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•  models where the birth and death processes occur are 
inspired by population biology (individual based models), 
but can be used to investigate also other problems in 
different fields such as condensed matter physics, 
chemical kinetics, or sociology (agent based models)



•  in most of such systems also the diffusion has an 
important role



•  the simplest model which takes these three processes 
into account is the Brownian bug model, often considered 
in the context of population dynamics, in particular to 
address plankton distribution – Young, Roberts, Stuhne, 
Nature 412, 328 (2001)



•  in the simple Brownian bug model there is no interaction/
competition between the organisms, but more 
sophisticated models take into account also the 
competition



Non-interacting bug models


•  N(t) organisms modelled as point-like particles (bugs): 
1)  reproduce at rate rb = const,  giving rise to an offspring close to 

the parent, or die at rate rd = const 
2)  perform independent Markovian continuous time random walk


•  if the CTRW is Brownian motion                  Brownian bug model 

Brownian motionp(τ ) = exp(−τ / τ
~
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•  N(t) organisms modelled as point-like particles (bugs): 
1)  reproduce at rate rb = const,  giving rise to an offspring close to 

the parent, or die at rate rd = const 
2)  perform independent Markovian continuous time random walk


•  if the CTRW is Brownian motion                  Brownian bug model 


•  many systems are characterized by anomalous diffusion, e.g. the 
bacterial motion is found to be described by Levy statistics, as 
well as the movement of spider monkeys in search of food 
  Levy bug model
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modelling in terms of continuous concentration field: 
	

∂
∂t
N(x, t) = (rb - rd )N(x, t)+κµ∇

2/(3−µ )N(x, t)

N(t) = N(t0 )exp[(rb − rd )(t − t0 )]

•  if  rb > rd  –  population explodes exponentially (finite probability 
for extinction that depends on N(t0) and decreases with increasing 
rb - rd)

•  if  rb < rd  –  extinction with probability 1
•  if  rb = rd  –  taking average over many realizations

κµ – generalized diffusion coefficient:                    
     - fractional diffusion operator

〈N (t)〉 = N (t0 )

∇γ
κµ = 

~µ

/ (2τ
~
), µ ∈ (0, 2]



•  for small values of diffusion coefficient clustering appears due to 
the reproductive correlations: newborns are close to the parents 

•  continuous deterministic description does not predict/explain the 
appearance of the clustering because the birth is assumed to be 
homogeneous

•  after some time the system consists of particles coming from a 
single ancestor

•  the final state is complete extinction; typical lifetime is 
proportional to N0 

•  center of mass motion is similar to the one of single bugs

κ =10−6

rb = rd = 0.1

κµ =10
−5, µ =1
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Globally interacting bug models

in more realistic models the birth and/or death rate of an organism 
depends e.g. on the competition for resources, i.e. on the number of 
other bugs in the system, N(t) - 1 

in the most simple case the dependence can be assumed liner:





•  α ≥ 0, β ≥ 0
•  rb0 > rd0 is always assumed, otherwise the system becomes 

extinct with probability 1
•  in the following β = 0 i.e. rd = rd0 
•  the critical size of the system is therefore N*

 = (rb0 – rd0)/α  + 1:
     for N(t) < N* the reproduction is more probable, whereas
     for N(t) > N* the death becomes more probable than reproduction

rb =max{0, rb0 −α[N (t)−1]}
rd = rd0 +β[N (t)−1]

rb = const
rd = const
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•  also now clustering appears due to the reproductive pair 
correlations

•  after some time the system consists of particles coming from a 
single ancestor

•  center of mass motion undergoes the same type of diffusion as the 
individual bugs of the system

•  the final state is complete extinction due to the fluctuations

κ =10−5

rb0 =1
rd0 = 0.1
α = 0.02

κµ =10
−4

µ =1



•  the average number of organisms fluctuates around the critical 
value N*

 = (rb0 – rd0)/α  + 1, depending for a fixed α only on the 
difference Δ0 = rb0 – rd0 



•  the fluctuations of N(t) depend on the values of rb0 and rd0 

the probability distribution of the number of individuals 
from the simulations time series:


•  for larger rates the fluctuations
get larger implying that there is
an enhanced probability for 
the system to become extinct


•  in the context of ecological 
colonies this means
that the increase of the death 
rate due to some change in the 
ecosystem, leads the colony to 
extinction more probably, 
even if the equilibrium size
remains the same

rb0 =1, rd0 = 0.1

rb0 = 2, rd0 =1.1

rb0 =1.5, rd0 = 0.6

Δ0 = 0.9



the cross section of the 2-dimensional particle density of the average cluster:



the cross section of the 2-dimensional particle density of the average cluster:
for Brownian bugs, the tail of the average cluster is approximately exponential 

the tails of ρ in the case of the Levy bug systems:
solid lines correspond to fitting curves  ~ x-(2+µ) 

κ =10−5

κµ =10
−5



Bug models with non-local finite-range interaction

in even more realistic models the organisms do not compete with 
all other organisms of the population, but only with the ones in a 
certain neighborhood, i.e. the birth and/or death rate of a particle i 
depend on the number of neighbors NR

i within a given distance R:





•  α ≥ 0, β ≥ 0 
•  rb0 > rd0 is always assumed, otherwise the system becomes 

extinct with probability 1
•  in the following β = 0, i.e. rd = rd0 
•  the critical number of neighbors is therefore NR

*
 = (rb0 – rd0)/α:  

     for NR
i < NR

* the reproduction is more probable, whereas 
     for NR

i > NR
* the death becomes more probable than reproduction



rb =max{0, rb0 −α[N (t)−1]}
rd = rd0 +β[N (t)−1]

rb
i =max{0, rb0 −αNR

i }
rd
i = rd0 +βNR

i



∂ρ(x, t)
∂t

= ρ(x, t) Δ0 −α dy
D
∫ ρ(y, t)
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*+κµ∇

2/(3−µ )ρ(x, t)

net growth of 
the population non-local contribution associated 

to the saturation due to the 
interaction within a distance R 

spatial diffusion

mean-field approximation to the dynamics of the density of 
particles (D – set of points within a distance smaller than R):











•  the uniform solution becomes unstable for small κμ and large Δ0, 

leading to periodic pattern with periodicity of the order R 
•  the anomalous exponent µ has only a very light influence on the 

periodicity of the pattern


•  rd0 should be small enough otherwise the number of particles is 
fluctuating too much and the stationary state (periodic pattern) 
is not reached



distribution of cluster sizes:

radial distribution function:

rb0 =1, α = 0.02, rd0 = 0.1, R = 0.1
κ =10−5, N

B
= 2555

κµ = 56×10
−5, µ =1, N

L
= 2565
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•  an hexagonal pattern is formed with periodicity 
of the order R 

•  the mean-field approximation is proper to 
describe the periodicity in the bug models with 
non-local finite-range interaction

•  the large-scale collective behavior of the 
systems is much more strongly influenced by 
the competitive interaction then by the type of 
spatial motion performed by the organisms

•  in the case of Levy bugs there are many single 
organisms between the clusters

LB



radial distribution function:



radial distribution function:

average number of bugs:



radial distribution function:

average number of bugs: the cross section of the 
2D particle density of 
the average cluster:

the central part of the average cluster is 
well fitted by a Gaussian function; the decay 
in the Levy case is close to exponential



(a)κ =10−5, (b)κ = 2×10 −5

(c)κ = 4×10−5, (d)κ =10−4

BB



(a)κ =10−5, (b)κ = 2×10 −5

(c)κ = 4×10−5, (d)κ =10−4
(a)κµ =10

−4, µ =1, (b)κµ =10
−3 , µ =1

(c)κ =10−4, µ =1.5, (d)κ = 5×10−5, µ =1.5

•  organisms that are out of clusters, have more neighbors and thus the 
death is more probable in the inter-cluster space

•  in the case of Brownian bugs this means that for low diffusivity the mixing 
of different families is very small

•  if the diffusivity is high, in the end there is only one family present

BB



(a)κ =10−5, (b)κ = 2×10 −5

(c)κ = 4×10−5, (d)κ =10−4
(a)κµ =10

−4, µ =1, (b)κµ =10
−3 , µ =1

(c)κ =10−4, µ =1.5, (d)κ = 5×10−5, µ =1.5

•  organisms that are out of clusters, have more neighbors and thus the 
death is more probable in the inter-cluster space

•  in the case of Brownian bugs this means that for low diffusivity the mixing 
of different families is very small

•  if the diffusivity is high, in the end there is only one family present; in the 
case of Levy bugs this is always so due to the long jumps

BB LB



Conclusion:

•  we have investigated systems where the individuals are modeled 
as Brownian or Levy random walkers which interact in a 
competitive manner



•  though the models studied describe rather living organisms, such 
as animals or bacteria, competition and spatial diffusion are 
important also in plant ecology for the development of vegetation 
patterns



•  we have observed that mixing of families and their competition is 
greatly influenced by the type of spatial motion; in the recent 
works we have been investigating the competition between the 
individuals with different diffusion coefficients



•  small modifications allow to investigate very different systems; 
does not have to be (only) the birth or death rate, but can be any 
quantity, e.g. the choice of the language that one speaks depending 
on what is the language spoken in the local community
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