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• Lots of work on early warning signals for critical 
transitions, but this mostly focuses on local 
bifurcations.

• There are also many critical transitions in nature 
featuring erratic population collapses.

• The most likely explanation for these collapses 
is the collision of a growing chaotic attractor 
with the boundary of another attractor.

Motivation: Erratic population 
collapses



Boundary crises of chaotic attractors

• Often, chaotic attractors 
aren‘t globally attracting 
and the system is bistable.

• Basins of attraction are 
separated by some 
boundary manifold. 
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Boundary crises of chaotic attractors

• Often, chaotic attractors 
aren‘t globally attracting 
and the system is bistable.

• Basins of attraction are 
separated by some 
boundary manifold. 

• As parameters change, the 
chaotic attractor can 
collide with this boundary 
and disappear.



Anticipating boundary crises?

Anticipating boundary crises is challenging compared to 
other critical transitions:

• They‘re nonlocal and inherently nonlinear.

• Analysis tends to be system-specific. So it‘s difficult to 
obtain generic methods of prediction.

• So is it worth trying?



Collapses in Fisheries from 1955-2005

Mullon, Fréon and Cury (2005), Fish and Fisheries

Plateau-shaped collapse, 21%

Erratic collapse, 45%

Gradual collapse, 33%

No collapse (3/4 of fisheries)
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Hump shaped 1D map: Paradigm 
boundary crisis

• The simplest case of a 
boundary crisis is that of 
the discrete map shown 
here.

• If the map changes so 
that attmin is below
the threshold we have a 
boundary crisis.
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Hump shaped 1D map: Paradigm 
boundary crisis

• The simplest case of a 
boundary crisis is that of 
the discrete map shown 
here.

• If the map changes so 
that attmin is below
the threshold we have a 
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• The simplest case of a 
boundary crisis is that of 
the discrete map shown 
here.

• If the map changes so 
that attmin is below
the threshold we have a 
boundary crisis.
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Hump shaped 1D map: Paradigm 
boundary crisis

• The simplest case of a 
boundary crisis is that of 
the discrete map shown 
here.

• If the map changes so 
that attmin is below
the threshold we have a 
boundary crisis.

attmax
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• So far so good, but in a generic method for 
anticipating boundary crises, we can‘t rely on 
particular functional forms...  
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Partially specified humped discrete 
time models

So we want to consider 1D 
maps 𝑥𝑡+1 = 𝑓 𝑥𝑡
where:

• 𝑙 𝑥 < 𝑓 𝑥 < 𝑢 𝑥 for 
some bounds 𝑙 and 𝑢,

• 𝑓′ 𝑥 > 0, 𝑥 < 𝑥max
• 𝑓′ 𝑥 < 0, 𝑥 > 𝑥max

u

l

𝑥max



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

X
t

X
t+

1

u

l

Bounds of the critical threshold

It‘s easy to find the 
minimum and maximum 
boundary for any 
function passing 
between 𝑢(𝑥) and 𝑙(𝑥).

They are the lowest 
intersections of the 
identity line and 𝑢 and 𝑙, 
respectively.



Bounds of the lowest possible 
attractor value

It‘s not much harder to 
find the minimum and 
maximum lower bound on  
an attractor.

This just involves   
`reflecting‘ points in the 
identity line and 
considering the extreme 
cases.
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Plots of the probability of persistence

• The max and min values 
of the boundary value 
and the attractor lower 
bound form a rectangle.

• We have regions of 
possible extinction or 
necessary persistence. 

• The relative areas serve 
as an estimate of the 
extinction possibility.

Persistence

(Possible extinction)

Allowing negative numbers 
prevents information loss
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Probability of a system changing in 
time

• We can construct upper 
and lower bounds, 𝑢
and 𝑙 that change in 
time.

• Then see how the 
probability of 
persistence changes 
with time.

• When it drops to 50% 
we should expect 
extinction.

Predicted 
extinction



Demonstration: Tritrophic Rosenzweig-
MacArthur model

𝑥1: Prey
𝑥2: Predator
𝑥3: Top Predator

To test the method, we‘ve 
applied it to the following 
tritrophic food chain 
model, with a slow increase 
in the carrying capacity, K. 

For information on this system and the 
boundary crisis involved see e.g.:
• Hastings, A., Powell, T., 1991. Chaos in a 

Three-Species Food Chain. Ecology
• McCann, K., Yodzis, P., 1994. Nonlinear 

Dynamics and Population 
Disappearances. The American Naturalist



Demonstration: Deterministic time 
series
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Time series of top predator population density

The resulting time series is 
shown here with the 
bifurcation diagram at the 
corresponding time.

Note two challenges:
• The periodic windows 

throughout much of the 
time series.

• The transient dynamics 
after the boundary crisis.

McCann & Yodzis, 1994, Am. Nat. 



Successful prediction
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Time series of top predator population density

Calibration 
window
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Predicted probability of persistence
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Less successful prediction
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Time series of top predator population density

Calibration 
window

No extinction predicted!

Predicted probability of persistence



Predictive success vs calibration 
window

Calibration window length
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Prediction error heat map
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Time series of top predator population density

White regions: no extinction predicted
Conclusion: The periodic windows seem 
to be causing the method to fail, but not 
in a very straightforward way.

Outside 
the time 
series



Calibration window length

C
a
li
b
ra

ti
o
n
 w

in
d
o
w

 s
ta

rt
 t

im
e

Prediction error heat map
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Effects of 0.5% noise

Conclusion: Noise generally seems to 
stop the method from missing the 
extinction completely.

Outside 
the time 
series



Calibration window length

C
a
lib

ra
ti
o
n
 w

in
d
o
w

 s
ta

rt
 t

im
e

Prediction error heat map

 

 

500 1000 1500 2000 2500 3000 3500

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

3000

3500

4000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time

T
o
p
 p

re
d
a
to

r 
p
o
p
u
la

ti
o
n
 d

e
n
s
it
y

Effects of 1% noise

Conclusion: Noise generally seems to 
stop the method from missing the 
extinction completely.

Outside 
the time 
series



Conclusions

• Method aims to predict boundary crises of 
chaotic attractors by representing chaotic 
time-series by uncertain, evolving, hump-
shaped maps.

• We’ve proved the concept works by predicting 
a collapse in a continuous time model.

• The method struggles with periodic windows, 
but noise seems to help (for once!)


