Sexually transmitted infections,

and mate-finding Allee effect

Ludek Berec Biology Centre CAS & University of South Bohemia Ceske Budejovice Czech Republic

Allee effects

occur in rare populations when mean fitness increases with increasing population size or density

Vancouver Island marmot *Marmota vancouverensis*

Brashares et al. (2010)

Mate-finding Allee effect

occurs when females have increased difficulty to find mates as male density declines

Azuki bean weevil *Callosobruchus chinensis* Fauvergue (2013)

Mate-finding Allee effect

occurs when females have increased difficulty to find mates as male density declines

Azuki bean weevil *Callosobruchus chinensis* Fauvergue (2013)

Mate-finding Allee effect

occurs when females have increased difficulty to find mates as male density declines

Azuki bean weevil *Callosobruchus chinensis* Fauvergue (2013)

While sex may have an advantage in providing genetic variation to combat coevolving pathogens, sex also has a major disadvantage in that it also provides a route for the sexual transmission of pathogens.

Antonovics et al. (2011)

Sexually transmitted infections

STIs are ubiquitous, and tend to ...

- cause sterility than mortality in the host
- ✓ cause less mortality than nonsexually transmitted infections
- ✓ be cryptic, with few overt symptoms
- \checkmark be persistent in the host

Antonovics et al. (2011)

Implications for modeling

✓ STIs affect fertility but less often mortality

 ✓ There is no recovery from infection or (less often) there is recovery to the susceptible class The association between STD and abortion or infertility is well known in animals; indeed, it is perhaps the major reason why veterinarians study these infections.

Oriel and Hayward (1974)

Sexually transmitted infections

Sexual contacts are likely to be relatively independent of overall population density:

- High densities: number of sexual contacts is limited by mating opportunity or breeding season length
- Low densities: organisms are extremely efficient at mate finding even at low densities due to a variety of adaptations

Antonovics et al. (2011)

Implications for modeling

Individuals have a fixed number of new sexual partners per unit time Frequency-dependent transmission

Force of infection

 $\beta c \frac{1}{N}$

β ... transmission probability per partnership
c ... rate at which individuals acquire new sexual partners
I ... density of infectious hosts
N ... total host density

Classic SI model with logistic host growth

$$\frac{dS}{dt} = b(S + \sigma I) - \beta c \frac{SI}{N} - (\mu + dN)S$$
$$\frac{dI}{dt} = \beta c \frac{SI}{N} - (\mu + dN)I - \alpha I$$

- Fecundity reduction
- Horizontal transmission
- Disease-induced mortality

No infection \rightarrow logistic host growth

Classic SI model with logistic host growth

Basic reproduction ratio

$$R_0 = \frac{\beta c}{b + \alpha}$$

Classic results:

✓ Disease-free equilibrium is stable when R₀ < 1
 ✓ Endemic equilibrium exists and is stable when 1 < R₀ < R₀^{crit}
 ✓ Disease-induced extinction equilibrium exists

if $R_0 > 1$ and is stable when $R_0 > R_0^{crit}$

Frequency-dependent transmission is the standard approach to modeling STD transmission in compartmental models.

Lloyd-Smith et al. (2004)

The two-spot ladybird *Adalia bipunctata* and its sexually transmitted mite *Coccipolipus hippodamiae*

The mean proportion of males that were infected at the end of the experiment at each density: 0.67 (A) and 0.33 (B) females infectious

Ryder et al. (2005)

The mean proportion of females that mated at each density. , 0.67 females infectious; , 0.33 females infectious. Ryder et al. (2005)

Berec et al. (in review 1): The mate-finding Allee effect gives rise to a density-dependent infection transmission

Berec et al. (in review 2): Evolution need not always select for extremely efficient mate finding strategies

Partnership dynamics

Partnership dynamics has been found a critical element of STI models

Heesterbeek and Metz (1993): asymptotic transmission function

Lloyd-Smith et al. (2004): frequencydependent transmission function suitable for chronic less transmissible STIs (chiefly viruses)

Changes have been suggested for the transmission term, but the host reproduction term remained unchanged

Reproduction-transmission consistency

Mating mediates both host reproduction and infection transmission It is also possible that the transmission process in STDs is partly density-dependent because mating frequency may decline with decreasing population density. Indeed, if densities fall to such low values that contact rates decline, it is likely that there would be a concomitant fall in reproductive success.

Antonovics et al. (1995)

Sex-structured population model

The core part is a mating function, which describes the rate at which males and females mate (number of females mating per unit time)

Notation: $\mathcal{M}(N_M, N_F)$... N_M and N_F are male and female densities

$$\frac{dN_F}{dt} = (1 - \gamma) b w \mathcal{M}(N_M, N_F) - (\mu_F + d(N_M + N_F)) N_F$$

$$\frac{dN_M}{dt} = \gamma b w \mathcal{M}(N_M, N_F) - (\mu_M + d(N_M + N_F)) N_M$$

$$\underbrace{\frac{dN_F}{dt}}_{\text{fertilization rate}} + \underbrace{\frac{dN_F}{dt}}_{\text{reproduction rate}} + \underbrace{\frac{dN_F}{dt}}_{\text{reproductio$$

<ロ> < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

w ... proportion of matings that end up with giving birth

Sex-structured SI model

The core part is a transmission function, which describes the rate at which susceptible individuals get infected

Random mating – various pairs form at rates

$$\mathcal{M}(N_M, N_F) \frac{X}{N_M} \frac{Y}{N_F}, X = S_M, I_M, Y = S_F, I_F$$

 ξ_M , ξ_F ... probabilities of susceptible males / females getting infected upon mating with an infected male / female

 σ_M, σ_F ... fecundity reduction of males / females due to infection

Sex-structured SI model

$$\frac{dS_F}{dt} = (1 - \gamma) bw \mathcal{M}(N_M, N_F) \frac{S_M + \sigma_M I_M}{N_M} \frac{S_F + \sigma_F I_F}{N_F} - \xi_M \mathcal{M}(N_M, N_F) \frac{I_M}{N_M} \frac{S_F}{N_F} - (\mu_F + d(N_M + N_F)) S_F$$

$$\frac{dS_M}{dt} = \gamma bw \mathcal{M}(N_M, N_F) \frac{S_M + \sigma_M I_M}{N_M} \frac{S_F + \sigma_F I_F}{N_F} - \xi_F \mathcal{M}(N_M, N_F) \frac{S_M}{N_M} \frac{I_F}{N_F} - (\mu_M + d(N_M + N_F)) S_M$$

$$\frac{dI_F}{dt} = \xi_M \mathcal{M}(N_M, N_F) \frac{I_M}{N_M} \frac{S_F}{N_F} - (\mu_F + d(N_M + N_F))I_F - \alpha_F I_F$$
$$\frac{dI_M}{dt} = \xi_F \mathcal{M}(N_M, N_F) \frac{S_M}{N_M} \frac{I_F}{N_F} - (\mu_M + d(N_M + N_F))I_M - \alpha_M I_M$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Simplification

1:1 sex ratio at birth and sex-independent process rates ($\gamma = 0.5$, $\sigma_F = \sigma_M = \sigma$, $\xi_F = \xi_M = \xi$, $\mu_F = \mu_M = \mu$, $\alpha_F = \alpha_M = \alpha$)

$$S_F = S_M = S/2$$
 where $S = S_F + S_M$
 $I_F = I_M = I/2$ where $I = I_F + I_M$
 $N = N_F + N_M$

$$\frac{dS}{dt} = bw \mathcal{M}\left(\frac{N}{2}, \frac{N}{2}\right) \frac{(S+\sigma I)^2}{N^2} - 2\xi \mathcal{M}\left(\frac{N}{2}, \frac{N}{2}\right) \frac{SI}{N^2} - (\mu + dN) S$$
$$\frac{dI}{dt} = 2\xi \mathcal{M}\left(\frac{N}{2}, \frac{N}{2}\right) \frac{SI}{N^2} - (\mu + dN) I - \alpha I$$

Basic reproduction number R_0

No infection:

$$\frac{dN}{dt} = bw \mathcal{M}\left(\frac{N}{2}, \frac{N}{2}\right) - (\mu + dN)N \Rightarrow \text{ carrying capacity } K$$

Basic reproduction number R_0 :

$$R_0 = \frac{2\xi\mathcal{M}(N/2, N/2)/K}{\mu + dK + \alpha} = \frac{2\xi\mathcal{M}(N/2, N/2)}{bw\mathcal{M}(N/2, N/2) + \alpha K} = \frac{2\xi}{bw}\frac{\mu + dK}{\mu + dK + \alpha}$$

No disease-induced mortality ($\alpha = 0$): $R_0 = \frac{2\xi}{bw}$

For non-lethal STIs R_0 does not depend on the mating function

<□ > < @ > < E > < E > E のQ@

Mating function $\mathcal{M}(N_M, N_F)$

A variety of mating functions have been proposed

Common class: degree-one homogeneous functions $\mathcal{M}(ax, ay) = a\mathcal{M}(x, y)$ for any positive *a*, *x*, *y*

The per female mating rate is constant if the (operational) sex ratio stays constant, no matter how low male and female densities are

Questionable e.g. in presence of the mate-finding Allee effect

Mate-finding Allee effect:
$$\mathcal{M}(N_M, N_F) = N_F \frac{N_M}{N_M + \vartheta}$$
 for a positive ϑ

Degree-one homogeneous mating function

 $\mathcal{M}(ax, ay) = a\mathcal{M}(x, y)$ for any positive a, x, y

Berec and Maxin (2013)

<ロト < 同ト < 三ト < 三ト : 三 : の < ○</p>

Degree-one homogeneous mating function

$$\mathcal{M}\left(\frac{N}{2},\frac{N}{2}\right) = \frac{N}{2}\mathcal{M}(1,1)$$

With $\beta := bw \mathcal{M}(1,1)/2$ and $\lambda := \xi \mathcal{M}(1,1)$, our model is

$$\frac{dS}{dt} = \beta \frac{(S + \sigma I)^2}{N} - \lambda \frac{SI}{N} - (\mu + dN)S$$
$$\frac{dI}{dt} = \lambda \frac{SI}{N} - (\mu + dN)I - \alpha I$$

Frequency-dependent transmission!

But a non-standard reproduction term!

 $\sigma = 1$: common, linear reproduction term βN

 $\sigma = 0$: reproduction term is βSs , where s = S/N

Full sterilization ($\sigma = 0$), N = S + I, i = I/N, equilibria (N, i)

Transmission	$\lambda < \alpha$ low	$\frac{\alpha < \lambda < \alpha + \beta}{\text{intermediate}}$	$\lambda > lpha + eta$ high
$R_0 = \lambda/(\beta + \alpha)$	< 1	< 1	>1
(0,0) $((\beta - \mu)/d,0)$	unstable stable	unstable stable may or may not	unstable unstable
(<i>Ne, Ie</i>)	_	exist, unstable if it exists	_
(0, i _e)	-	unstable	-
(0,1)	unstable	stable	stable
Outcome	infection cannot invade	infection cannot invade but triggers <mark>bistability</mark>	disease- induced extinction

The bistability case

$$\alpha < \lambda < \alpha + \beta \iff 0 < \frac{\alpha}{\beta + \alpha} < R_0 < 1$$

 $\alpha = 0$: the bistability case covers the whole range $0 < R_0 < 1$

The bistability case

$$\alpha < \lambda < \alpha + \beta \iff 0 < \frac{\alpha}{\beta + \alpha} < R_0 < 1$$

Allee effect characterized by an invasion threshold for the parasite

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト ● ○ ○ ○ ○

The bistability case

This kind of bistability also occurs when sterilization efficieency of the pathogen is incomplete but sufficiently large

Another type of bistability, between the disease-free equilibrium and endemic equilibrium, occurs at intermediate fecundity reduction values
Mate-finding Allee effect mating function

$$\mathcal{M}(N_M, N_F) = N_F \frac{N_M}{N_M + \vartheta}$$
 for a positive ϑ

Berec et al. (in review)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Mate-finding Allee effect mating function

$$\mathcal{M}(N_M, N_F) = N_F \frac{N_M}{N_M + \vartheta} \Rightarrow \mathcal{M}\left(\frac{N}{2}, \frac{N}{2}\right) = \frac{N^2}{2(N + 2\vartheta)}$$

With $\beta := wb/2$, $\lambda := \xi$ and $\theta := 2\vartheta$, our model is

$$\frac{dS}{dt} = \beta \frac{N}{N+\theta} \frac{(S+\sigma I)^2}{N} - \lambda \frac{N}{N+\theta} \frac{SI}{N} - (\mu + dN)S$$
$$\frac{dI}{dt} = \lambda \frac{N}{N+\theta} \frac{SI}{N} - (\mu + dN)I - \alpha I$$

Asymptotic transmission!

Allee effect term $N/(N + \theta)$ affects both reproduction and transmission

Up to three endemic equilibria

Homoclinic and heteroclinic bifurcations

Possible extinction patterns

Oscillations may warn before host extinction

◆ロト ◆御 ト ◆臣 ト ◆臣 ト ○臣 - のへで

Domestic cats infected by FIV

Bistability between endemic and extinction equilibria

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Mating enhancement as a strategy of sexually transmitted parasites

Berec and Maxin (2014)

▲ロト ▲ 同 ト ▲ 三 ト ▲ 三 ト つ Q (~

Evolution of ST parasites

ST parasites may increase their transmission efficiency by enhancing mating effort / sexual activity of infected individuals

STI-induced mating enhancement has been repeatedly proposed as a natural adaptation of ST parasites to manipulate their hosts

However, just a few examples have been documented so far and the strength of evidence remains weak

▲ロト ▲ 同 ト ▲ 三 ト ▲ 三 ト つ Q (~

No modeling study appears to have been conducted so far

Evolution of ST parasites

McLachlan (1999): Infestation by the mite Unionicola ypsilophora enhances mating success of males of the midge Paratrichocladius rufiventris

Abbott and Dill (2001): Males of the milkweed leaf beetle Labidomera clivicollis infected with the mite Chrysomelobia labidomera displace rival males from mating pairs more often than uninfected males

Webberley et al. (2002): No effect of a sexually transmitted mite Coccipolipus hippodamiae on willingness to mate in the two-spot ladybird Adalia bipunctata

Labidomera clivicollis

Paratrichocladius rufiventris

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

500

Mating rate of infected individuals in these two species increased roughly 4.2 and 2 times, respectively

Is this phenomenon underexplored or is there any cost countering any potential increase in mating enhancement?

Sex-structured SI model

Parasites are assumed not to affect mate choice, but rather mating effort or sexual activity of their hosts

Random mating and independent contribution of each infected parent

 $\delta_{\rm F}, \delta_{\rm M}$... mating enhancement factor of infected females and males, respectively

 $\delta_F, \delta_M \geq 1$

 $\delta_F = \delta_M = 1 \dots$ no mating enhancement

・ロト・(部ト・ミト・ミト・ モー のへの)

Sex-structured SI model

$$\frac{dS_F}{dt} = (1 - \gamma) bw \mathcal{M}(N_M, N_F) \frac{S_M + \delta_M I_M}{N_M} \frac{S_F + \delta_F I_F}{N_F} - \xi_M \delta_M \mathcal{M}(N_M, N_F) \frac{I_M}{N_M} \frac{S_F}{N_F} - (\mu_F + d(N_M + N_F)) S_F$$

$$\frac{dS_M}{dt} = \gamma bw \mathcal{M}(N_M, N_F) \frac{S_M + \delta_M I_M}{N_M} \frac{S_F + \delta_F I_F}{N_F} - \xi_F \delta_F \mathcal{M}(N_M, N_F) \frac{S_M}{N_M} \frac{I_F}{N_F} - (\mu_M + d(N_M + N_F)) S_M$$

$$\frac{dI_F}{dt} = \xi_M \delta_M \mathcal{M}(N_M, N_F) \frac{I_M}{N_M} \frac{S_F}{N_F} - (\mu_F + d(N_M + N_F)) I_F - \alpha_F I_F$$
$$\frac{dI_M}{dt} = \xi_F \delta_F \mathcal{M}(N_M, N_F) \frac{S_M}{N_M} \frac{I_F}{N_F} - (\mu_M + d(N_M + N_F)) I_M - \alpha_M I_M$$

<□ > < @ > < E > < E > E のQ@

Simplification

1:1 sex ratio at birth and sex-independent process rates $(\gamma = 1/2, \delta_F = \delta_M = \delta, \xi_F = \xi_M = \xi, \mu_F = \mu_M = \mu, \alpha_F = \alpha_M = \alpha)$

$$S_M = S_F = S/2 \text{ with } S = S_M + S_F$$
$$I_M = I_F = I/2 \text{ with } I = I_M + I_F$$
$$N = N_M + N_F$$

$$\frac{dS}{dt} = bw\mathcal{M}\left(\frac{N}{2}, \frac{N}{2}\right)\frac{(S+\delta I)^2}{N^2} - 2\xi\delta\mathcal{M}\left(\frac{N}{2}, \frac{N}{2}\right)\frac{SI}{N^2} - (\mu + dN)S$$
$$\frac{dI}{dt} = 2\xi\delta\mathcal{M}\left(\frac{N}{2}, \frac{N}{2}\right)\frac{SI}{N^2} - (\mu + dN)I - \alpha I$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Degree-one homogeneous mating function

 $\mathcal{M}(ax, ay) = a \mathcal{M}(x, y)$ for any positive a, x, y

With $\beta := bw \mathcal{M}(1,1)/2$ and $\lambda := \xi \mathcal{M}(1,1)$, our model is

$$\frac{dS}{dt} = \beta \frac{(S+\delta I)^2}{N} - \lambda \delta \frac{SI}{N} - (\mu + dN) S$$
$$\frac{dI}{dt} = \lambda \delta \frac{SI}{N} - (\mu + dN) I - \alpha I$$

▲ロト ▲ 同 ト ▲ 三 ト ▲ 三 ト つ Q (~

Frequency-dependent transmission

Non-linear reproduction term

Evolution of mating enhancement factor δ

No cost to enhanced mating: runaway evolution $\delta \rightarrow \infty$

Reproduction-survival trade-off:

Mating rate δ can increase only at the cost of enhanced host mortality

 $\alpha(\delta) = k \, \delta^z, \, z > 1$

Evolution of mating enhancement factor δ

Mutant invasion fitness

 $(\hat{\delta} \text{ is the mutant's mating enhancement factor})$

$$f(\hat{\delta},\delta) = \lambda(\hat{\delta}-\delta)(1-i^*(\delta)) - k(\hat{\delta}^z - \delta^z)$$

z > 1:

$$\frac{\partial^2 f(\hat{\delta}, \delta)}{\partial \hat{\delta}^2} = -kz(z-1)\hat{\delta}^{z-2} < 0$$

▲ロト ▲ 同 ト ▲ 三 ト ▲ 三 ト つ Q (~

Any evolutionary singular point is evolutionary stable (no evolutionary branching can occur) Evolution of mating enhancement factor δ

z = 1: runaway evolution, mating enhancement constrained to a very small parameter range

<ロト < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Effect of trade-off concavity z

The higher cost of mating enhancement *z* lowers the likelihood that disease-induced mating enhancement will evolve

Mating enhancement is more likely to evolve if:

- host reproduction rate and the baseline infection transmission rate both relatively large
- 2 cost of mating enhancement, that is, concavity and steepness of the transmission-virulence trade-off are relatively low
- 3 mating is enhanced in both sexes, as opposed to just in one sex

▲ロト ▲ 同 ト ▲ 三 ト ▲ 三 ト つ Q ()

4 polygyny in the host population increases (if mating is enhanced just in one sex)

Evolution of a trait affecting strength of the mate-finding Allee effect

Berec et al. (in review)

Evolution of the mate-finding Allee effect

- Low density: evolution is expected to promote traits that reduce strength of the matefinding Allee effect
- High density: evolution may make populations more vulnerable by promoting traits that increase strength of the mate-finding Allee effect

Population density

Density-dependent selection

Strongylocentrotus droebachiensis

Lowest density

Sperm limitation

Larger eggs

Slow, long-lived sperm

23% eggs fertilized

Strongylocentrotus franciscanus

Intermediate density

Intermediate gamete traits

Strongylocentrotus purpuratus

Highest density

Sperm competition

Smaller eggs

Fast, short-lived sperm

94% eggs fertilized

The mate-finding Allee effect still there

64% eggs fertilized

Levitan (1993, 2002)

Agent-based, eco-genetic model

We developed an agent-based, eco-genetic model to study evolution of a trait affecting strength of the mate-finding Allee effect

- Strength of the mate-finding Allee effect is determined by the variables affecting the area a searcher scans per breeding season (search rate, detection distance, movement regularity, breeding season length)
- ✓ Our evolving trait: rate at which individuals search for mates
- ✓ Discrete, non-overlapping generations
- ✓ Females mate only once

Agent-based, eco-genetic model

Scenarios:

- \checkmark Males or females are the searching sex
- There are no costs on mate search, fecundity costs or viability costs
- ✓ Males are either polygynous or monogamous
- ✓ Low, high or oscillating upper bound on male density

How do differences in mating systems and fitness trade-offs interact with changes in population density?

Any female has a certain probability to meet each male; area searched per breeding season: $A(q) = C \phi q$, P(female meets a male) = A(q) / habitat area; movement-viability trade-off

Poisson-distributed number of offspring, movement-fecundity trade-off

Quantitative genetic approach, continuous polygenic trait, additive allelic effects, recombination, mutation

Density-dependent juvenile probability to survive to adulthood

Fixed or alternating upper bound on male density

Males as the searching sex

Baseline scenario

Movement-fecundity trade-off **b**

Male monogamy

с

Movement-viability trade-off d

Time

Females as the searching sex

Baseline scenario

Movement-fecundity trade-off **b**

Male monogamy C

Movement-viability trade-off d

Conclusions and perspectives

- ✓ We propose a framework for modeling STI dynamics by considering that mating mediates both host reproduction and infection transmission: reproduction-transmission consistency assumption
- The question is how often is this assumption a sound description of the underlying processes
- ✓ We used this framework to address several issues related to STIs
- Non-trivial results arose relative to the results of the commonly used STI model formulations
- ✓ This happened mainly when STIs reduced fecundity of infectious individuals, a common assumption for STIs
- ✓ Studies may require full sex-structured models: STI commonly cause abortions which means that fecundity is reduced in just one sex

A recurring theme is the essential habit of re-examining our most basic assumptions: what is a 'contact'? How much detail on population structure is needed to address a given question? What biological processes have been oversimplified, and when are simpler representations appropriate?

Lloyd-Smith et al. (2004)

THANK YOU!

Michal Theuer Eva Vodrazkova Masaryk University, Brno, Czech Rep.

Veronika Bernhauerova

Daniel Maxin Valparaiso University Valparaiso, IN, USA

Andrew M. Kramer John M. Drake

Odum School of Ecology The University of Georgia

Evolution of mate-finding Allee effect

- ✓ Negative effects of low density
- ✓ Pheromones, calling, ability to flight, etc.
- Could also have arisen to signal mate quality in high-density populations
- The challenge is to understand which mechanisms have evolved to counter the effects of low density on mating
- Are high density populations likely to lack or reverse such adaptations?

Mate-finding Allee effect

occurs when females have increased difficulty to find mates as male density declines

Azuki bean weevil *Callosobruchus chinensis* Fauvergue (2013)

Trade-offs

Movement-viability trade-off

 $\varphi(q) = \varphi_0 \exp\left(-aq^b\right)$

Movement-fecundity trade-off $b(q) = b_0 \exp(-\kappa q)$

Upper bound on male density oscillates between low and high values

Movement-fecundity trade-off **c**

d

Females are the searching sex

Baseline scenario: no trade-off, male polygyny

Conclusions

- When males are the searching sex, no costs or fecundity costs on mate search cause runaway selection or evolutionary suicide, respectively
- Male monogamy and viability costs on mate search tend to stabilize eco-evolutionary dynamics
- ✓ When females are the searching sex, no such outcomes arise
- ✓ Male monogamy and viability costs on mate search lead to different directions of density-dependent selection
- Possible extensions: metapopulation dynamics, sexual selection, polyandry
- ✓ Is there a possibility of evolutionary branching and dimorphism?

Conclusions and perspectives

- Many ST pathogens are also transmitted by alternative routes: vertically or by close contact (e.g. by aggressive interactions such as biting in primates)
- Exploration of evolution of transmission route as a response to changes in population density or contact rate
- Sexual selection should be a major determinant of how STIs spread through animal populations: ST parasites may respond to mating assortativity in their hosts by being more cryptic; Ashby and Boots (2015): possibility of incomplete crypticity and evolutionary cycling
- ✓ Spatial heterogeneity: higher local density → higher local mating rate → stronger local STI impact → STI-induced sterility / mortality will reduce local population density (metapopulation framework?)
Evolution in hosts

- Sexual selection should be a major determinant of how STIs spread through animal populations
- ✓ Absence of avoidance behavior indicates that STI risk is of secondary importance relative to other selective pressures operating in mating success
- Parasite-mediated sexual selection STI affecting expression of secondary sexual characteristics