Studying Affine Deligne Lusztig varieties via folded galleries in buildings

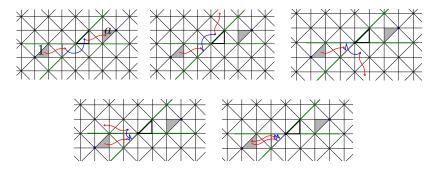
Petra Schwer Karlsruhe Institute of Technology

Joint work with Elizabeth Milićević (Haverford College) and Anne Thomas (University of Sydney)

> CIRM Luminy September 1st 2016

Explicit construction of a folded gallery

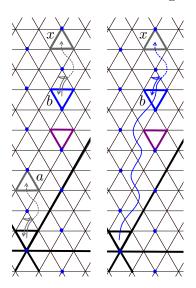
Construct a gallery from 1 to 1 of type $a = t^{2\rho}w_0$:



This gallery is positively folded for the right choice of a "sun".

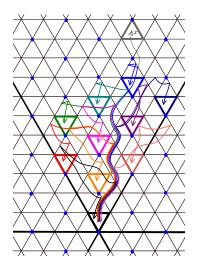
Manipulation of folded galleries

Translate and concatenate with a minimal gallery:

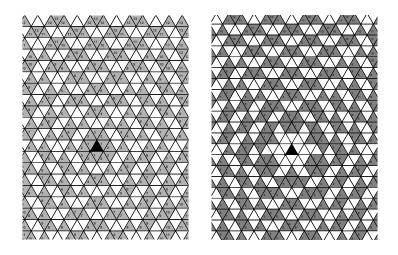


Root operators

Apply available root operators to the gallery constructed on the previous slide:



Folded galleries and ADLVs



Notation

Finite Fields:

- \mathbb{F}_q finite field order $q = p^m$
- $ightharpoonup k = \overline{\mathbb{F}}_q$ algebraic closure
- ▶ $\sigma : \overline{\mathbb{F}}_q \to \overline{\mathbb{F}}_q : a \mapsto a^q$ Frobenius automorphism

Notation

Finite Fields:

- \mathbb{F}_q finite field order $q = p^m$
- $ightharpoonup k = \overline{\mathbb{F}}_q$ algebraic closure
- $ightharpoonup \sigma: \overline{\mathbb{F}}_q \to \overline{\mathbb{F}}_q: a \mapsto a^q$ Frobenius automorphism

Local Fields:

▶ F = k((t)) the field of Laurent series is a nonarchimedean local field of characteristic p > 0

$$F \ni \sum_{i \ge m} a_j t^j$$
 for some $m \in \mathbb{Z}$ and $a_j \in k$

▶ the Frobenius extends linearly to $\sigma: F \to F$

Notation

Finite Fields:

- \mathbb{F}_q finite field order $q = p^m$
- $ightharpoonup k = \overline{\mathbb{F}}_q$ algebraic closure
- $ightharpoonup \sigma: \overline{\mathbb{F}}_q \to \overline{\mathbb{F}}_q: a \mapsto a^q$ Frobenius automorphism

Local Fields:

▶ F = k(t) the field of Laurent series is a nonarchimedean local field of characteristic p > 0

$$F \ni \sum_{j \ge m} a_j t^j$$
 for some $m \in \mathbb{Z}$ and $a_j \in k$

- the Frobenius extends linearly to $\sigma: F \to F$
- \triangleright $\mathcal{O} = k[[t]]$ power series, ring of integers of F

$$\mathcal{O} \ni \sum_{j>0} a_j t^j$$
 with $a_j \in k$

Affine flag variety

- F = k((t)) where $k = \overline{\mathbb{F}}_q$
- $\triangleright \mathcal{O} = k[[t]]$
- ▶ project $\mathcal{O} \to k$ by setting t = 0, detects constant term a_0

Affine flag variety

- F = k((t)) where $k = \overline{\mathbb{F}}_q$
- $ightharpoonup \mathcal{O} = k[[t]]$
- ▶ project $\mathcal{O} \to k$ by setting t = 0, detects constant term a_0

Recall:

The affine flag variety is the quotient G(F)/I, where we have

- ▶ G a split connected reductive group over \mathbb{F}_q ,
- ▶ $B \subset G$ a Borel containing a split maximal torus T and
- ▶ I the Iwahori subgroup of G(F) which is the inverse image of B(k) under the projection $G(\mathcal{O}) \to G(k)$.

Definition of ADLVs

G split connected reductive over \mathbb{F}_q I Iwahori subgroup W the affine Weyl group $k = \overline{\mathbb{F}}_q$, F = k((t)), σ the Frobenius map $G(F) = \sqcup_{x \in W} IxI$

Definition

The affine Deligne-Lusztig variety $X_x(b) \subseteq G(F)/I$ is given by

$$X_x(b) = \{ g \in G(F)/I \mid g^{-1}b\sigma(g) \in IxI \},$$

where $x \in W, b \in G(F)$.

ADLVs were introduced by Rapoport (2000).

Main Questions

Nonemptiness: For which $(x,b) \in W \times W$ is $X_x(b) \neq \emptyset$?

Dimension: What is the dimension of $X_x(b)$?

Main Questions

Nonemptiness: For which $(x,b) \in W \times W$ is $X_x(b) \neq \emptyset$?

Dimension: What is the dimension of $X_x(b)$?

In case b is basic these questions are solved:

- ▶ Beazley=Milićević, Görtz-Haines-Kottwitz-Reuman, Reuman, Görtz-He, He, ...
- ► Görtz, He and Nie (2012): nonemptiness pattern for all x and all basic b
- ► He (Annals 2014): dimension formula for all x and basic b

Main Questions

Nonemptiness: For which $(x,b) \in W \times W$ is $X_x(b) \neq \emptyset$?

Dimension: What is the dimension of $X_x(b)$?

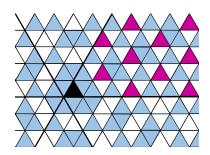
In case b is basic these questions are solved:

- ▶ Beazley=Milićević, Görtz-Haines-Kottwitz-Reuman, Reuman, Görtz-He, He, ...
- ► Görtz, He and Nie (2012): nonemptiness pattern for all x and all basic b
- ► He (Annals 2014): dimension formula for all x and basic b
- ▶ Yang (2014): nonemptiness and dimension (x, b arbitrary) in case SL_3 , that is type \tilde{A}_2 .

The basic case

An element $b \in G(F)$ is basic if it is σ -conjugate to an element of length 0 in the extended affine Weyl group.

- All basic b in W are pairwise σ -conjugate.
- Dominant translations
 (pink) are not basic and pairwise not σ-conjugate.



basic elements (blue); translations in the dominant Weyl chamber (pink)

In the following let $b=t^{\lambda}$ be a translation in W. We proceed as follows:

In the following let $b = t^{\lambda}$ be a translation in W. We proceed as follows:

(1) $X_x(b) \neq \emptyset \iff$ there exists a positively folded gallery from 1 to b of type x.

use results by Görtz-Haines-Kottwitz-Reuman and (modified versions of)

Gaussent-Littelmann/Parkinson-Ram-C.Schwer

In the following let $b = t^{\lambda}$ be a translation in W. We proceed as follows:

(1) $X_x(b) \neq \emptyset \iff$ there exists a positively folded gallery from 1 to b of type x.

use results by Görtz-Haines-Kottwitz-Reuman and (modified versions of) Gaussent-Littelmann/Parkinson-Ram-C.Schwer

(2) $dim(X_x(b))$ can be computed via positive folds + positive crossings of these galleries

Again generalizing Gaussent-Littelmann/Parkinson-Ram-C.Schwer

In the following let $b = t^{\lambda}$ be a translation in W. We proceed as follows:

(1) $X_x(b) \neq \emptyset \iff$ there exists a positively folded gallery from 1 to b of type x.

use results by Görtz-Haines-Kottwitz-Reuman and (modified versions of) Gaussent-Littelmann/Parkinson-Ram-C.Schwer

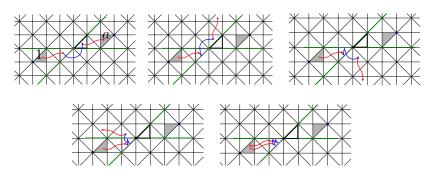
(2) $dim(X_x(b))$ can be computed via positive folds + positive crossings of these galleries

Again generalizing Gaussent-Littelmann/Parkinson-Ram-C.Schwer

(3) Construct and manipulate such galleries using root operators, combinatorics in Coxeter complexes and explicit transformations.

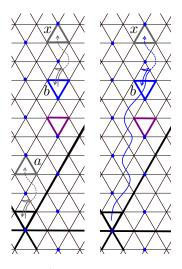
Explicit construction of a folded gallery

Construct a gallery from 1 to 1 of type $a = t^{2\rho}w_0$:



This implies that $X_a(1) \neq \emptyset$ and of dimension ≥ 7 .

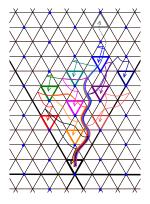
Manipulation of folded galleries



This implies $X_x(b) \neq \emptyset$ for $b = t^{\mu}$ dominant and close to x.

Root operators

Apply available root operators to the gallery constructed on the previous slide:



This implies $X_x(b) \neq \emptyset$ for most $b = t^{\mu}$ between 1 and x.

Theorem 1 (Milićević–S–Thomas)

Let $b = t^{\mu}$ be a pure translation and let $x = t^{\lambda}w \in W$. Assume that b is in the convex hull of x and the base alcove + two technical conditions on μ and λ . Then

$$X_x(1) \neq \emptyset \implies X_x(b) \neq \emptyset$$

and if $w = w_0$ then $X_x(1) \neq \emptyset$ and $X_x(b) \neq \emptyset$. If both varieties are nonempty then

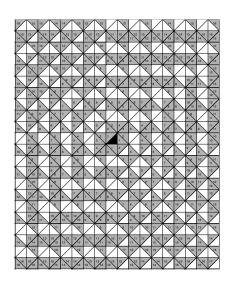
$$\dim X_x(b) = \dim X_x(1) - \langle \rho, \mu^+ \rangle.$$

Precise assumptions:

- $\blacktriangleright \ t^{\lambda}w_{0}$ and $t^{-\mu}x$ are in the shrunken dominant Weyl chamber $\widetilde{\mathcal{C}}_{f}$
- b is in the convex hull of x and the base alcove
- μ lies in the negative cone based at λ − 2 ρ .

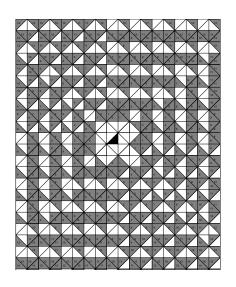
Theorem 1 in type \tilde{A}_2

b = 1

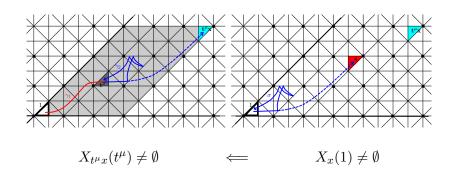


Theorem 1 in type \tilde{A}_2

 $b = t^{(1,0)}$



Geometric transformations of galleries



Theorem 2 (Milićević–S–Thomas)

If $b = t^{\mu}$ is in the convex hull of $t^{\mu}x$ and the base alcove, then

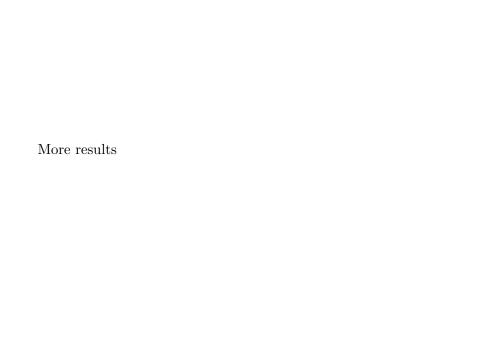
$$X_x(1) \neq \emptyset \implies X_{t^{\mu}x}(t^{\mu}) \neq \emptyset$$

and if nonempty then dim $X_{t^{\mu}x}(t^{\mu}) \ge \dim X_x(1)$.

Thank you!

petra.schwer@kit.edu

Our preprint is available at arxiv:1504.07076.



Conjugation

Theorem 3 (Milićević–S–Thomas)

Let $b = t^{\mu}$ be a dominant pure translation and let $x = t^{\lambda}w \in W$. Assume that $t^{\lambda}w_0$ lies in the shrunken dominant Weyl chamber. Then for all $u \in W_0$

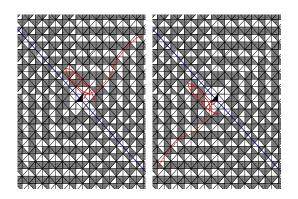
$$X_x(b) \neq \emptyset \implies X_{u^{-1}xu}(b) \neq \emptyset.$$

Moreover if these varieties are nonempty then

$$\dim X_{u^{-1}xu}(b) \ge \dim X_x(b) - \frac{1}{2}(\ell(u^{-1}xu) - \ell(x)).$$

Diagram automorphisms

Let g be an automorphism of the apartment induced by an automorphism of the diagram.



Theorem 4

 $X_x(b) \neq \emptyset \iff X_{g(x)}(g(b)) \neq \emptyset.$

If both are not empty they have the same dimension.

Arbitrary translation alcoves

Theorem 5 (Milićević–S–Thomas)

Let $b = t^{\mu}$ be a pure translation and let $x \in W$. Assume that

- \triangleright b is in the convex hull of x and the base alcove
- x and $t^{-\mu}x$ lie in the same Weyl chamber
- if x is in a shrunken Weyl chamber then $t^{-\mu}x$ is in a shrunken Weyl chamber

Then

$$X_x(1) \neq \emptyset \implies X_x(b) \neq \emptyset.$$

Moreover if these varieties are nonempty then

$$\dim X_x(b) \ge \dim X_x(1) - \langle \rho, \mu^+ \rangle - \langle \rho_{B^-}, \mu + \mu_{B^-} \rangle.$$

The p-adic setting

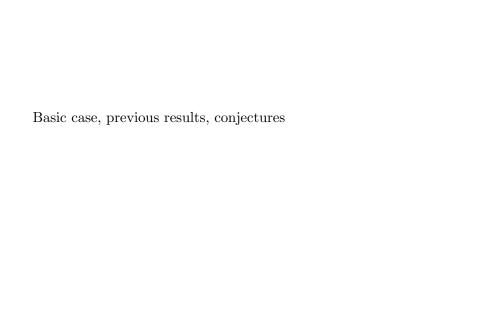
Theorem 6 (Milićević–S–Thomas)

Let b be a translation and let $x \in W$. There is a reasonable combinatorial definition of dim $X_x(b)_{\mathbb{Q}_p}$, and using this definition

$$\dim X_x(b) = \dim X_x(b)_{\mathbb{Q}_p}.$$

Corollary

All previous Theorems hold in the p-adic setting.

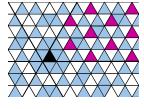


Previous results

Almost all previous results are in the basic case.

Common approach in the basic case:

- generalisation of classical Deligne-Lusztig theory,
- combinatorics on minimal length elements in conjugacy classes in the affine Weyl group W.

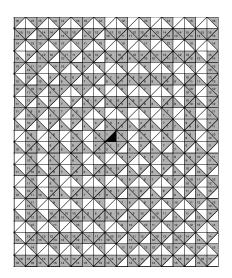


basic elements (blue); translations in the dominant Weyl chamber (pink)

- Beazley, Görtz, He, Haines, Kottwitz, Nie, Reuman,
- Görtz, He and Nie (2012): nonemptiness pattern $\forall x$ and $\forall b$ basic
- He (Annals 2014): dimension formula $\forall x$ and $\forall b$ basic

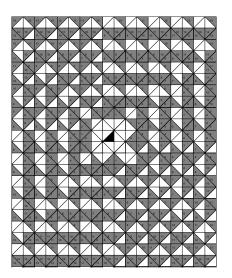
Computer experiments

In G(F)/I, Görtz, Haines, Kottwitz and Reuman (2006) conducted computer experiments in low rank; e.g. for b = 1:



Computer experiments

In G(F)/I, Görtz, Haines, Kottwitz and Reuman (2006) conducted computer experiments in low rank; e.g. for $b = t^{(1,0)}$:



Conjecture for arbitrary b

Conjecture (Görtz-Haines-Kottwitz-Reuman 2010)

Let $b \in G(F)$. Then there exists $N_b \in \mathbb{N}$ such that for all $x \in W$ with $\ell(x) > N_b$

$$X_x(b) \neq \emptyset \iff X_x(\hat{b}) \neq \emptyset$$

and if both varieties are nonempty then

$$\dim X_x(b) = \dim X_x(\hat{b}) - \frac{1}{2} \left(\langle 2\rho, \nu_b \rangle + \operatorname{def}_G(b) - \operatorname{def}_G(\hat{b}) \right).$$

Here \hat{b} is an associated basic element, \deg_G is the defect, and ν_b is the Newton point parameterizing the σ -conjugacy class.

▶ (Yang 2014) This conjecture holds for $G = SL_3$.

Conjecture for b a translation

If $b = t^{\mu}$ is a pure translation, the previous conjecture simplifies:

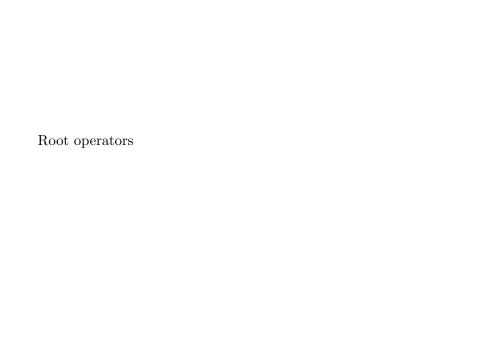
Conjecture (Görtz-Haines-Kottwitz-Reuman 2010)

Let $b = t^{\mu} \in \widetilde{W}$ be a translation. There exists $N_b \in \mathbb{N}$ such that for all $x \in \widetilde{W}$ with $\ell(x) > N_b$

$$X_x(1) \neq \emptyset \iff X_x(b) \neq \emptyset,$$

and if both varieties are nonempty then

$$\dim X_x(b) = \dim X_x(1) - \langle \rho, \mu^+ \rangle.$$



Root operators

Root operators e_{α} , f_{α} for simple roots α were defined by Gaussent and Littelmann (2005). They act on sets of positively folded galleries of a fixed type.



Using properties of e_{α} and f_{α} we can easily control end-vertices and dimensions of galleries. If we work very carefully, we can also control start-alcoves and end-alcoves.

Availability of all root operators is crucial to our constructions.