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Introduction

Food Safety is a Major Challenge around the World. In particular in a
changing environment!

Studying Plant(Crop)-Pest (Disease) Interactions are important
challenges, both from the experimental, modelling and theoretical point
of view.
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Introduction

Background

Every Year, a lot of crop losses are due to Pest and Diseases: about
26% of these losses are due to Diseases. This is an important
problem in terms of Food Security, in many countries.

There are many viruses that may affect crops.

Arthropod vectors (sap-sucking insects) transmit most plant viruses
are aphids (more than 50%), whiteflies, leafhoppers, thrips, beetles,
mealybugs, mirids, and mites.

For instance Alfalfa mosaic virus (AMV), that is an alfamovirus, can
impact peas, lentils, potatoes, clovers, etc, can be transmitted by
different insects, like aphids.
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Plant Epidemiology: several way of transmissions

Plant vector-borne diseases have particularities:

Mode of transmission: Circulative vs Noncirculative

noncirculative viruses: attached to the exterior mouthpieces of the
insects

circulative viruses: live in the vector and are innoculated with the
saliva into a new plant host. Two subclasses: propagative and
nonpropagative.

Three groups of viruses

non persistent

semi-persistent

persistent

Generally non-circulative viruses are nonpersistent or semi-persistent,
while circulative viruses are semi-persistent or persistent.
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An example of a (noncirculative) epidemic model

Non persistent (noncirculative) virus
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Hp: Healthy Plants

Lp: Latent Plants: infected but not yet infective

Ip: Infective Plants

Rp: Recovered/Removed Plants

Sv : Susceptible Vectors

Iv : Infective vectors
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An example of a (noncirculative) epidemic model

We assume that the plant population is constant, i.e.
Hp + Lp + Ip + Rp = K and the vector population, having a smaller
lifespan, is such that V = Sv + IV is governed by a logistic-like equation

dV

dt
= αvV − (µ1 + µ2V )V .

The Force of infection from Plant to Vector is: φa
Ip
K .

The force of infection from Vector to Plant is: b φIVV
Ip
K , where

φ the number of plants a vector visits per unit of time

a the probability of transmission from P to V .

b the probability of transmission from V to P.
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An example of a (noncirculative) epidemic model

Then we consider a disinfecting force on the infective vectors

e−φaIp/(δK),

where 1/δ is the average time of existence of the virus on the vector.

It means that a long as we have Infective Plants, Ip > 0, the vector will
stay infective.

If φaIp/(δK ) goes to zero then e−φaIp/(δK) → 1 meaning that Infective
vectors become susceptible again, at rate δ.
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An example of a (noncirculative) epidemic model

We obtain the following system

Plant population 

dHp

dt = −φbIv
Hp

K
,

dLp

dt = φbIv
Hp

K
− k1Lp,

dIp
dt = k1Lp − (k2 + γ) Ip,
dRp

dt = k1Ip.

(1)

Vector population
dSv

dt = αvV − (µ1 + µ2V )Sv − φaSv Ip
K + δIve

−φaIp
δK ,

dIv
dt = φaSv

Ip
K
− δIve−

φaIp
δK − (µ1 + µ2V )Iv

(2)

Using ”standard” tools from Mathematical Epidemiology, we are able to
study system (1)-(2).
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An example of a (noncirculative) epidemic model

Using suitable changes of variables, it suffices to study the simplified
system: 

dhp
dt = −φbivhpρ,
dlp
dt = φbivhpρ− k1lp,
dip
dt = k1lp − (k2 + γ) ip,

div
dt = φa(1− iv )ip − δive−

φaip
δ − αiv .

(3)

with dρ
dt = β(ρ̃− ρ)ρ and ρ̃ = V ∗/K .

Theorem

For any continuous nonnegative function ρ the system of differential
equations (3) defines a (positive) dynamical system on the compact
domain Ω=

{
x =(hp, lp, ip, iv )T ∈R4; x ≥ 0,hp+lp+ip≤1; iv ≤ 1

}
The equilibria of the system comprise the set

P = {x = (hp, 0, 0, 0) : 0 ≤ hp ≤ 1} ⊂ Ω.
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Analysis of the ODE model

For every hp ∈ P we compute NGM(hp), and derive the reproduction
ratio at hp

R(hp) = 2

√
φ2abρ̃hp

(k2 + γ)(α + δ)
,

from which we derive the Basic Reproduction Ratio, when hp = 1:

R0 = 2

√
φ2abρ̃

(k2 + γ)(α + δ)
,

With ρ̃ = αv−µ1

µ2K
. Let h∗p = (k2+γ)(α+δ)

φ2abρ such that R(h∗p) = 1.

Theorem (Stability)

Ps = {x = (hp, 0, 0, 0) : 0 ≤ hp ≤ min{1, h∗p}} ⊂ P

consists of all stable equilibria of the dynamical system defined via (3).
The equilibria in Pu = P \ Ps are unstable. The set Ps is a stable
invariant set with basin of attraction Ω \ Pu. More precisely, every
trajectory initiated in Ω \ Pu converges to a point in Ps .
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An example of a (noncirculative) epidemic model

We consider the following parameters φ = ρ̂ = 1, a = b = 0.2, k1 = 0.2,
k2 = 0.1, αv = 0.05, β = 0.01, δ = 0.2.

Fig. 2. Infection introduced in plant (through seeds)

All trajectories enter the interval [0, h∗P ].
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An example of a (noncirculative) epidemic model

Fig. 3. Infection introduced by vectors
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An example of a (noncirculative) epidemic model

”Diluted” crop population effect - the impact of planting a certain
percentage of ”resistant” plants.

If the proportion of ”Diluted plants” is about 20%, then, according to the
simulation the loss can be estimated around 80−50

80 × 100 = 37.5%.
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Crop Protection - Vector Control

As usual, based on the Basic Reproduction Ratio

R0 = 2

√
φ2abρ̂

(k2 + γ)(α + δ)
,

some ”standard” control tools may be useful:

Insect-proof nets or mineral oils−→ to decay φ.

Use pesticide −→ to increase α ... Drawback: spreading,
resistance....

Use Barrier Plants, Kb: non-host for the virus and the vectors...−→
the proportion of infected plants shift from

S

K
to

S

K + λKb
...

However, this has also an impact on the disinfecting force too:
e−φaIp/(δ(K+λKb)) (Virus-Sink Hypothesis: when aphids spend
sufficient time to become susceptible)... such that R0,b < R0...

Barrier Plants can also be attractive to natural ennemies....
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Possible Extension of the Model

Based on the previous Model, several extensions are possible....
The previous Model assume implicitely that Plants and Vectors are
homogeneously distributed... which in fact is not true.

Plants cannot move, while Vectors can

Thus a first extension is to assume that the vectors can spread on the
domain, leading to a system of ODES-PDES.

We show that adding the spatial component may impact the control
strategies.
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Vector-borne disease Model with Diffusion

Submodel for the crop (Plant population)

∂Hp

∂t = −φbIv
Hp

K
,

∂Lp

∂t = φbIv
Hp

K
− k1Lp,

∂Ip
∂t = k1Lp − k2Ip − γIp,
∂Rp

∂t = k2Ip.

(4)

Submodel for the Vector population


∂Sv

∂t = D ∂2Sv

∂x2 + αvV − (µ1 + µ2V )Sv − φaSv Ip
K + δIve

−φaIp
δK ,

∂Iv
∂t = D ∂2Iv

∂x2 + φaSv
Ip
K
− δIve−

φaIp
δK − (µ1 + µ2V ) Iv

(5)

with homogeneous Neumann boundary conditions (on a possible infinite
1-dimensional domain) and nonnegative initial conditions.
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Vector-borne disease Model with Diffusion

Theorem (Existence - uniqueness)

Let Hp(0), Lp(0), Ip(0), Rp(0)) ∈ L∞(0, l), and Sv (0), Iv (0) ∈ L2(0, l),
then a nonnegative bounded solution exists. It is unique.

Large time behavior. Since Hp + Lp + Ip + Rp = K for all x ∈ [0, l ], and
t ≥ 0, we have

limt→∞ Hp(x , t) = H∗p (x),

limt→∞ Lp(x , t) = 0,

limt→∞ Ip(x , t) = 0,

limt→∞ Rp(x , t) = R∗p (x),

and

limt→∞ Sv (x , t) = V ∗,

limt→∞ Iv (x , t) = 0,
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Logistic Diffusion in the Vector Population

In fact, the vector population, simply follows
∂V

∂t
= D

∂2V

∂x2
+ αvV − (µ1 + µ2V )V ,

∂V

∂x
(0, t) =

∂V

∂x
(L, t) = 0,

V (x , 0) = V0(x), x ∈ [0, L].

(6)

We recognized the well-known Logistic Diffusion Equation, for which we
have a certain number of theoretical results

Two equilibria exist: 0 (unstable) and V ∗ =
α− µ1

µ2
(asymptotically

stable).

Travelling-wave solutions v(x − ct) exists, if
c > c∗ = 2

√
D(αv − µ1).
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Simulations of Vector spreading when carrying a virus

initial infective vectors at x = 0, δ = 0.5
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Simulations of Vector spreading when carrying a virus

initial infective vectors at x = 0, δ = 2
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Simulations of Vector spreading when carrying a virus

initial infective vectors at x = 0, δ = 5
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Simplification in the Model

Consider the previous model, with ”some simplifications”, such that

∂Ip
∂t

= bφ

(
1− Ip

K

)
Iv ,

∂Iv
∂t

= D
∂2Iv
∂x2

+ φa (V − Iv )
Ip
K
−
(
δe−

φaIp
δK + (µ1 + µ2V )

)
Iv ,

∂V

∂t
= D

∂2V

∂x2
+ αvV − (µ1 + µ2V )V ,

(7)
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Simulations with the simple model

initial infective vectors at x = 0, δ = 0
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Simulations with the simple model

initial infective vectors at x = 0, δ = 12
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Simulations with the simple model

initial infective vectors at x = 0, δ = 24
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Discussions....

In some sense, according to δ (and φ), the ”invasion” slow down...
which, biologically, makes sense.

Our preliminary results remind me on previous works: see for
instance F. Hilker et al. (2005).... Work in progress. Extension to
2D.

Implication for Control strategies....

Barrier Plants, B,
can appeal to pest landing (colors).... ⇒ drift in the model, i.e.

∂

∂x

(
V
∂B

∂x

)
.

(possible) differential attractivity to infective plants!

Use of Nets... φ = 0. Where? Ongoing experiments in Kenya....
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Conclusion: Plant Vector-borne diseases

Modelling Plant Epidemiology can lead to new Models in Mathematical
Epidemiology and thus the need of new mathematical results.

Of course, from the modelling point of view, further improvements are
possible: distinguish vegetative and reproductive stages, take into
account plant growth (photosynthesis...).... Balance between Model
tractability and the objectives!

Vector control: the importance of taking into account plant-Pest
interactions!

Done in combination with ongoing works and Projects

Mating Disrupting control and SIT (Fruit flies - South Africa)

Cacao (Cameroon): Miride (Pest) and Phytospora (fungal pathogen)

...

Plant-Pollinator interactions (Indonesia).
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Conclusion

Thank You!

Questions?
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