Modeling, singular perturbation and bifurcation analyses of bitrophic food chains dynamics including canard explosion

Bob W. Kooi

Dept. Theoretical Biology, VU University, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands

bob.kooi@vu.nl
http://www.bio.vu.nl/thb/

Outline

- Introduction
- Rosenzweig-MacArthur predator-prey model
- RM₁ model, variable efficiency
- RM₂-model, constant efficiency
- MB nutrient-prey-predator model
- Conclusions

- The predator-prey systems are modelled using ordinary differential equations, one for each trophic level
- Two model formulations (RM) and (MB) are studied in detail and the consequences for the application of the analysis methods when the time scales of the trophic levels differ a lot

- In the classical Rosenzweig-MacArthur (RM) model in absence of the predator the prey grows logistically and nutrients are not modelled
 - Fast-slow dynamics,
 - Singular perturbation technique,
 - Canards
- In mass balance (MB) chemostat model this nutrient is explicitly modelled
 - Bifurcation analysis

Canard: Van der Pol equation (Eckhaus 1983)

Outline

- Introduction
- Rosenzweig-MacArthur predator-prey model
- RM₁ model, variable efficiency
- RM₂-model, constant efficiency
- MB nutrient-prey-predator model
- Conclusions

Rosenzweig-MacArthur predator-prey model RM_1 -model, variable efficiency

$$\frac{dx_1}{dt} = f(x_1, x_2, \varepsilon) = x_1(1 - x_1 - \frac{a_1 x_2}{1 + b_1 x_1})$$
$$\frac{dx_2}{dt} = \varepsilon g(x_1, x_2, \varepsilon) = \varepsilon x_2(\frac{a_1 x_1}{1 + b_1 x_1} - 1)$$

	T 1 1 1
parameter	Interpretation
t	Time variable
x_1	Prey density
x_2	Predator biomass density
a_1	Searching rate
b_1	Searching rate \times handling time
ε	Efficiency and predator death rate

The hyperbolic relationship

$$F_{x_1,x_2} = \frac{a_1 x_1}{1 + b_1 x_1}$$

is called

- Ecology: Holling type II functional response
- Biochemistry: Michaelis-Menten kinetics

Derivation using time-scale separation: seaching and feeding is much faster than population physiological processes, such as growth

Here the parameters are:

 $a_1 = b$; searching rate

 $b_1 = b/k$; searching rate × handling time

We will often fix $a_1 = 5/3 b_1$

The biological interpretation of ε is the yield in Microbiology, or assimilation efficiency in Ecology and here besides a time-scale parameter also predator death rate factor

When the units of both state variables (biomasses of the populations) are equal we have $\varepsilon < 1$. This means the there is a smaller than 100% biomass conversion: as is always the case in nature

Outline

- Introduction
- Rosenzweig-MacArthur predator-prey model
- RM₁ model, variable efficiency
- RM₂-model, constant efficiency
- MB nutrient-prey-predator model
- Conclusions

RM₁ predator-prey model, variable efficiency

$$\frac{dx_1}{dt} = x_1 \left(1 - x_1 - \frac{a_1 x_2}{1 + b_1 x_1} \right)$$

$$\frac{dx_2}{dt} = \varepsilon x_2 \Big(\frac{a_1 x_1}{1 + b_1 x_1} - 1 \Big)$$

parameter	Interpretation
t	Time variable
x_1	Prey biomass density
x_2	Predator biomass density
a_1	Searching rate
b_1	Searching rate $ imes$ handling time
ε	Efficiency and predator death rate

Bifurcation analysis of RM_1 predator-prey model

$\frac{dx_1}{dt}$	$= x_1(1)$	$(-x_1 - \frac{a_1 x_2}{1 + b_1 x_1})$		
$\frac{dx_2}{dt}$	$=\varepsilon x_{2}(\frac{a_{1}x_{1}}{1+b_{1}x_{1}}-1)$			
	Bifur	Bifurcation Description		
	TC	Transcritical bifurcation: invasion through boundary equilibrium		
	T	Tangent bifurcation: collapse of the system		
	Н	Hopf bifurcation: origin of (un)stable limit cycle		

Literature ($\varepsilon = 1$):

Yu. A Kuznetsov, *Elements of Applied Bifurcation Theory*, Applied Mathematical Sciences 112, Springer-Verlag, 2004

$\label{eq:RM1-model} \begin{array}{l} \mathsf{RM}_1\text{-model} \\ \mathsf{One-parameter\ diagram\ } x_i \ \mathrm{vs\ } b_1\text{:} \ a_1 = 5/3\,b_1\text{,} \ \epsilon = 1 \end{array}$

Transcritical TC, Hopf H bifurcations

Equilibrium points

Equi. Eigenvalues

$$E_0 \quad (x_1^*, x_2^*) = (0, 0)$$

 $\lambda_1 = 1, \ \lambda_2 = -\varepsilon$
 $E_1 \quad (x_1^*, x_2^*) = (1, 0)$
 $\lambda_1 = -1, \ \lambda_2 = -\varepsilon(a_1 - b_1 - 1)/(1 + b_1)$

Transcritical TC when $\lambda_2 = 0$ and using $a_1 = 5/3 b_1$

 $a_1 = b_1 + 1 \Rightarrow b_1 = 1.5$

independent of ε

Equilibrium points

Equi. Eigenvalues

$$E_2 \quad (x_1^*, x_2^*) = \left(\frac{1}{a_1 - b_1}, \frac{a_1 - b_1 - 1}{(a_1 - b_1)^2}\right)$$
$$\lambda_1 = \frac{a_1 b_1 - a_1 - b_1 - b_1^2 + \sqrt{\Delta}}{2(a_1^2 - a_1 b_1)}, \ \lambda_2 = \frac{a_1 b_1 - a_1 - b_1 - b_1^2 - \sqrt{\Delta}}{2(a_1^2 - a_1 b_1)}$$

where

$$\Delta = a_1^2 b_1^2 - 2a_1^2 b_1 - 2a_1 b_1^3 + (a_1 + b_1)^2 + 2b_1^3 + b_1^4 - 4\varepsilon (3a_1^2 b_1^2 - a_1^4 + a_1^3 + 3b_1 a_1^3 - 2a_1^2 b_1 + a_1 b_1^3 + a_1 b_1^2)$$

Hopf H when Re $\lambda_{1,2}=0$ and using $a_1=5/3\,b_1$

$$a_1 = \frac{b_1(b_1+1)}{b_1-1} \Rightarrow b_1 = 4$$

independent of ε

Note that ε does **not** occur in the expression for the real part of the eigenvalues. So in the parameter space the qualitative change of the stability is independent of ε .

 ε does occur in the expression for the imaginary part Δ . Therefore in the parameter space the change from node to focus where $\Delta = 0$ does depend on ε .

transcritical TC, Hopf H bifurcations $\Delta < 0$ focus (complex eigenvalues) $\Delta > 0$ node (real eigenvalues)

RM₁ predator-prey system
Transient dynamics for

$$b_1 = 3,8$$
 where $a_1 = 5/3b_1$ and $\varepsilon = 1,0.01$

$$\frac{dx_1}{dt} = f(x_1, x_2, \varepsilon) = x_1 \left(1 - x_1 - \frac{a_1 x_2}{1 + b_1 x_1} \right)$$
$$\frac{dx_2}{dt} = \varepsilon g(x_1, x_2, \varepsilon) = \varepsilon x_2 \left(\frac{a_1 x_1}{1 + b_1 x_1} - 1 \right)$$

Nullclines: $f(x_1, x_2, \varepsilon) = 0$ and $g(x_1, x_2, \varepsilon) = 0$

RM_1 predator-prey system Transient dynamics for $b_1 = 4$

$$\frac{dx_1}{dt} = x_1 \left(1 - x_1 - \frac{a_1 x_2}{1 + b_1 x_1} \right)$$
$$\frac{dx_2}{dt} = \varepsilon x_2 \left(\frac{a_1 x_1}{1 + b_1 x_1} - 1 \right)$$

For these parameter values the equilibrium is at the Hopf bifurcation point H

Transient dynamics reveals two critical points in the fasespace where: x_2 is parameter

- Point where nullcline of f intersects the vertical axis at $x_1 = 0$ Transcritical bifurcation
- Top of nullcline f at $(\overline{x}_1, \overline{x}_2)$: $df/dx_1 = 0$ Tangent bifurcation at op of nullcline

Singular perturbation problem when $\varepsilon \rightarrow 0$: Fast-slow system

fast system

$$\frac{dx_1}{dt} = f(x_1, x_2, \varepsilon)$$
$$\frac{dx_2}{dt} = \varepsilon g(x_1, x_2, \varepsilon)$$

$$\varepsilon \to 0$$
$$\frac{dx_1}{dt} = f(x_1, x_2, 0)$$
$$\frac{dx_2}{dt} = 0$$

slow system $\tau = \varepsilon t$

$$\varepsilon \frac{dx_1}{d\tau} = f(x_1, x_2, \varepsilon) \qquad \qquad \varepsilon \to 0 \\ 0 = f(x_1, x_2, 0) \\ \frac{dx_2}{d\tau} = g(x_1, x_2, \varepsilon) \qquad \qquad \frac{dx_2}{d\tau} = g(x_1, x_2, 0)$$

reduced system

evolution of the slow variable on $f(x_1, x_2, 0) = 0$

Geometric singular perturbation techniques (N. Fenichel 1997, G. Hek 2010)

Geometric singular perturbation techniques

critical manifolds:

$$\mathcal{M}_0^0 = \left\{ (x_1, x_2) | x_1 = 0, x_2 \ge 0 \right\}$$
$$\mathcal{M}_0^1 = \left\{ (x_1, x_2) | x_2 = \frac{1}{a_1} (1 - x_1) (1 + b_1 x_1), x_1, x_2 \ge 0 \right\}$$

Both critical manifolds are normally hyperbolic except in a small part around the fold point indicated $(\overline{x}_1, \overline{x}_2)$ at the top of the parabola

Geometric singular perturbation techniques

Fenichel (1979) theorem for small nonzero ε : \mathcal{M}_0 persists as a $\mathcal{M}_{\varepsilon}$ manifold with a slow flow on it

On the stable (unstable) side of \mathcal{M}_0 , $\mathcal{M}_{\varepsilon}$ is an attracting (repelling) slow invariant manifold

Later we will see that this is not always true (canards)

Delayed bifurcation

In order to calculate the value where in the limit $\varepsilon = 0$ the trajectory leaves the vertical axis fast, we can use an equation derived in Rinaldi and Muratori (1992):

Literature

S. Rinaldi and S. Muratori. Slow fast limit-cycles in predator prey models. *Ecological Modelling*, 61(3-4):287–308, 1992.

F. Campillo and C. Lobry. Effect of population size in a predator-prey model. *Ecological Modelling* 246:1–10, 2012.

Slow fast limit-cycles (Rinaldi and Muratori 1992)

SLOW-FAST LIMIT CYCLES IN PREDATOR-PREY MODELS

Approximations techniques slow manifolds, $x_2 = q_{\varepsilon}(x_1)$

Using its invariance the perturbed manifold $\mathcal{M}^1_\varepsilon$ can be described as a graph

$$\{(x_1, x_2) | x_2 = q_{\varepsilon}(x_1), x_1 \ge 0, x_2 \ge 0\}$$

This manifold is invariant when

$$\frac{dx_2}{dt} = \frac{dx_2}{dx_1}\frac{dx_1}{dt} = \frac{dq_{\varepsilon}}{dx_1}\frac{dx_1}{dt}$$

where $x_2 = q_{\varepsilon}(x_1)$

This gives the following invariance condition after some algebraic manipulation

$$\frac{dq_{\varepsilon}}{dx_1}x_1((1-x_1)(1+b_1x_1)-a_1q_{\varepsilon}(x_1)) = \varepsilon q_{\varepsilon}(x_1)(x_1(a_1-b_1)-1)$$

The following power expansion is introduced:

$$x_2 = q_{\varepsilon}(x_1) = q_0(x_1) + \varepsilon q_1(x_1) + \varepsilon^2 q_2(x_1) + \dots$$

Gathering orders of ε results in an iterative procedure yielding the following coefficients q_i

For
$$\mathcal{O}(1)$$
:
 $q_0 = \frac{(1 - x_1)(1 + b_1 x_1)}{a_1}$

Expression for q_0 describes the critical manifold \mathcal{M}_0^1 (a parabola)

For $\mathcal{O}(\varepsilon)$:

$$q_1 = q_0 \frac{(x_1(a_1 - b_1) - 1)}{x_1(2x_1b_1 + 1 - b_1)}$$

Note that at the top of the parabola we have

$$(\overline{x}_1, \overline{x}_2) = \left(\frac{b_1 - 1}{2b_1}, \frac{(b_1 + 1)^2}{4a_1b_1}\right)$$

with $x_1 = \overline{x}_1$ the denominator is zero since

$$\frac{dq_{\varepsilon}}{dx_1}|_{\overline{x}_1} = 2\overline{x}_1b_1 + 1 - b_1 = 0$$

There is singularity

We will try to remove this singularity later on

For $\varepsilon = 0$ the limit $x_2 = q_0(x_1)$ prescribes the singular slow flow on \mathcal{M}_0^1

$$\frac{dx_1}{dt} = x_1(1 - x_1 - \frac{a_1x_2}{1 + b_1x_1})$$

For $\varepsilon \ll 1$ sufficiently small nonzero, the flow on the perturbed manifold $\mathcal{M}^1_{\varepsilon}$ can be approximated by inserting $x_2 = q_{\varepsilon}(x_1)$ with $q_{\varepsilon}(x_1)$ power expansion approximation

In order to simulate the model we solve the uncoupled system

$$\frac{d\tilde{x}_1}{dt} = \tilde{x}_1 \left(1 - \tilde{x}_1 - \frac{a_1 q_{\varepsilon}(\tilde{x}_1)}{1 + b_1 \tilde{x}_1} \right) \quad \text{master}$$
$$\frac{d\tilde{x}_2}{dt} = \varepsilon q_{\varepsilon}(\tilde{x}_1) \left(\frac{a_1 \tilde{x}_1}{1 + b_1 \tilde{x}_1} - 1 \right) \quad \text{slave}$$

where the initial values are chosen as: $\tilde{x}_1 = x_1(0)$ and $\tilde{x}_2 = q_{\varepsilon}(x_1(0))$ $a_1 = 5/3 b_1$, where $b_1 = 3$ power approximation $\varepsilon = 0.1$

$$a_1 = 5/3 b_1$$
, where $b_1 = 8$
 $x_2 = q_{\varepsilon}(x_1)$, $\varepsilon = 0.1$, $\varepsilon = 0.01$

Discussion of the canards very close to the unstable equilibrium point where b_1 is beyond the Hopf bifurcation at $b_1 = 4$

- First simulation of transient dynamics
- Thereafter bifurcation diagram x_i vs $b_1>$ 4 of RM_1 model where $\varepsilon\ll 1$
- Finally power expansion in ε of q and of bifurcation parameter b_1 is introduced now near the Hopf bifurcation point

RM₁-model: $a_1 = 5/3b_1$, $\varepsilon = 0.01$, A: $b_1 = 4.0402$, B: $b_1 = 4.0404$, C: 4.0405, D: 4.042

One-parameter diagram x_i vs b_1 , $\varepsilon = 0.01$

Hopf H bifurcation

Literature on Canards not complete

M. Diener. The canard unchained or how fast/slow dynamical problems bifurcate, *The Mathematical Intelligencer*, 6, 38-49, 1984.

F. Dumortier, R. Roussarie. *Canard cycles and center manifolds*, Memoires of the AMS, 557, 1996.

W. Eckhaus. *Relaxation oscillations including a standard chase on French ducks; in Asymptotic Analysis II*, Springer Lecture Notes Math. 985, 449-494, 1983.

N. Fenichel. Geometric singular perturbation theory, *JDE* 31, 53-98, 1979.

J-M. Ginoux, J. Llibre, Flow curvature method applied to canard explosion, *arXiv:1408.4894v1* [mathDS 21 Aug 2014], 2014.

M. Brons. An iterative method for the canard explosion in general planar systems. *Discrete and continuous dynamical systems*, 250:77–83, 2013.

M. Canalis-Durand. Formal expansion of van der pol equation canard solutions are Gevrey. In E. Beno[^], editor, *Dynamic Bifurcation*, pages 28–39. Springer, 1990.

Literature on Canards in Ecology

S. Rinaldi and A. Gragnani. Destabilizing factors in slow–fast systems. *Ecol Model*, 180:445–460, 2004.

F. Campillo, C. Lobry. Effect of population size in a predator-prey model, *Ecological Modelling*, 246:1-10, 2012.

Where is the maximal canard location?

Power expansion now near the Hopf bifurcation point in ε of $r(x_1, \varepsilon)$

$$x_2 = r(x_1, \varepsilon) = r_0(x_1, \varepsilon) + \varepsilon r_1(x_1, \varepsilon) + \varepsilon^2 r_2(x_1, \varepsilon) + \dots$$

and of bifurcation parameter b_1

$$b_1(\varepsilon) = b_{10} + \varepsilon b_{11} + \varepsilon^2 b_{12} + \dots$$

where r_j and b_j , $j = 1 \cdots$ are independent of ε and are fixed by an invariance condition at the Hopf bifurcation point by equality order by order of powers of ε Equating $\mathcal{O}(1)$ terms yields:

$$r_0 = \frac{(1 - x_1)(1 + b_{10}x_1)}{5/3 \, b_{10}}$$

Equating $\mathcal{O}(\varepsilon)$ terms yields:

$$r_{1} = \frac{(1 - x_{1})(-3b_{10} + 3b_{11}x_{1}(b_{10} - 1) - 6b_{11}x_{1}^{2}b_{10} - x_{1}b_{10}^{2} + 2x_{1}^{2}b_{10}^{3})}{b_{10}^{2}(1 + 2x_{1}b_{10} - b_{10})x_{1}}$$

$$b_{10} = 4$$

However $1 + 2x_1b_{10} - b_{10} = 0$ evaluated at $b_{10} = 4$ and equilibrium $x_1 = x_1^* = \overline{x}_1$ at Hopf bifurcation point

Determine b_{11} so that besides denominator also numerator is zero

This gives $b_{11} = 100/27$

In a similar way we can get higher order approximations

For $\varepsilon = 0.01$ we calculated for the second order term $b_1(\varepsilon) = b_{10} + \varepsilon b_{11} + \varepsilon^2 b_{12} + \dots$

$$b_1(\varepsilon) = 4 + \varepsilon 100/27 + \varepsilon^2 58700/2187 = 4.04018$$

Higher order terms can be calculated with symbolic algebra packages using the iterative scheme

Rosenzweig-MacArthur predator–prey model RM₁-model, allochthonous prey input

$$\frac{dx_1}{dt} = \delta + f(x_1, x_2, \varepsilon) = \delta + x_1(1 - x_1 - \frac{a_1 x_2}{1 + b_1 x_1}),$$

$$\frac{dx_2}{dt} = \varepsilon g(x_1, x_2, \varepsilon) = \varepsilon x_2(\frac{a_1 x_1}{1 + b_1 x_1} - 1),$$

where δ is a small allochthonous input rate of the prey population

Addition of this extra term removes the transcritical bifurcation at $x_2 = 1/a_1$

It is structurally unstable with respect to such a perturbation

Focus only on Hopf bifurcation

Coefficients $b_{1i}\varepsilon^i$ vs *i*, $\varepsilon = 0.01$ power series is divergent!

The power series is divergent

Fortunately it has been shown that the summation up to the smallest term gives an optimal approximation. Indeed the result for $\varepsilon = 0.01$ with allochthonous prey input where $\delta = 0.001$ are very accurate

Outline

- Introduction
- Rosenzweig-MacArthur predator-prey model
- RM₁ model, variable efficiency
- RM₂-model, constant efficiency
- MB nutrient-prey-predator model
- Conclusions

RM₂ predator-prey model, constant efficiency

$$\frac{dx_1}{dt} = x_1 \left(1 - x_1 - \varepsilon \frac{a_1 x_2}{1 + b_1 x_1} \right)$$
$$\frac{dx_2}{dt} = \varepsilon x_2 \left(\frac{a_1 x_1}{1 + b_1 x_1} - 1 \right)$$

This model has been studied in:

Hek. Geometric singular perturbation theory in biological practice. *Journal of Mathematical Biology*, 60:347–386, 2010.

However, without motivation for the extra ε factor

This term was suggested before in:

Kooi, Poggiale, Auger and Kooijman. Aggregation methods in food chains with nutrient recycling. *Ecological Modelling* 157:69-86. 2002.

Here we mention only the following results:

Transcritical bifurcation at $b_1 = \frac{3}{2}$ Hopf bifurcation at $b_1 = 4$

both bifurcation occur the same locations as in RM_1 model

Simulation results are shown which indicate unrealistic unbounded solutions when $\varepsilon \to 0$

A: $b_1 = 3, \varepsilon = 1$ B: $b_1 = 8, \varepsilon = 1$ C: $b_1 = 3, \varepsilon = 0.01$ D: $b_1 = 8, \varepsilon = 0.01$

Outline

- Introduction
- Rosenzweig-MacArthur predator-prey model
- RM₁ model, variable efficiency
- RM₂-model, constant efficiency
- MB nutrient-prey-predator model
- Conclusions

MB nutrient-prey-predator model

$$\frac{dx_0}{dt} = (x_r - x_0)\varepsilon d - a_0 x_0 x_1$$
$$\frac{dx_1}{dt} = a_0 x_0 x_1 - \varepsilon dx_1 - \varepsilon \frac{a_1 x_1 x_2}{1 + b_1 x_1}$$
$$\frac{dx_2}{dt} = \varepsilon \frac{a_1 x_1 x_2}{1 + b_1 x_1} - \varepsilon dx_2$$

parameter	Interpretation
t	Fast time variable
x_0	Nutrient density
x_i	Population biomass density
x_r	Nutrient concentration in reservoir
d	Dilution rate
a_0	Searching rate
a_1	Searching rate
b_1	Searching rate \times handling time

It is possible to decouple the system by introduction of the function

$$H(t) = x_0(t) + x_1(t) + x_2(t) - x_r \quad t \ge 0$$

It is easy to show that the equation for H models exponential decay and the final set of equations becomes with d = 1 and $a_0 = 1$

$$\frac{dH}{dt} = -\varepsilon dH$$

$$\frac{dx_1}{dt} = \left(H + x_r - x_1 - x_2\right) x_1 - \varepsilon \left(x_1 + \frac{a_1 x_1 x_2}{1 + b_1 x_1}\right)$$

$$\frac{dx_2}{dt} = \varepsilon x_2 \left(\frac{a_1 x_1}{1 + b_1 x_1} - 1\right)$$

In order to be able to compare the three models RM_1 , RM_2 and MB we make the following assumptions: H(0) = 0 and this gives:

$$\frac{dx_1}{dt} = x_1 \left(x_r - x_1 - x_2 - \varepsilon - \varepsilon \frac{a_1 x_2}{1 + b_1 x_1} \right)$$
$$\frac{dx_2}{dt} = \varepsilon x_2 \left(\frac{a_1 x_1}{1 + b_1 x_1} - 1 \right)$$

and
$$x_r = 1 + \varepsilon$$

$$\frac{dx_1}{dt} = x_1 \left(1 - x_1 - x_2 - \varepsilon \frac{a_1 x_2}{1 + b_1 x_1} \right)$$

$$\frac{dx_2}{dt} = \varepsilon x_2 \left(\frac{a_1 x_1}{1 + b_1 x_1} - 1 \right)$$

Transcritical TC, Hopf H bifurcations

Transcritical TC, Hopf H bifurcations

 $b_1 = 8$ and A: $\varepsilon = 1$, B: $\varepsilon = 0.1$, C: $\varepsilon = 0.01$

MB₁-model

One-parameter diagram x_i vs b_1 : $a_1 = 5/3 b_1$, $\varepsilon = 0.01$

Transcritical TC, Hopf H bifurcations

Hopf H_{MB} MB model; Hopf $H_{RM_{1,2}}$ RM_{1,2} model; Transcritical TC all models

Outline

- Introduction
- Rosenzweig-MacArthur predator-prey model
- RM₁ model, variable efficiency
- RM₂-model, constant efficiency
- MB nutrient-prey-predator model
- Conclusions

Conclusions (1)

- (RM₁ \Rightarrow RM₂) Making the RM₁ model more realistic leads in fr RM₂ model to unrealistic unbounded solutions when $\varepsilon \rightarrow 0$
- (RM₂ \Rightarrow MB) Introduction of dynamics of nutrients in the model leads to realistic solution and less complex dynamics when $\varepsilon \rightarrow 0$

Conclusions (2)

- Integrated approach is important: Modelling, bifurcation analysis and perturbation theory
- Proper modelling gives perturbation parameter ε a biological interpretation not just a mathematical perturbation parameter
Conclusions (3)

- In RM₁ model a canard occurs just above the Hopf bifurcation where the nullclines of the growth function f and g of the prey and predator populations intersect at the equilibrium point
- Power expansion also for a bifurcation parameter gives an approximation of the location where explosion occurs despide the fact that the series is divergent

Thanks to

Jean-Christophe Poggiale (Marseille)

Pierre Auger (Paris)

Bas Kooijman (VU-Amsterdam)

Future work (together with Jean-Christophe Poggiale)

- Link between canards and blow-up techniques
- Link between maximal canard location and first Lyapunov coefficient

Literature

M. Krupa and P. Szmolyan. Extending geometric singular perturbation theory to nonhyperbolic points - fold and canard points in two dimensions. *SIAM J. Math. Anal.*, 33(2):286–314, 2001.

C. Kuehn, *Multiple Time Scale Dynamics*, Applied Mathematical Sciences 191, Springer-Verlag, 2015

• Link between deterministic and stochastic modelling

Literature

N, Stollenwerk, P.F. Sommer, B.W. Kooi, L. Mateus, P. Ghaffari, M. Aguiar. Hopf and torus bifurcations, torus destruction and chaos in population biology, in prep. 2016