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• The predator-prey systems are modelled using ordinary

differential equations, one for each trophic level

• Two model formulations (RM) and (MB) are studied in

detail and the consequences for the application of the

analysis methods when the time scales of the trophic

levels differ a lot



• In the classical Rosenzweig-MacArthur (RM) model in

absence of the predator the prey grows logistically and

nutrients are not modelled

– Fast-slow dynamics,

– Singular perturbation technique,

– Canards

• In mass balance (MB) chemostat model this nutrient

is explicitly modelled

– Bifurcation analysis



Canard: Van der Pol equation (Eckhaus 1983)
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Rosenzweig-MacArthur predator–prey model

RM1-model, variable efficiency

dx1
dt

= f(x1, x2, ε) = x1(1− x1 − a1x2
1 + b1x1

)

dx2
dt

= εg(x1, x2, ε) = εx2(
a1x1

1 + b1x1
− 1)

parameter Interpretation
t Time variable
x1 Prey density
x2 Predator biomass density
a1 Searching rate
b1 Searching rate × handling time
ε Efficiency and predator death rate



The hyperbolic relationship

Fx1,x2 =
a1x1

1 + b1x1

is called

• Ecology: Holling type II functional response

• Biochemistry: Michaelis-Menten kinetics

Derivation using time-scale separation: seaching and feed-
ing is much faster than population physiological processes,
such as growth

Here the parameters are:
a1 = b; searching rate
b1 = b/k; searching rate × handling time

We will often fix a1 = 5/3 b1



The biological interpretation of ε is the yield in Microbiol-

ogy, or assimilation efficiency in Ecology and here besides

a time-scale parameter also predator death rate factor

When the units of both state variables (biomasses of the

populations) are equal we have ε < 1. This means the

there is a smaller than 100% biomass conversion: as is

always the case in nature
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RM1 predator–prey model, variable efficiency

dx1
dt

= x1
(
1− x1 − a1x2

1 + b1x1

)

dx2
dt

= εx2
( a1x1
1 + b1x1

− 1
)

parameter Interpretation
t Time variable
x1 Prey biomass density
x2 Predator biomass density
a1 Searching rate
b1 Searching rate × handling time
ε Efficiency and predator death rate



Bifurcation analysis of RM1 predator–prey model

dx1
dt

= x1(1− x1 − a1x2
1 + b1x1

)

dx2
dt

= εx2(
a1x1

1 + b1x1
− 1)

Bifurcation Description

TC Transcritical bifurcation:
invasion through boundary equilibrium

T Tangent bifurcation:
collapse of the system

H Hopf bifurcation:
origin of (un)stable limit cycle

Literature (ε = 1):

Yu. A Kuznetsov, Elements of Applied Bifurcation Theory, Applied

Mathematical Sciences 112, Springer-Verlag, 2004



RM1-model

One-parameter diagram xi vs b1: a1 = 5/3 b1, ε = 1
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Equilibrium points

Equi. Eigenvalues

E0 (x∗1, x∗2) = (0,0)

λ1 = 1, λ2 = −ε

E1 (x∗1, x∗2) = (1,0)

λ1 = −1, λ2 = −ε(a1 − b1 − 1)/(1 + b1)

Transcritical TC when λ2 = 0 and using a1 = 5/3 b1

a1 = b1 + 1 ⇒ b1 = 1.5

independent of ε



Equilibrium points

Equi. Eigenvalues

E2 (x∗1, x∗2) = ( 1
a1−b1

, a1−b1−1
(a1−b1)2

)

λ1 =
a1b1−a1−b1−b21+

√
Δ

2(a21−a1b1)
, λ2 =

a1b1−a1−b1−b21−
√
Δ

2(a21−a1b1)

where

Δ =a21b
2
1 − 2a21b1 − 2a1b

3
1 + (a1 + b1)

2 + 2b31 + b41−
4ε(3a21b

2
1 − a41 + a31 + 3b1a

3
1 − 2a21b1 + a1b

3
1 + a1b

2
1)

Hopf H when Re λ1,2 = 0 and using a1 = 5/3 b1

a1 =
b1(b1 + 1)

b1 − 1
⇒ b1 = 4

independent of ε



Note that ε does not occur in the expression for the real

part of the eigenvalues. So in the parameter space the

qualitative change of the stability is independent of ε.

ε does occur in the expression for the imaginary part Δ.

Therefore in the parameter space the change from node

to focus where Δ = 0 does depend on ε.



Focus bifurcation curve ε vs b1

equilibrium limit cycle

Δ > 0 nodeΔ > 0 node

Δ < 0 spiral, focus

b1

ε
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0

transcritical TC, Hopf H bifurcations

Δ < 0 focus (complex eigenvalues)

Δ > 0 node (real eigenvalues)



RM1 predator–prey system

Transient dynamics for

b1 = 3,8 where a1 = 5/3b1 and ε = 1,0.01

dx1
dt

= f(x1, x2, ε) = x1
(
1− x1 − a1x2

1 + b1x1

)

dx2
dt

= εg(x1, x2, ε) = εx2
( a1x1
1 + b1x1

− 1
)

Nullclines: f(x1, x2, ε) = 0 and g(x1, x2, ε) = 0



A: b1 = 3, ε = 1, B: b1 = 8, ε = 1
C: b1 = 3, ε = 0.01 D: b1 = 8, ε = 0.01
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RM1 predator–prey system

Transient dynamics for

b1 = 4

dx1
dt

= x1
(
1− x1 − a1x2

1 + b1x1

)

dx2
dt

= εx2
( a1x1
1 + b1x1

− 1
)

For these parameter values the equilibrium is at the Hopf

bifurcation point H



b1 = 4, A:ε = 1, B: ε = 0.1, C: ε = 0.01
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Transient dynamics reveals two critical points in the fase-

space where: x2 is parameter

• Point where nullcline of f intersects the vertical axis at

x1 = 0

Transcritical bifurcation

• Top of nullcline f at (x1, x2): df/dx1 = 0

Tangent bifurcation at op of nullcline

Singular perturbation problem when ε → 0:

Fast-slow system



fast system

ε → 0
dx1
dt

= f(x1, x2, ε)
dx1
dt

= f(x1, x2,0)

dx2
dt

= εg(x1, x2, ε)
dx2
dt

= 0

slow system τ = εt

ε → 0

ε
dx1
dτ

= f(x1, x2, ε) 0 = f(x1, x2,0)

dx2
dτ

= g(x1, x2, ε)
dx2
dτ

= g(x1, x2,0)

reduced system

evolution of the slow variable on f(x1, x2,0) = 0



A: b1 = 3, B and C: b1 = 8, ε = 0
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Geometric singular perturbation techniques

(N. Fenichel 1997, G. Hek 2010)



Geometric singular perturbation techniques

critical manifolds:

M0
0 =

{
(x1, x2)|x1 = 0, x2 ≥ 0

}
M1

0 =
{
(x1, x2)|x2 =

1

a1
(1− x1)(1 + b1x1), x1, x2 ≥ 0

}

Both critical manifolds are normally hyperbolic except in a

small part around the fold point indicated (x1, x2) at the

top of the parabola



Geometric singular perturbation techniques

Fenichel (1979) theorem for small nonzero ε:

M0 persists as a Mε manifold with a slow flow on it

On the stable (unstable) side of M0, Mε is an attracting

(repelling) slow invariant manifold

Later we will see that this is not always true (canards)



Delayed bifurcation

In order to calculate the value where in the limit ε = 0

the trajectory leaves the vertical axis fast, we can use an

equation derived in Rinaldi and Muratori (1992):

Literature

S. Rinaldi and S. Muratori. Slow fast limit-cycles in predator prey
models. Ecological Modelling, 61(3-4):287–308, 1992.

F. Campillo and C. Lobry. Effect of population size in a predator-prey

model. Ecological Modelling 246:1–10, 2012.



Slow fast limit-cycles (Rinaldi and Muratori 1992)



Approximations techniques slow manifolds, x2 = qε(x1)

Using its invariance the perturbed manifold M1
ε can be

described as a graph

{(x1, x2)|x2 = qε(x1), x1 ≥ 0, x2 ≥ 0}
This manifold is invariant when

dx2
dt

=
dx2
dx1

dx1
dt

=
dqε

dx1

dx1
dt

where x2 = qε(x1)



This gives the following invariance condition after some

algebraic manipulation

dqε

dx1
x1
(
(1− x1)(1 + b1x1)− a1qε(x1)

)
= εqε(x1)

(
x1(a1 − b1)− 1

)

The following power expansion is introduced:

x2 = qε(x1) = q0(x1) + εq1(x1) + ε2q2(x1) + . . . ,



Gathering orders of ε results in an iterative procedure yield-

ing the following coefficients qi

For O(1):

q0 =
(1− x1)(1 + b1x1)

a1

Expression for q0 describes the critical manifold M1
0 (a

parabola)

For O(ε):

q1 =q0
(x1(a1 − b1)− 1)

x1(2x1b1 + 1− b1)



Note that at the top of the parabola we have

(x1, x2) =

(
b1 − 1

2b1
,
(b1 + 1)2

4a1b1

)

with x1 = x1 the denominator is zero since

dqε
dx1

|x1 = 2x1b1 + 1− b1 = 0

There is singularity

We will try to remove this singularity later on



For ε = 0 the limit x2 = q0(x1) prescribes the singular slow
flow on M1

0

dx1
dt

= x1(1− x1 − a1x2
1 + b1x1

)

For ε � 1 sufficiently small nonzero, the flow on the
perturbed manifold M1

ε can be approximated by inserting
x2 = qε(x1) with qε(x1) power expansion approximation

In order to simulate the model we solve the uncoupled
system

dx̃1
dt

= x̃1
(
1− x̃1 − a1qε(x̃1)

1 + b1x̃1

)
master

dx̃2
dt

= εqε(x̃1)
( a1x̃1
1 + b1x̃1

− 1
)

slave

where the initial values are chosen as:
x̃1 = x1(0) and x̃2 = qε(x1(0))



a1 = 5/3 b1, where b1 = 3

power approximation ε = 0.1
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a1 = 5/3 b1, where b1 = 3

x2 = qε(x1), ε = 0.1, ε = 0.01
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a1 = 5/3 b1, where b1 = 8

x2 = qε(x1), ε = 0.1, ε = 0.01
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a1 = 5/3 b1, where b1 = 4

x2 = qε(x1), ε = 0.1, ε = 0.01
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Power expansion and canards

Discussion of the canards very close to the unstable equi-

librium point where b1 is beyond the Hopf bifurcation at

b1 = 4

• First simulation of transient dynamics

• Thereafter bifurcation diagram xi vs b1 > 4 of RM1

model where ε � 1

• Finally power expansion in ε of q and of bifurcation pa-

rameter b1 is introduced now near the Hopf bifurcation

point



RM1-model: a1 = 5/3b1, ε = 0.01,
A: b1 = 4.0402, B: b1 = 4.0404, C: 4.0405, D: 4.042
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One-parameter diagram xi vs b1, ε = 0.01
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RM1-model Canard: a1 = 5/3b1, ε = 0.01,

b1 = 4.04019 and b1 = 4.04061
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Literature on Canards not complete

M. Diener. The canard unchained or how fast/slow dynamical prob-
lems bifurcate, The Mathematical Intelligencer, 6, 38-49, 1984.

F. Dumortier, R. Roussarie. Canard cycles and center manifolds, Mem-
oires of the AMS, 557, 1996.

W. Eckhaus. Relaxation oscillations including a standard chase on
French ducks; in Asymptotic Analysis II, Springer Lecture Notes Math.
985, 449-494, 1983.

N. Fenichel. Geometric singular perturbation theory, JDE 31, 53-98,
1979.

J-M. Ginoux, J. Llibre, Flow curvature method applied to canard ex-
plosion, arXiv:1408.4894v1 [mathDS 21 Aug 2014], 2014.

M. Brons. An iterative method for the canard explosion in general
planar systems. Discrete and continuous dynamical systems, 250:77–
83, 2013.

M. Canalis-Durand. Formal expansion of van der pol equation canard

solutions are Gevrey. In E. Benoˆ, editor, Dynamic Bifurcation, pages

28–39. Springer, 1990.



Literature on Canards in Ecology

S. Rinaldi and A. Gragnani. Destabilizing factors in slow–fast systems.
Ecol Model, 180:445–460, 2004.

F. Campillo, C. Lobry. Effect of population size in a predator-prey
model, Ecological Modelling, 246:1-10, 2012.



Where is the maximal canard location?

Power expansion now near the Hopf bifurcation point in ε

of r(x1, ε)

x2 = r(x1, ε) = r0(x1, ε) + εr1(x1, ε) + ε2r2(x1, ε) + . . .

and of bifurcation parameter b1

b1(ε) = b10 + εb11 + ε2b12 + . . .

where rj and bj, j = 1 · · · are independent of ε and are fixed

by an invariance condition at the Hopf bifurcation point by

equality order by order of powers of ε



Equating O(1) terms yields:

r0 =
(1− x1)(1 + b10x1)

5/3 b10

Equating O(ε) terms yields:

r1 =
(1− x1)(−3b10 + 3b11x1(b10 − 1)− 6b11x

2
1b10 − x1b

2
10 + 2x21b

3
10)

b210(1 + 2x1b10 − b10)x1
b10 =4

However 1 + 2x1b10 − b10 = 0 evaluated at b10 = 4 and
equilibrium x1 = x∗1 = x1 at Hopf bifurcation point

Determine b11 so that
besides denominator also numerator is zero

This gives b11 = 100/27



In a similar way we can get higher order approximations

For ε = 0.01 we calculated for the second order term

b1(ε) = b10 + εb11 + ε2b12 + . . .

b1(ε) = 4+ ε100/27 + ε258700/2187 = 4.04018

Higher order terms can be calculated with

symbolic algebra packages using the iterative scheme



One-parameter diagram δ = 0

for ε with various b1 = 4.01,4.02,4.03,4.04,4.05
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Rosenzweig-MacArthur predator–prey model
RM1-model, allochthonous prey input

dx1
dt

= δ + f(x1, x2, ε) = δ + x1(1− x1 − a1x2
1 + b1x1

) ,

dx2
dt

= εg(x1, x2, ε) = εx2(
a1x1

1 + b1x1
− 1) ,

where δ is a small allochthonous input rate of the prey
population

Addition of this extra term removes the transcritical bifur-
cation at x2 = 1/a1

It is structurally unstable with respect to such a perturba-
tion

Focus only on Hopf bifurcation



One-parameter diagram δ = 0.0001

for ε with various b1 = 4.01,4.02,4.03,4.04
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One-parameter diagram δ = 0.0001

for ε with various b1 = 4.041, · · · ,4.1, 4.5,5,8
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Coefficients b1iε
i vs i, ε = 0.01

power series is divergent!
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The power series is divergent

Fortunately it has been shown that the summation up to

the smallest term gives an optimal approximation. Indeed

the result for ε = 0.01 with allochthonous prey input where

δ = 0.001 are very accurate



Parameter bc1 − bH1 vs ε

bc1maximal canard location bH1 Hopf bifurcation point
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RM2 predator–prey model, constant efficiency

dx1
dt

= x1
(
1− x1 − ε

a1x2
1 + b1x1

)

dx2
dt

= εx2
( a1x1
1 + b1x1

− 1
)

This model has been studied in:

Hek. Geometric singular perturbation theory in biological practice.

Journal of Mathematical Biology, 60:347–386, 2010.

However, without motivation for the extra ε factor

This term was suggested before in:

Kooi, Poggiale, Auger and Kooijman. Aggregation methods in food

chains with nutrient recycling. Ecological Modelling 157:69-86. 2002.



Here we mention only the following results:

Transcritical bifurcation at b1 = 3
2

Hopf bifurcation at b1 = 4

both bifurcation occur the same locations as in RM1 model

Simulation results are shown which indicate unrealistic un-

bounded solutions when ε → 0



A: b1 = 3, ε = 1 B: b1 = 8, ε = 1
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MB nutrient–prey-predator model

dx0
dt

= (xr − x0)εd− a0x0x1

dx1
dt

= a0x0x1 − εdx1 − ε
a1x1x2
1 + b1x1

dx2
dt

= ε
a1x1x2
1 + b1x1

− εdx2

parameter Interpretation
t Fast time variable
x0 Nutrient density
xi Population biomass density
xr Nutrient concentration in reservoir
d Dilution rate
a0 Searching rate
a1 Searching rate
b1 Searching rate × handling time



It is possible to decouple the system by introduction of the

function

H(t) = x0(t) + x1(t) + x2(t)− xr t ≥ 0

It is easy to show that the equation for H models expo-

nential decay and the final set of equations becomes with

d = 1 and a0 = 1

dH

dt
= −εdH

dx1
dt

=
(
H + xr − x1 − x2

)
x1 − ε

(
x1 +

a1x1x2
1 + b1x1

)
dx2
dt

= εx2
( a1x1
1 + b1x1

− 1
)



In order to be able to compare the three models RM1, RM2

and MB we make the following assumptions: H(0) = 0 and

this gives:

dx1
dt

= x1

(
xr − x1 − x2 − ε− ε

a1x2
1 + b1x1

)

dx2
dt

= εx2
( a1x1
1 + b1x1

− 1
)

and xr = 1+ ε

dx1
dt

= x1

(
1− x1 − x2 − ε

a1x2
1 + b1x1

)

dx2
dt

= εx2
( a1x1
1 + b1x1

− 1
)



RM1-model

One-parameter diagram xi vs b1: a1 = 5/3 b1, ε = 1
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MB1-model

One-parameter diagram xi vs b1: a1 = 5/3 b1, ε = 1
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b1 = 3 and A:ε = 1, B: ε = 0.1, C: ε = 0.01
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b1 = 8 and A:ε = 1, B: ε = 0.1, C: ε = 0.01
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b1 = 8 and A: MB model ε = 0.0117188

B: RM1 model ε = 1
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MB1-model

One-parameter diagram xi vs b1: a1 = 5/3 b1, ε = 0.01
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Two-parameter bifurcation diagram ε vs b1
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Outline

• Introduction

• Rosenzweig-MacArthur predator–prey model

• RM1 model, variable efficiency

• RM2-model, constant efficiency

• MB nutrient–prey–predator model

• Conclusions



Conclusions (1)

• (RM1 ⇒ RM2) Making the RM1 model more realistic

leads in fr RM2 model to unrealistic unbounded solu-

tions when ε → 0

• (RM2 ⇒ MB) Introduction of dynamics of nutrients in

the model leads to realistic solution and less complex

dynamics when ε → 0



Conclusions (2)

• Integrated approach is important: Modelling, bifurca-

tion analysis and perturbation theory

• Proper modelling gives perturbation parameter ε a bi-

ological interpretation not just a mathematical pertur-

bation parameter



Conclusions (3)

• In RM1 model a canard occurs just above the Hopf

bifurcation where the nullclines of the growth function

f and g of the prey and predator populations intersect

at the equilibrium point

• Power expansion also for a bifurcation parameter gives

an approximation of the location where explosion oc-

curs despide the fact that the series is divergent
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Future work (together with Jean-Christophe Poggiale)

• Link between canards and blow-up techniques

• Link between maximal canard location and first Lya-

punov coefficient
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• Link between deterministic and stochastic modelling
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