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1. Introduction

We deal with continuous time Markov chains f();  ¸ 0g (CTMC) with state
space

 =  [  ,

where  is a set of transient states and  is a set of absorbing states (e.g.
 = f0g)

The stationary distribution is degenerate so the fundamental problem is:

There exist a need for probabilistic measures of the system behavior before ab-
sorption. Analogues of the stationary distribution of the irreducible case should
be considered and compared.



In the spirit of the seminal work by Darroch and Seneta (1967), we will consider
two possibilities:

² Quasi-stationary distribution.

² Ratio of expectations (RE) distribution.

A comparison between both distributions is justi�ed only if the convergence to
quasi-stationary regime is relatively fast.



2. Quasi-stationarity

The starting point is the conditional probability

() = f() =  j   g  2  

where  = supf ¸ 0 j () 2  g denotes the absorption time.

De�nition 1. Suppose that the chain starts with the initial distribution  =
f(0) = g  2   If there exists a starting distribution  =  such that

f() =  j   g =   2  

for all  ¸ 0, then u = f;  2 g is called a quasi-stationary distribution.



There also exists a limiting interpretation which states that

lim
!1f() =  j   g =   2  

independently of the initial distribution f;  2 g

The above limiting result shows that the quasi-stationary distribution is a good
measure of the system dynamics before absorption, but restricting only to those
realizations in which the time to absorption is su¢ciently large.



The existence and computation of the quasi-stationary distribution becomes dif-
�cult when  is in�nite.

A.  is �nite and irreducible

There exists a unique quasi-stationary distribution, but an analytical (explicit
form) solution only exists in a few special cases.

Example 1. If f();  ¸ 0g is a birth and death process with  = f0g then

(1¡ )+1+1 ¡ ( + ) + ¡1¡1 = ¡11 1 ·  · 

where  = f0  g and 0 = 0

The above non-linear equation also holds when  = N



Computation, approximations and recursive methods

² The power method provides an iterative procedure for computing u and ¡
(associate eigenvalue)

² Several approximations and recursive methods are available for the birth and
death process on  = f0  g with  = f0g. A �rst approximation uses a

birth and death process, (0)(), with the same rates except (0)1 = 0

² A second approximation is based on the birth and death process, (1)(), with

shifted death rates (1) = ¡1 1 ·  · 

² A recursive scheme is based on the following formula:

 = 1

X
=1

1¡(1¡1)
P¡1

=1 


 2 ·  · 



B.  is �nite but reducible (van Doorn and Pollett, 2008)

Suppose that  consists of  communicating classes , for 1 ·  · . A
partial order on f; 1 ·  · g is de�ned by writing  Á  when class  is
accessible from  Let ¡ be the (negative) eigenvalue with maximal real part
of the sub-generator  corresponding to the states in  Then, the eigenvalue
of  with maximal real part is obtained as ¡ where  = min1·· .
We also de�ne () = f :  = g and () = min ()

Theorem 1. If ¡ has a geometric multiplicity one, then the Markov chain
has a unique quasi-stationary distribution f;  2 g from which () is
accessible. The th component of f;  2 g is positive if and only if state  is
accessible from () A simple necessary and su¢cient condition for establishing
that ¡ has geometric multiplicity one is that f;  2 ()g is linearly ordered,
that is,  Á  ()  · , for all   2 ()



3. RE-distribution

Let  be the time that the CTMC spends in state  2  before absorption.

De�nition 2. Given that (0) =  2  , we de�ne the RE-distribution,
P = (()) as follows

() =
[]
[ ]

   2  

The ratio of means distribution (Darroch and Seneta, 1967) corresponds with the
unconditional version:

 () =

P
2 []P
2 [ ]

  2  



Remarks and computation

² The RE-distribution always exists provided that the expected time to absorption
 [ ] 1.

² The RE-distribution assigns positive probability to all state  accessible from
the initial state 

² Let us construct the ideal replicated model obtained by assuming that at each
extinction the biological model restarts in the same initial state  2  . The
stationary distribution of this replicated (regenerative) model amounts to the
RE-distribution P.

For a �xed  2  , a �rst-step argument yields



h

i
=




+
P

2
 6=





h

i
  2  



4. Application to the SIS stochastic model

² Closed population model of  individuals.

² Classi�ed either as susceptible or infective individual.

² Susceptible can be infected, then they recover and return to the susceptible
pool.

² Evolution of the epidemic:

² Birth and death process f();  ¸ 0g
² () : number of infective individuals at time .
²  = f0 1  g (0 is an absorbing state).



² Classical SIS rates

² Infection rate  =

 ( ¡ )

² Recovery rate  = 

² 0 = 
 denotes the transmission factor.

Figure 1. States and transitions of the birth and death model
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In the case of a birth and death process, we have

0

h

i
= 0

( + )

h

i
= ¡1

h

i
+ +1

h

i
  6=  1 ·  · 

( + )

h

i
= ¡1

h

i
+ +1

h

i
+ 1

Theorem 2. For the SIS epidemic model, the RE-distribution reduces to

() =

1


min()P
=1

³
0


´¡ (¡)!
(¡)!

P
=1

1


min()P
=1

³
0


´¡ (¡)!
(¡)!

 1 ·  · 

.



Stochastic ordering relationships

² For a birth and death process with  = f0  g and  = f0g:

P1 = p(0)

p(0) · u

P1 · u · P 

P · P0 1 ·  · 0 · 

where  ·  , () ¸  () for all  2 R



² For the SIS model:

u · p(1)

P · p(1) for  �xed and 0 su¢ciently large,

p(1) · P  for  �xed and 0 su¢ciently small.



Numerical example

 = 100  = 1 and several choices of 0 = 

  1) to use u is meaningful.

bP and eP are mixtures of the RE-distributions.

¯̄̄
p(1) ¡ u

¯̄̄
= max

1··

¯̄̄̄

(1)
 ¡ 

¯̄̄̄
(maximum pointwise distance).

0 05 09 10 13 15 20¯̄̄
p(1) ¡ u

¯̄̄
000440 005091 008746 016147 011150 005890

jP1 ¡ uj 021231 030368 030295 007878 000357 4267£ 10¡8

jP ¡ uj 058829 037515 028886 003260 000107 1038£ 10¡8¯̄̄ bP¡ u
¯̄̄

005134 009190 006356 000546 1485£ 10¡4 9214£ 10¡10¯̄̄ eP¡ u
¯̄̄

005508 008627 006453 000232 5591£ 10¡6 9020£ 10¡16

Table 1. Distributions distances with respect to u



Application to the SIR stochastic model

² Classical SIR rates:  =

  (infection rate) and  =  (recovery rate).

0

1

2

3

S(t)

0 1 2 3 4 5 6 I(t)

Figure 2. States and transitions of the SIR epidemic model
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The quasi-stationary probabilities are

() = (10)() 0 ·  ·  1 ·  · + ¡ 

becausemin()2 (+) = 10+1 =  for  = , and 1 ·  · +.

The RE-distribution of the SIR epidemic model is given by

()( ) =


+

P
=0

+¡P
=1


+

 ( ) 2  

where  is the probability of reaching the state ( ) 2  starting from ()
before the extinction occurs.



Application to the SEIR stochastic model

² Classical SEIR rates:  = 
  (infection rate),  =  ( rate at wich

exposed an individual becomes infective) and  =  (recovery rate).

² Quasi-stationary distribution is almost degenerate: The quasi-stationary dis-
tribution assigns all its probability mass to one or two states.
To state (0,0,1), i.e., 1 infective individuals and N-1 recovered, for  · 
To states (0,1,0) and (0,0,1); i.e, 1 exposed or infective individual and N-1
recovered, for   



The RE-distribution of the SEIR p = ( : (  ) 2  ) is given by

 =


++P

(000)2
000

00+0+0

 (  ) 2  

where  is the probability of having a �nite �rst passage time to state (  ),
for (  ) 2  .

The expected values corresponding to the RE-distributions of the number of in-
dividuals  and  in the  and  classes quantify intuitively the mean
number of exposed and infected individuals during an outbreak of the epidemic.
They are related to the expected values of the �nal size (1) and the extinction
time (1) through the relationships

(000)
[] =

(000)
[(1)]¡ 0

(000)
[(1)]

£ 1




(000)
[] =

(000)
[(1)]

(000)
[(1)]

£ 1






Numerical example

 = 500  = 1  = 20 Starting from a single infective individual: initial
state (499,0,1)

² Mass functions for the R (recovered) and S (susceptible) classes,  = 50
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Numerical example

 = 500  = 1  = 20 Starting from a single infective individual: initial
state (499,0,1)

² Mean values of the RE distributions for the E and I classes versus 
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5. Conclusions and References

The talk has a two-fold objective: ) to consider the quasi-stationarity and the
ratio of expectations as two conceptually di¤erent approaches for measuring the
behavior of a biological system before reaching the absorbing states, and ) to
evaluate the possibility of using the RE-distribution as an approximation to the
quasi-stationary distribution provided that the quasi-stationary regime has already
been reached.

² The quasi-stationary distribution gives an excellent measure of the long-term
behavior of the system. Due to the non-linear structure of the quasi-stationary
equations, it is usually impossible to obtain explicit expressions. However, there
exists a number of helpful results including recursive methods, approximations
and asymptotic analysis.

² The RE-distribution gives an alternative to measure the system dynamics before
absorption, despite of how long the absorption time is. Since the RE-distribution
is governed by linear equations, it can typically be evaluated more simply. The
RE-distribution assigns positive mass to all transient states. The main problem
concerns the di¢culties for managing info about the initial state.
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