002) Ecol Model	E
Step selection	Fortin et al. (2005) Ecology	E
Individual-based collective behavior	Couzin et al. (2002) J Theor Biol	BD, AA
Differential equation collective behavior	Eftimie et al. (2007) PNAS	BD, AA
Army ant foraging	Deneubourg et al. (1988) J Insect Behav	BM, AA
Individual-based territory formation	Potts et al. (2013) Am Nat	BM, CA
Differential equation territory formation	Moorcroft & Lewis (2006), PUP	BM, CA

Acknowledgements

- Marie Auger-Méthé (Alberta)
- Mark Boyce (Alberta)
- Bob Crabtree (YERC)
- Luca Giuggioli (Bristol)
- Steve Harris (Bristol)
- The Lewis Lab (Alberta)
- Evelyn Merrill (Alberta)
- Karl Mokross (Louisiana State)
- Paul Moorcroft (Harvard)
- Jim Murray (Princeton)
- Phil Stouffer (Louisiana State)
- Jane White (Bath)

Mechanistic home range model for coyote territories

.Moorcroft, P.R., Lewis, M.A., Crabtree R. (1999). Home range analysis using a mechanistic home range model. *Ecology* 80:1656-1665.

Mechanistic home range models capture spatial patterns and dynamics of coyote territories in Yellowstone. *Proceedings of the Royal Society of London B*, 273:1651-1659.

Shift in territories after loss of Norris Pack, 1993

Prediction

Mechanistic home range models capture spatial patterns and dynamics of coyote territories in Yellowstone. *Proceedings of the Royal Society of London B*, 273:1651-1659.

Observation