This presentation contains animations which require PDF viewer which accepts JavaScript.

◆□▶ ◆舂▶ ◆吾▶ ◆吾▶ 善吾 めへで

For best results use Acrobat Reader.

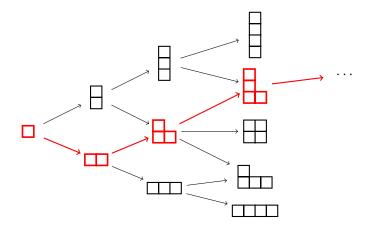
RSK	problems	limit shape	determinism of the last box	bumping routes	hydrodynamics
000	00	00	00	000	00000

Series of lectures:

jeu de taquin and asymptotic representation theory

Piotr Śniady

RSK 000 imit 00


: shape

determinism of the last box

bumping routes

hydrodynamics 00000

plan for this series of lectures: representations of the symmetric groups $\mathfrak{S}_1 \subset \mathfrak{S}_2 \subset \mathfrak{S}_3 \subset \cdots$ and \mathfrak{S}_{∞}

 problems 00 limit shape

determinism of the last box

bumping routes

hydrodynamics 00000

plan for this series of lectures:

Lecture 1, August 30

what can we say about RSK applied to random input?

Lecture 2, September 2

... and what does it tell us about the asymptotic representation theory of the symmetric groups \mathfrak{S}_n for $n \to \infty$ and \mathfrak{S}_{∞} ?

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

problems 00 limit shape

determinism of the last box

bumping routes

hydrodynamics 00000

plan for this series of lectures:

Lecture 1, August 30

what can we say about RSK applied to random input?

Lecture 2, September 2

... and what does it tell us about the asymptotic representation theory of the symmetric groups \mathfrak{S}_n for $n \to \infty$ and \mathfrak{S}_{∞} ?

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへで

RSK	problems	limit shape	determinism of the last box	bumping routes	hydrodynamics
000	00	00	00	000	00000

Lecture 1A: what can we say about RSK applied to random input?

Piotr Śniady

Polska Akademia Nauk

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

RSK	problems	limit shape	determinism of the last bo x	bumping routes	hydrodynamics
●oo	00	00	00	000	00000

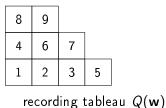
RSK is a bijection...

Output:

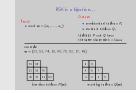
Input:

• word
$$\mathbf{w} = (w_1, \dots, w_n)$$

- semistandard tableau P,
- standard tableau Q,

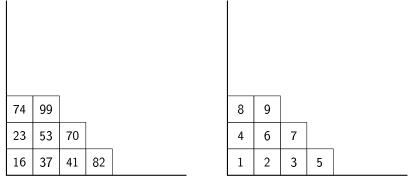

tableaux P and Q have the same shape with n boxes

example:


$$w = (23, 53, 74, 16, 99, 70, 82, 37, 41)$$

74	99		
23	53	70	
16	37	41	82

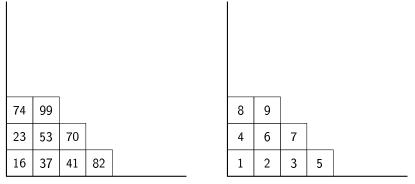
insertion tableau $P(\mathbf{w})$



Lecture 1A: what can we say about RSK applied to random input? RSK RSK RSK RSK is a bijection...

- start with empty tableaux $P := \emptyset$, $Q := \emptyset$;
- $\bullet\,$ read the letters from the word $\boldsymbol{w},$ one after another;
- for each LETTER:
 - iterate over the rows of the insertion tableau P, start from the first row;
 - insert the LETTER to some box in this row as far to the right as possible, so that the row remains increasing;
 - was this box empty?
 - NO the previous tenant must be bumped! LETTER:= bumped element; proceed to the next row;
 - YES update information about the new box into the recording tableau Q, proceed to the next letter of the word;

RSK	problems	limit shape	determinism of the last box	bumping routes	hydrodyn a mics
000	00	00	00	000	00000

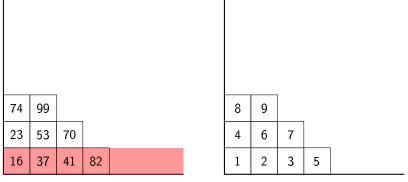


insertion tableau $P(\mathbf{w})$

recording tableau $Q(\mathbf{w})$

うして ふゆう ふほう ふほう うらつ

RSK	problems	limit shape	determinism of the last box	bumping routes	hydrodyn amics
000	00	00	00	000	00000

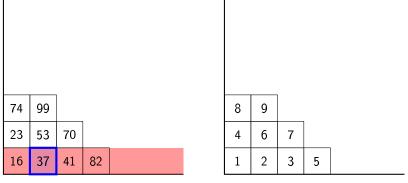


insertion tableau $P(\mathbf{w})$

recording tableau $Q(\mathbf{w})$

ション ふゆ アメリア メリア しょうくしゃ

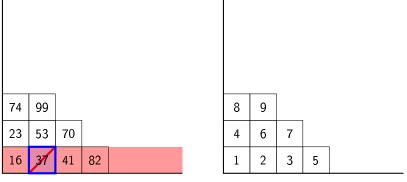
RSK	problems	limit shape	determinism of the last box	bumping routes	hydrodyn amics
000	00	00	00	000	00000



insertion tableau $P(\mathbf{w})$

recording tableau $Q(\mathbf{w})$

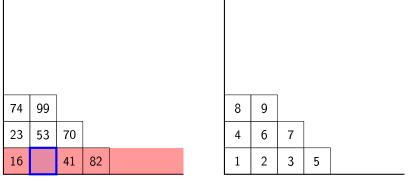
ション ふゆ アメリア メリア しょうくしゃ



insertion tableau $P(\mathbf{w})$

recording tableau $Q(\mathbf{w})$

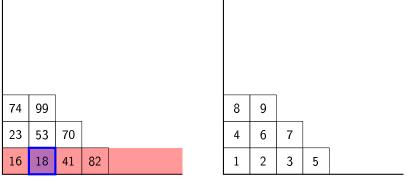
◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@



insertion tableau $P(\mathbf{w})$

recording tableau $Q(\mathbf{w})$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@



insertion tableau $P(\mathbf{w})$

recording tableau $Q(\mathbf{w})$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

insertion tableau $P(\mathbf{w})$

recording tableau $Q(\mathbf{w})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

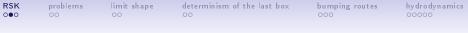
RSK	problems	limit shape	determinism of the last box	bumping routes	hydrodyn amics
000	00	00	00	000	00000

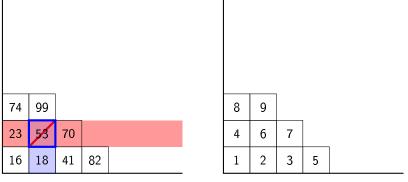
74	99				8	9			
23	53	70			4	6	7		
16	18	41	82		1	2	3	5	

insertion tableau $P(\mathbf{w})$

recording tableau $Q(\mathbf{w})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

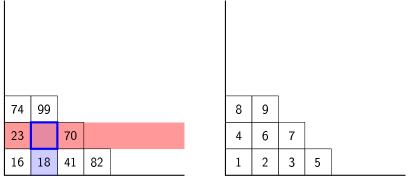

RSK	problems	limit shape	determinism of the last box	bumping routes	hydrodyn amics
000	00	00	00	000	00000


74	99				8	9			
23	53	70			4	6	7		
16	18	41	82		1	2	3	5	

insertion tableau $P(\mathbf{w})$

recording tableau $Q(\mathbf{w})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●



insertion tableau $P(\mathbf{w})$

recording tableau $Q(\mathbf{w})$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

RSK	problems	limit shape	determinism of the last box	bumping routes	hydrodyn amics
000	00	00	00	000	00000

insertion tableau $P(\mathbf{w})$

recording tableau $Q(\mathbf{w})$

ション ふゆ アメリア メリア しょうくしゃ

RSK	problems	limit shape	determinism of the last box	bumping routes	hydrodyn amics
000	00	00	00	000	00000

74	99				8	9				
23	37	70			4	6	7			
16	18	41	82		1	2	3	5		

insertion tableau $P(\mathbf{w})$

recording tableau $Q(\mathbf{w})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

RSK	problems	limit shape	determinism of the last box	bumping routes	hydrodyn amics
000	00	00	00	000	00000

74	99					8	9		
23	37	70		_		4	6	7	
16	18	41	82			1	2	3	5

insertion tableau $P(\mathbf{w})$

recording tableau $Q(\mathbf{w})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

RSK	problems	limit shape	determinism of the last box	bumping routes	hydrodyn amics
000	00	00	00	000	00000

74	99					8	9									
23	37	70		_		4	6	7		_						
16	18	41	82			1	2	3	5							

insertion tableau $P(\mathbf{w})$

recording tableau $Q(\mathbf{w})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

RSK	problems	limit shape	determinism of the last box	bumping routes	hydrodyn amics
000	00	00	00	000	00000

74	99						8	9				
23	37	70		_			4	6	7		_	
16	18	41	82			_	1	2	3	5		

insertion tableau $P(\mathbf{w})$

recording tableau $Q(\mathbf{w})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

RSK	problems	limit shape	determinism of the last box	bumping routes	hydrodyn amics
000	00	00	00	000	00000

	99						8	9								
23	37	70		_			4	6	7							
16	18	41	82			_	1	2	3	5						

insertion tableau $P(\mathbf{w})$

recording tableau $Q(\mathbf{w})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

RSK	problems	limit shape	determinism of the last box	bumping routes	hydrodyn amics
000	00	00	00	000	00000

53	99					8	9		
23	37	70		_		4	6	7	
16	18	41	82			1	2	3	5

insertion tableau $P(\mathbf{w})$

recording tableau $Q(\mathbf{w})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

RSK	problems	limit shape	determinism of the last box	bumping routes	hydrodyn amics
000	00	00	00	000	00000

53	99						8	9		
23	37	70		_			4	6	7	
16	18	41	82			_	1	2	3	5

insertion tableau $P(\mathbf{w})$

recording tableau $Q(\mathbf{w})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

RSK	problems	limit shape	determinism of the last box	bumping routes	hydrodyn amics
000	00	00	00	000	00000

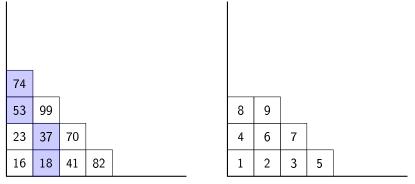
- 0								_		
53	99						8	9		1
23	37	70		1			4	6	7	
16	18	41	82			_	1	2	3	5

insertion tableau $P(\mathbf{w})$

recording tableau $Q(\mathbf{w})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

RSK	problems	limit shape	determinism of the last box	bumping routes	hydrodyn amics
000	00	00	00	000	00000

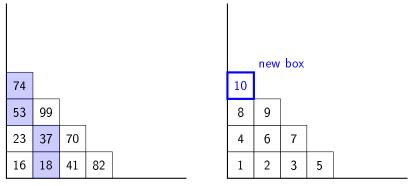

74								1	
53	99					8	9		
23	37	70				4	6	7	
16	18	41	82			1	2	3	5

insertion tableau $P(\mathbf{w})$

recording tableau $Q(\mathbf{w})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

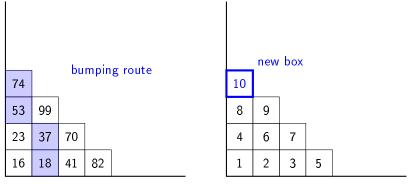
RSK	problems	limit shape	determinism of the last box	bumping routes	hydrodyn a mics
000	00	00	00	000	00000



insertion tableau $P(\mathbf{w})$

recording tableau $Q(\mathbf{w})$

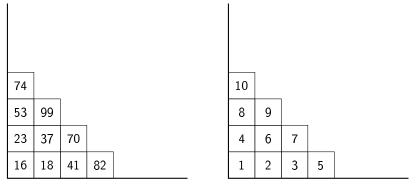
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで


RSK	problems	limit shape	determinism of the last box	bumping routes	hydrodyn amics
000	00	00	00	000	00000

insertion tableau $P(\mathbf{w})$

recording tableau $Q(\mathbf{w})$

RSK	problems	limit shape	determinism of the last box	bumping routes	hydrodyn amics
000	00	00	00	000	00000



insertion tableau $P(\mathbf{w})$

recording tableau $Q(\mathbf{w})$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

RSK	problems	limit shape	determinism of the last box	bumping routes	hydrodyn amics
000	00	00	00	000	00000

insertion tableau $P(\mathbf{w})$

recording tableau $Q(\mathbf{w})$

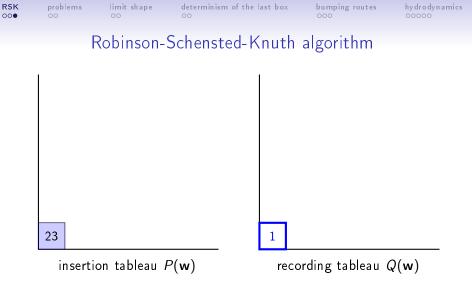
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 RSK
 problems
 limit shape
 determinism of the last box
 bumping routes

 00
 00
 00
 00
 000

hydrodynamics 00000

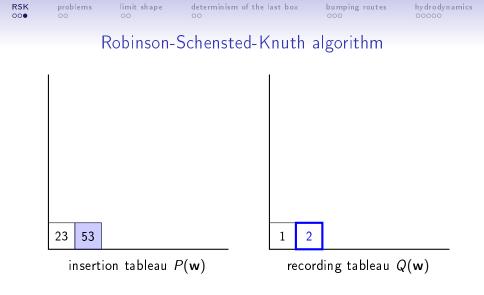
Robinson-Schensted-Knuth algorithm


insertion tableau $P(\mathbf{w})$

recording tableau $Q(\mathbf{w})$

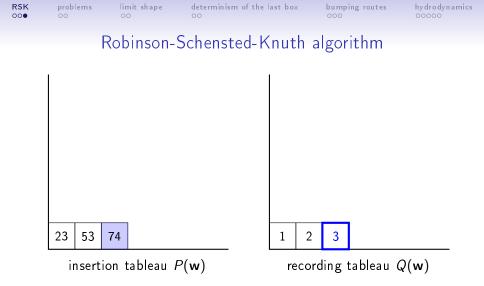
・ロト ・個ト ・ヨト ・ヨト

æ


 $\mathbf{w}=\emptyset$

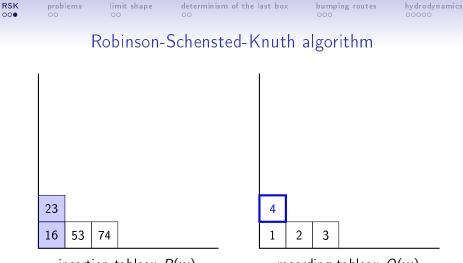
・ロト ・得ト ・ヨト ・ヨト

æ


w = (23)

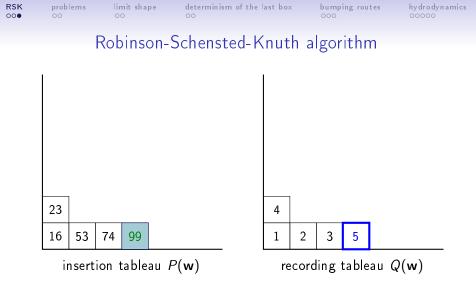
・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

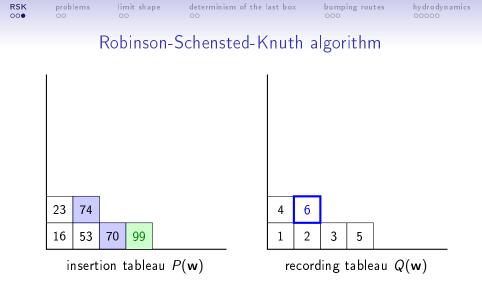
э


 $\textbf{w}=(23,\ \textbf{53})$

・ロト ・得ト ・ヨト ・ヨト

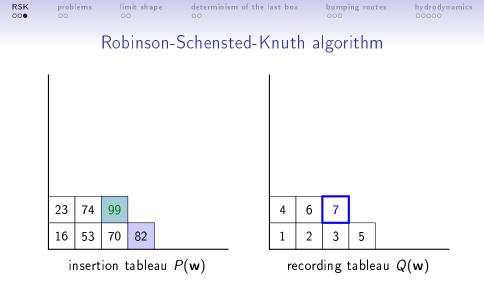
э


w = (23, 53, 74)

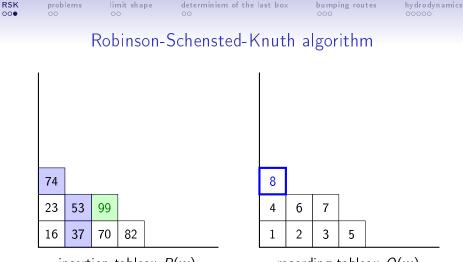

recording tableau $Q(\mathbf{w})$

◆□▶ ◆◎▶ ◆□▶ ◆□▶ ─ □

w = (23, 53, 74, 16)

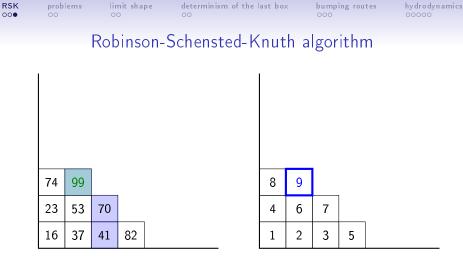


 $\boldsymbol{w}=(23,\;53,\;74,\;16,\;99)$

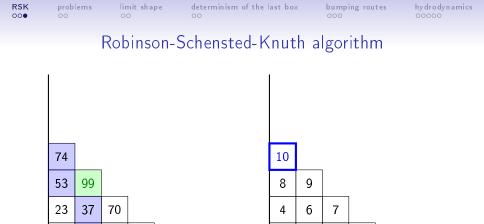


・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

w = (23, 53, 74, 16, 99, 70)


w = (23, 53, 74, 16, 99, 70, 82)

recording tableau $Q(\mathbf{w})$


・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

w = (23, 53, 74, 16, 99, 70, 82, 37)

recording tableau $Q(\mathbf{w})$

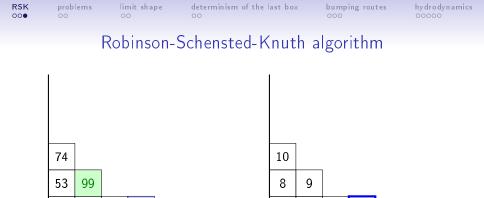
w = (23, 53, 74, 16, 99, 70, 82, 37, 41)

16 34 41

82

recording tableau $Q(\mathbf{w})$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@


5

3

2

1

w = (23, 53, 74, 16, 99, 70, 82, 37, 41, 34)

73

70 82

23 37

16 34 41

recording tableau $Q(\mathbf{w})$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э.

5

6

2 3

4

1

7 11

w = (23, 53, 74, 16, 99, 70, 82, 37, 41, 34, 73)

RSK	problems	limit shape	determinism of the last box	bumping routes	hy drodyn amics
000	00	00	00	000	00000

Robinson-Schensted-Knuth algorithm

74							12			
53							10			
23	99			_			8	9		
16	37	70	82				4	6	7	11
2	34	41	73			_	1	2	3	5

insertion tableau $P(\mathbf{w})$

R

recording tableau $Q(\mathbf{w})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

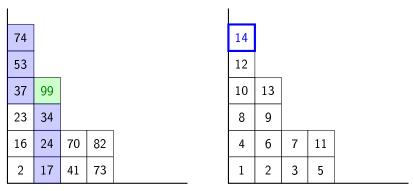
w = (23, 53, 74, 16, 99, 70, 82, 37, 41, 34, 73, 2)

RSK	problems	limit shape	determinism of the last box	bumping routes	hydrodynamics
000	00	00	00	000	00000

Robinson-Schensted-Knuth algorithm

74								12			
53	99							10	13		
23	37			_				8	9		
16	34	70	82					4	6	7	11
2	24	41	73					1	2	3	5

insertion tableau $P(\mathbf{w})$


recording tableau $Q(\mathbf{w})$

w = (23, 53, 74, 16, 99, 70, 82, 37, 41, 34, 73, 2, 24)

◆□▶ <圖▶ < E▶ < E▶ E のQ@</p>

RSK	problems	limit shape	determinism of the last box	bumping routes	hydrodynamic
000	00	00	00	000	00000

Robinson-Schensted-Knuth algorithm

insertion tableau $P(\mathbf{w})$

recording tableau $Q(\mathbf{w})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

w = (23, 53, 74, 16, 99, 70, 82, 37, 41, 34, 73, 2, 24, 17)

oproblems ●○ 00

determinism of the last box

bumping routes

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

hydrodynamics 00000

the main problem

general problem

what can we say about RSK applied to random input?

RSK	problems	limit shape	determinism of the last box	bumping routes	hydrodyn amics
000	•0	00	00	000	00000

the main problem

general problem

what can we say about RSK applied to random input?

concrete setup for today, version A

... if the word $\mathbf{w} = (w_1, \dots, w_n)$ is a random permutation from \mathfrak{S}_n ?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

RSK	problems	limit shape	determinism of the last box	bumping routes	hy drodyn amics
000	•0	00	00	000	00000

the main problem

general problem

what can we say about RSK applied to random input?

concrete setup for today, version A

... if the word $\mathbf{w} = (w_1, \dots, w_n)$ is a random permutation from \mathfrak{S}_n ?

concrete setup for today, version B

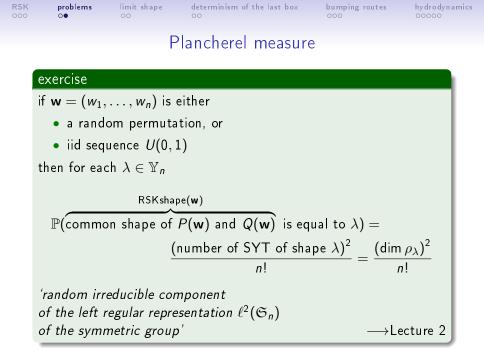
... if $\mathbf{w} = (w_1, ..., w_n)$ is a sequence of *iid* (independent, identically distributed) random variables with the uniform distribution U(0, 1) on the interval [0, 1]?

RSK	problems	limit shape	determinism of the last box	bumping routes	hy drodyn amics
000	•0	00	00	000	00000

the main problem

general problem

what can we say about RSK applied to random input?

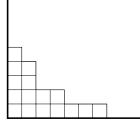

concrete setup for today, version A

... if the word $\mathbf{w} = (w_1, \dots, w_n)$ is a random permutation from \mathfrak{S}_n ?

concrete setup for today, version B

... if $\mathbf{w} = (w_1, ..., w_n)$ is a sequence of *iid* (independent, identically distributed) random variables with the uniform distribution U(0, 1) on the interval [0, 1]?

 \longrightarrow ULAM 1963

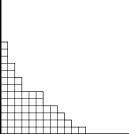

RSK	problems	limit shape	determinism of the last box	bumping routes	hy drodyn amics
000	00	•0	00	000	00000

limit shape for Plancherel measure

problem

what can we say about the common shape of $P(\mathbf{w})$ and $Q(\mathbf{w})$ when $n \to \infty$ and $\mathbf{w} = (w_1, \dots, w_n)$ is random?

$$n = 16$$

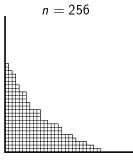

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

RSK	problems	limit shape	determinism of the last box	bumping routes	hy drodyn amics
000	00	•0	00	000	00000

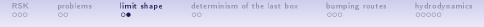
limit shape for Plancherel measure

problem

what can we say about the common shape of $P(\mathbf{w})$ and $Q(\mathbf{w})$ when $n \to \infty$ and $\mathbf{w} = (w_1, \dots, w_n)$ is random?

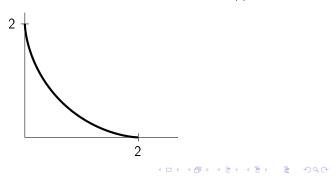

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

RSK	problems	limit shape	determinism of the last box	bumping routes	hydrodyn amics
000	00	•0	00	000	00000


limit shape for Plancherel measure

problem

what can we say about the common shape of $P(\mathbf{w})$ and $Q(\mathbf{w})$ when $n \to \infty$ and $\mathbf{w} = (w_1, \dots, w_n)$ is random?


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Theorem (LOGAN&SHEPP, VERSHIK&KEROV 1977)

in the limit $n \to \infty$ RSKshape(**w**) (=the common shape of $P(\mathbf{w})$ and $Q(\mathbf{w})$) after rescaling by the factor $\frac{1}{\sqrt{n}}$ becomes (with very high probability) very close to some concrete limit shape

→lectures of Philippe Biane

problems limit shape deter 00 00 00

determinism of the last box

bumping routes

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

hydrodynamics 00000

key problem, sloppy version

where in the recording tableau Q(w) is located our favorite number? RSK 000 limit sha 00 determinism of the last box

bumping routes

・ロト ・ 日 ・ モート ・ 田 ・ うへで

hydrodynamics 00000

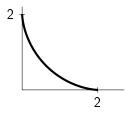
key problem, sloppy version

problems

where in the recording tableau Q(w) is located our favorite number?

key problem, more specific

let $\mathbf{w} = (w_1, \dots, w_{n+1})$, with w_1, \dots, w_n random, iid U(0, 1)and w_{n+1} deterministic


what can we say about the location of the box containing n + 1in the recording tableau $Q(\mathbf{w})$? RSK 000 limit sha 00 determinism of the last box

bumping routes

hydrodynamics 00000

key problem, sloppy version

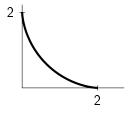
where in the recording tableau $Q(\mathbf{w})$ is located our favorite number?

key problem, more specific

let $\mathbf{w} = (w_1, \dots, w_{n+1})$, with w_1, \dots, w_n random, iid U(0, 1)and w_{n+1} deterministic

what can we say about the location of the box containing n + 1in the recording tableau $Q(\mathbf{w})$?

silly answer: it is somewhere at the boundary of RSKshape(**w**) which is ≈LSVK shape RSK 000 limit sha


determinism of the last box

bumping routes

hydrodynamics 00000

key problem, sloppy version

where in the recording tableau $Q(\mathbf{w})$ is located our favorite number?

key problem, more specific

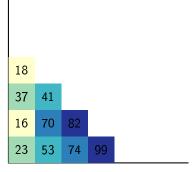
let $\mathbf{w} = (w_1, \dots, w_{n+1})$, with w_1, \dots, w_n random, iid U(0, 1)and w_{n+1} deterministic

```
what can we say
about the location of the box
containing n + 1
in the recording tableau Q(\mathbf{w})?
```

silly answer: it is somewhere at the boundary of RSKshape(**w**) which is ≈LSVK shape

but where exactly?

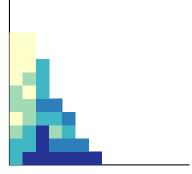
RSK 000	problems 00	l imit shape 00	determinism of the last ○●	t box	bu oc	mping route	S	hydrodynamics 00000
	10			18				
	8 9			37	41			


recording tableau $(Q_{ij})_{ij}$

3 5

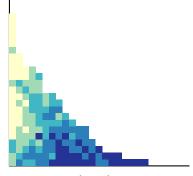
 $(w_{Q_{ij}})_{ij}$

23 53


RS	problems	limit shape	determinism of the last box	bumping routes	hydrodynamics
00	00	00	⊙●	000	00000

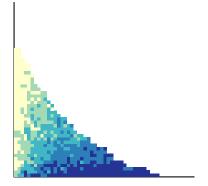
 $(w_{Q_{ij}})_{ij}$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

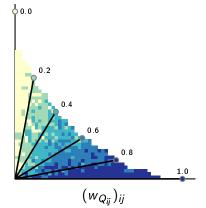

RSK	problems	limit shape	determinism of the last box	bumping routes	hydrodyn amics
000	00	00	0•	000	00000

(w_{Qij})ij

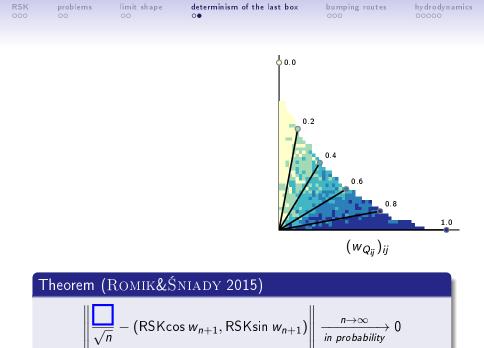
・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ ・ 日 ・

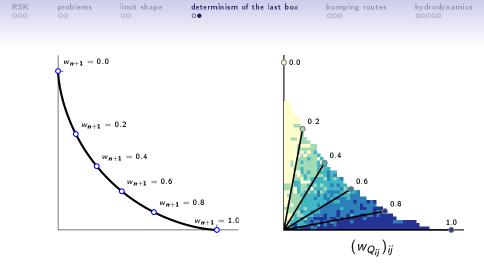

RSK	problems	limit shape	determinism of the last box	bumping routes	hydrodyn amics
000	00	00	0•	000	00000

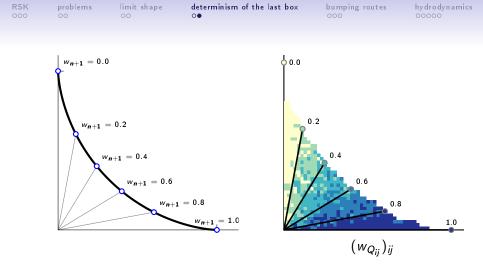
(w_{Qij})_{ij}


э

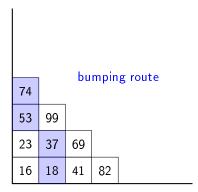
RSK	problems	limit shape	determinism of the last box	bumping routes	hydrodyn amics
000	00	00	0•	000	00000


(w_{Qij})_{ij}


RSK	problems	limit shape	determinism of the last box	bumping routes	hy dr o dy n a mi cs
000	00	00	⊙●	000	00000


・ロト ・個ト ・モト ・モト

æ



RSK	problems	limit shape	determinism of the last box	bumping routes	hy drodyn amics
000	00	00	00	•00	00000

bumping routes

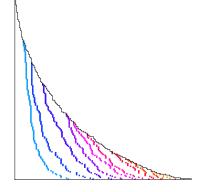
insertion tableau $P(\mathbf{w})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\mathbf{w} = (23, 53, 74, 16, 99, 69, 82, 37, 41, \underbrace{18}_{w_n})$$

problems limit sh 00 00 determinism of the last box 00

bumping routes

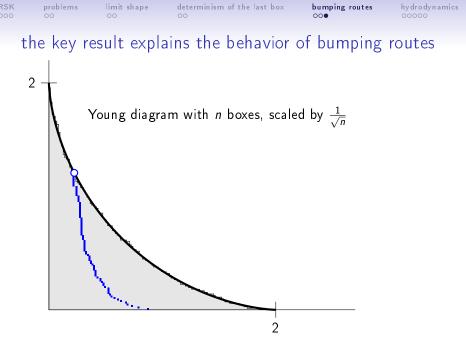

hydrodynamics 00000

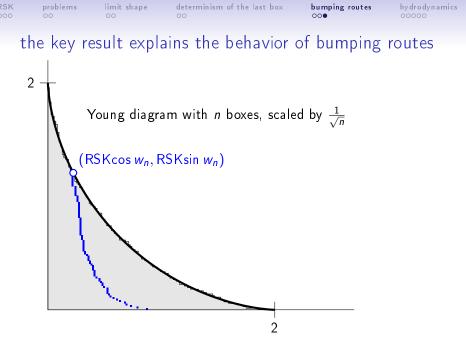
bumping routes

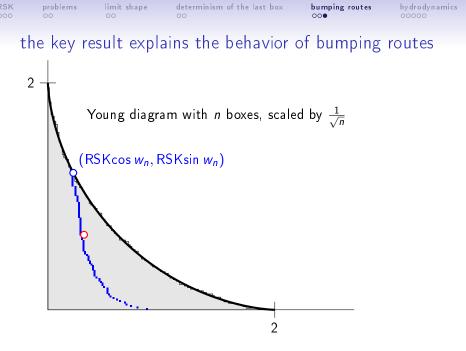
problem \longrightarrow MOORE 2006

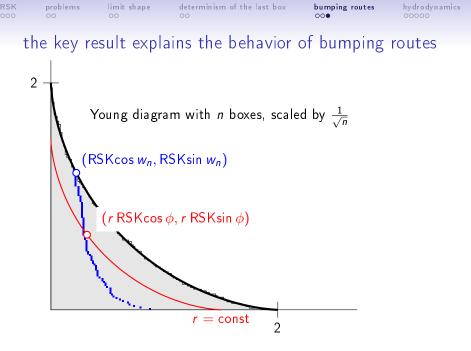
what can we say about the shapes of the bumping routes?

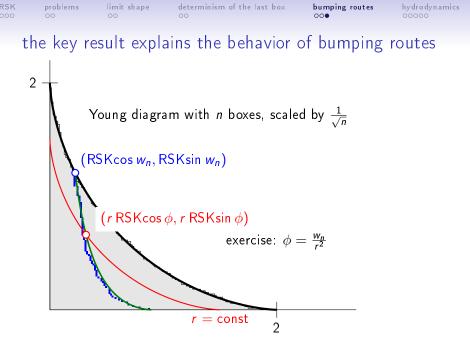
<ロ> (四) (四) (三) (三) (三) (三)

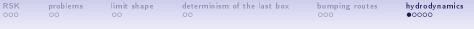

bumping routes


problem \longrightarrow MOORE 2006


what can we say about the shapes of the bumping routes?


Theorem, ROMIK&ŚNIADY 2014


Bumping route (scaled by factor $\frac{1}{\sqrt{n w_n}}$) obtained by adding entry w_n to the tableau P_{n-1} converges in probability (as $n \to \infty$) to a deterministic curve G_{τ} .

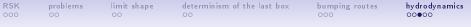


diffusion of a box

• $w_n(P_m)$ denotes the location of the box containing w_n in the insertion tableau $P_m = P(w_1, \ldots, w_m)$, for $m \ge n$;

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

RSK	problems
000	00


limit shape 00 determinism of the last box ∞

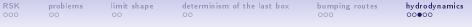
bumping routes

hydrodynamics 00000

diffusion of a box

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

diffusion of a box


• $w_n(P_m)$ denotes the location of the box containing w_n in insertion tableau P_m , for $m \ge n$;

Theorem (SNIADY, never published)

There exists an explicit function $G: \mathbb{R}_+ \to \mathbb{R}^2_+$ such that

$$\frac{w_n(P_{\lfloor ne^{\tau}\rfloor})}{\sqrt{n \ w_n}} \xrightarrow[n \to \infty]{in \ probability} G_{\tau} \qquad \textit{for } \tau \geq 0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

diffusion of a box

• $w_n(P_m)$ denotes the location of the box containing w_n in insertion tableau P_m , for $m \ge n$;

Theorem (SNIADY, never published)

There exists an explicit function $G:\mathbb{R}_+\to\mathbb{R}_+^2$ such that

$$\frac{w_n(P_{\lfloor ne^{\tau}\rfloor})}{\sqrt{n \ w_n}} \xrightarrow[n \to \infty]{in \ probability} G_{\tau} \qquad \textit{for } \tau \geq 0.$$

exercise

prove this result using 'asymptotic determinism of last box insertion'

Hint: if **w** is a permutation and $RSK(\mathbf{w}) = (P, Q)$ then $RSK(\mathbf{w}^{-1}) = (Q, P)$.

RSK	problems	limit shape	determinism of the last box	bumping routes
000	00	00	00	000

hydrodynamics 00000

hydrodynamic limit of RSK


hydrodynamic limit of RSK

Theorem (ŚNIADY, never published)

There exists an explicit function $G:\mathbb{R}_+\to\mathbb{R}^2_+$ such that

$$\frac{W_n(P_{\lfloor ne^{\tau} \rfloor})}{\sqrt{n \ W_n}} \xrightarrow[n \to \infty]{in \ probability} G_{\tau} \qquad for \ \tau \ge 0.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

hydrodynamic limit of RSK

Theorem (ŚNIADY, never published)

There exists an explicit function $G:\mathbb{R}_+\to\mathbb{R}_+^2$ such that

$$\frac{w_n(P_{\lfloor ne^{\tau} \rfloor})}{\sqrt{n w_n}} \xrightarrow[n \to \infty]{in probability} G_{\tau} \quad for \ \tau \ge 0.$$

exercise

- the above theorem concerns movement of a single particle; what can we say about collective movement of the fluid particles?
 if we consider transformations of the quarterplane describing the time-evolution of the insertion tableau P: in which topology the convergence holds true?
- write a paper about it, add $\mathrm{\hat{S}}_{\mathrm{NIADY}}$ as coauthor if you like,